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ABSTRACT

The rat is an important model organism in biomedical
research for studying human disease mechanisms
and treatments, but its annotated transcriptome is
far from complete. We constructed a Rat Transcrip-
tome Re-annotation named RTR using RNA-seq data
from 320 samples in 11 different organs generated by
the SEQC consortium. Totally, there are 52 807 genes
and 114 152 transcripts in RTR. Transcribed regions
and exons in RTR account for ∼42% and ∼6.5% of
the genome, respectively. Of all 73 074 newly anno-
tated transcripts in RTR, 34 213 were annotated as
high confident coding transcripts and 24 728 as high
confident long noncoding transcripts. Different tis-
sues rather than different stages have a significant
influence on the expression patterns of transcripts.
We also found that 11 715 genes and 15 852 tran-
scripts were expressed in all 11 tissues and that 849
house-keeping genes expressed different isoforms
among tissues. This comprehensive transcriptome
is freely available at http://www.unimd.org/rtr/. Our
new rat transcriptome provides essential reference
for genetics and gene expression studies in rat dis-
ease and toxicity models.

INTRODUCTION

The rat (Rattus norvegicus) is utilized extensively as an an-
imal model for studying human disease mechanisms and
treatments. As an example, for toxicological studies, Gene
Expression Omnibus (GEO) (1,2) currently hosts 1964
datasets using the rat model, the most among all species, fol-
lowed by 1323 datasets for human. However, despite efforts
to improve the annotation of the rat transcriptome based
on cDNA and EST sequences, our knowledge on the tran-
scriptome of rat is far from complete when compared with
that of human and mouse.

RNA-seq technology enables an unbiased and in-depth
analysis of the genome and transcriptome (3). Studies based
on RNA-seq have revealed the complexity of the transcrip-
tomes of eukaryotes (4,5) and have shown that many tran-
scripts have escaped our observation. Examples include:
much of the genome is transcribed, including the regions
that were previously considered as junk DNAs; novel splice
junctions were detected, demonstrating distinct splice sites
and intricate patterns of alternatively spliced RNAs that
may play important roles in the regulation and expression
of the complex eukaryotic genome (5,6); most multi-exon
genes are shown to have multiple alternatively spliced iso-
forms with different coding potentials.

Nowadays, RNA-seq provides direct RNA level re-
sources for comprehensive transcriptome annotation with
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high sequencing depth and different types of samples
and thus has been integrated into traditional annotation
pipelines including Ensembl (7), ENCODE (8) and PASA
(9,10). For example, the transcriptomes of zebrafish, human
and fission yeast released by Ensembl, ENCODE (11), Ace-
View (12) and Broad Institute (13), respectively, have been
re-annotated with RNA-seq analysis.

Nevertheless, it is still challenging to construct a com-
prehensive transcriptome in the context of current RNA-
seq data quality and computational methods. Generally,
transcriptome reconstruction strategies with RNA-seq data
fall into two categories, genome-independent and genome-
guided. Genome-independent methods are preferred when
the target organisms do not have a complete reference se-
quence, whereas genome-guided approaches, with their in-
creased sensitivity in detecting transcripts, are used for an-
notating organisms with a reference genome (14,15). In
addition, various pipelines and softwares have been pub-
lished for transcriptome reconstruction, but they have lim-
ited compatibility (16), with notable inconsistencies of re-
sults. Hence, only a few software tools, data resources or
analysis results based on large-scale RNA-seq technology
are available for reusing in rat transcriptome analysis.

To generate a rat transcriptome with high resolution, we
analyzed the rat BodyMap RNA-seq data generated by the
SEQC consortium that consists of 320 deep-sequenced sam-
ples (>40 M reads per sample) from 11 different tissues
(17,18). By carefully tuning the reconstruction pipeline, we
obtained a relatively complete and reliable set of rat tran-
scripts that was used to create a re-annotated transcriptome
database and functional annotations comparable to that of
the well-annotated mouse transcriptome. We confirmed the
accuracy and reliability of RTR by comparing five other
datasets derived from the same organs in RTR.

MATERIALS AND METHODS

Data source

The RNA-seq data were obtained from the rat RNA-seq
transcriptomic BodyMap across 11 tissues, 4 developmen-
tal stages and both sexes generated by the SEQC consor-
tium (R. norvegicus, strain: F344; GEO dataset: GSE53960)
(17). Samples were prepared by Ribo-zero protocol. There
are four biological replicates in each condition, i.e. sam-
ples sharing the same organ, the same development and the
same sex. All of the datasets used for checking the precision
of RTR were downloaded from the Sequence Read Archive
(SRA) at NCBI (https://www.ncbi.nlm.nih.gov/sra) (Sup-
plementary Tables S1 and 15) (19). The gene annotations
of Rnor6 were obtained from the Ensembl database (ver-
sion 97) (7), RGD (20), RefSeq (version 95) (21). The
gene annotation of GRCh38/hg38 was obtained from the
Ensembl database (version 97). The gene annotation of
GRCm38/mm10 was obtained from the Ensembl database
(version 97).

RNA-seq read alignment and transcript assembly pipeline

The pipeline is depicted as a flowchart in Supplementary
Figure S3. All RNA-seq short reads were first aligned to
rat reference genome (rnor6) by HISAT2 (22). The aligned

reads were assembled using two methods, Stringtie (23) and
QuaPra (24), respectively. Post this initial assembly, we used
Cuffcompare in Cufflinks suite to acquire common multi-
exon transcripts in at least two biological replicates with
FPKM > 1 in the same condition. If a novel multi-exon
transcript found in only one replicate covers all the introns
of another novel transcript which was found in at least two
biological replicates with FPKM > 1 in the same strand,
then the former transcript which obtained more exons was
retained and the latter one was abandoned. A mono-exon
transcript was defined as the one that the transcript should
be detected in all four biological replicates with FPKM >
1 and then the leftmost 5′ end and rightmost 3′ end of
these copies from four biological replicates are the bound-
ary of the transcript. To obtain a tissue-specific transcrip-
tome, the common transcripts in all four biological repli-
cates from the same condition were merged using Stringtie-
merge and only transcripts longer than 200 bp were re-
tained. The common transcripts in all conditions were then
merged using Stringtie-merge. The two transcriptomes de-
rived by Stringtie and QuaPra were merged again. We then
combined transcripts which were derived in the previous
step with all the transcripts in Ensembl and RefSeq to-
gether into RTR. The performance of Stringtie and QuaPra
are shown in Supplementary Figure S4, which indicates the
consistency and complementarity between the two assem-
blers.

Selection of newly annotated coding and noncoding tran-
scripts with high confidence

In RTR, we predicted the transcript coding ability by incor-
porating three methods together: (i) CPAT (25), (ii) Pfam
(26) and (iii) BLASTx (27). A newly annotated transcript
in RTR was defined as a coding transcript with high confi-
dence which simultaneously had a coding score greater than
the cutoff in CPAT, had at least one Pfam domain and had
high similarity with at least one known protein in all organ-
isms in UniProtKB/Swiss-Prot where the similarity was es-
timated by BLASTx (e-value < 1e-5). Similarly, if a newly
annotated transcript failed all of the three tests, it was then
considered as a noncoding transcript with high confidence.

Evidence for active regulation of transcriptional start sites

To conduct analysis of transcription start site (TSS) inter-
vals, we downloaded the H3K4me3 ChIP-seq peak enrich-
ment file (BED format) for the male liver at 9 weeks in rat
(28). Intervals of ± 10 kb surrounding unique TSSs of tran-
scripts in Ensembl and the newly assembled transcripts with
high confidence were generated using the BEDTools slop
tool (29). To control for expression, TSSs were filtered to
remove transcripts not expressed in male liver at 6 weeks in
rat (FPKM < 0.5). Base-wise peak coverage was generated
using the BEDTools coverage function and summed per-
base coverage histogram was normalized by dividing by the
number of expressed TSSs.

Identification of conserved splice junctions of RTR in human
and mouse

Only transcripts with splice junctions were aligned. We used
Needle in EMBOSS (30) to align the fragments close to
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novel junctions in coding transcripts with high confidence
in rat to the fragments close to the junctions in the corre-
sponding homologous genes in human and mouse, respec-
tively (a region encompassing the nucleotides −6 to +6 rel-
ative to the splice junction was considered as ‘close’). Align-
ments were rejected in three cases: (i) there was more than
one gap occurring close to the splice junction; (ii) when the
junction in the transcript in human or mouse was not in
the coding region, we used nucleotide alignment mode and
matches with nucleotide identity <80% were rejected; (iii)
when the junction in the transcript in human or mouse was
in the coding region, we used protein alignment mode and
matches with protein identity <80% or protein similarity
<90% were rejected (physico-chemical properties of amino
acid residues were used to assign similar residues: aliphatic,
I, L, V; aromatic, F, Y, W, H; positive, H, K, R; negative, D,
E; and tiny, A, C, T, S, G).

Repetitive element analysis in RTR

RepeatMasker annotation for rat genome (rnor6 assembly)
was downloaded from the UCSC database (31,32). inter-
sectBed in BEDTools suite (33) was used to search the over-
lap between transposable elements (TEs) and exons. Any-
thing that was not classified as a TE (such as low complex-
ity, satellites and simple repeats) was removed from further
analysis.

Differential gene expression analysis and differential AS
analysis

Pure read counts were extracted from the alignment files us-
ing featureCounts v2.0.1 (34). Genes which were considered
to be expressed in at least one biological condition (i.e. a
stage and tissue) (FPKM > 0.5) were retained. Subsequent
differential gene expression analyses were performed using
DESeq2 v1.20.0 guided by the RTR transcriptome (35).

rMATS v4.0.2 was used to screen differential AS events
across different samples (36). The aligned data were run on
rMATS for AS analysis. Then we calculated the differential
AS events with the threshold of |�Percent spliced in (PSI)|
> 0.05 and FDR < 0.05.

RESULTS

Re-annotated rat transcriptome

The characteristics of Rat Transcriptome Re-annotation
(RTR) dataset and related known rat and mouse annota-
tion resources are shown in Table 1, including the number of
genes and transcripts, the size of transcribed region and the
number and size of exons. By comparing the Ensembl tran-
script data between rat and mouse, it can be seen that the
annotation of rat is much less complete than mouse in terms
of both transcribed regions and exon regions. More than 55
000 genes and 140 000 transcripts are annotated in Mouse
Ensembl release 97, while only ∼32 000 genes and 41 000
transcripts have been annotated in Rat Ensembl release 97.
In contrast, our newly annotated rat transcriptome, RTR,
identifies 52 807 genes and 114 152 transcripts, representing
a substantial improvement over current rat transcriptome

databases (Table 1, http://119.3.41.228:8888/static/RTR.gtf.
gz).

By incorporating the publicly available data resources
(Ensembl (7), RefSeq (21)) with our RNA-seq data, we
found that ∼42% of genomic regions were transcribed and
∼6.5% of genomic regions were identified as exon regions
in the resulting RTR transcriptome. Although the length
of transcribed regions in RTR is only slightly longer than
that in RGD (https://rgd.mcw.edu/) which previously was
the most comprehensive rat transcriptome (20), the sum of
the identified exon region bases in RTR is twice as large as
that in RGD. Additionally, the number of rat transcripts
in the re-annotated transcriptome is 114 152, which is 2.78
times as large as that in Rat Ensembl (41 078) and compa-
rable to that of the latest mouse annotations.

To confirm the authenticity of RTR, we checked the pre-
cision of multi-exon transcripts in five other datasets down-
loaded from the Sequence Read Archive (SRA) (https://
www.ncbi.nlm.nih.gov/sra) (19). The five selected datasets
correspond to organs overlapping those of the 320 sam-
ples in the SEQC consortium. We defined precision as
the percentage of predicted transcripts in the five datasets
that matched the transcripts in the corresponding tissues in
RTR, respectively. The precision in each dataset is higher
than 97% (Supplementary Table S1). There are 4638 tran-
scripts longer than 200 bp in known databases (Ensembl,
RefSeq, RGD) that were not found in the 320 samples in
the SEQC consortium. Intriguingly, function analysis for
these uncovered annotated transcripts implied that 856 of
these transcripts are involved in the biological process of
olfactory receptor using a hypergeometric test (Bonferroni-
adjusted, P-value < 0.05) with data in Gene Ontology (37).
Most of the 4638 transcripts were also not found in the five
other datasets (Supplementary Table S1).

More detected novel junction sites

Similar to the exome level data, 266 182 junctions were de-
tected in this BodyMap data, which was over 1.33 times
more than found in Ensembl. Unexpectedly, the junctions
detected in the 320 samples were quite differently dis-
tributed than in other annotation databases (RGD, En-
sembl and RefSeq). While splice junctions detected in this
BodyMap data identified 94.4 and 93.3% of splice junc-
tions in Ensembl and RefSeq, respectively, only 81.7% of
junctions in RGD were identified, suggesting a higher pro-
portion of unique splice junction candidates in the RGD
database.

We also investigated the splice patterns of novel junctions.
Splice junctions were generally flanked by a canonical GT-
AG sequence and 97.18% of splice junctions in the RTR
database showed this signature. In other words, the splicing
sites in our identified novel junctions showed more canon-
ical splicing patterns than the existing Ensembl database
(93.3%).

More identified alternative isoforms and splicing events

Analysis of the BodyMap data revealed a much greater ex-
tent of alternative transcripts than previous annotations.
There are 73 074 newly annotated transcripts in RTR, 48
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Table 1. Summary of four rat transcriptome datasets (RTR, RGD, rat in RefSeq (version 95), Rat Ensembl release (version 97)) and Mouse Ensembl
release (version 97)

RTR RGD Rat in RefSeq Rat Ensembl v97 Mouse Ensembl v97

Total number(G/T) 52 807/114 152 41 293/71 746 17 347/19 005 32 883/41 078 55 573/142 333
Transcribed region (bases) 1 210 629 410 1 146 889 108 745 274 636 866 345 921 1 166 497 934
Transcribed region ratio 0.422 0.400 0.260 0.302 0.427
Exon number 383 460 294 311 166 150 240 383 413 177
Exon region (bases) 189 460 026 93 815 592 39 838 763 56 335 223 116 671 536
Exon region ratio 0.066 0.032 0.014 0.020 0.043

G genes; T transcripts.

013 transcripts of which belong to 14 185 genes in Ensembl.
As a result, the ratio of transcripts belonging to genes in
Ensembl to the genes themselves increases from the origi-
nal 1.30 to 2.71 in RTR. There are 19 924 newly annotated
genes in RTR, and the ratio of transcripts in newly anno-
tated genes to the newly annotated genes themselves is 1.26,
which is comparable to the one in the known annotation in
Ensembl (1.25).

As shown in Figure 1A, 34.3% of rat genes in RTR have
more than one isoform (multi-isoform genes), which is at an
equivalent level to that of Mouse Ensembl release (version
97), while in Ensembl only 15.4% of rat genes have more
than one isoform. In addition, rat multi-isoform genes in
RTR have 4.39 isoforms on average, which is at an equiv-
alent level to that of the mouse annotation of Ensembl
(4.45), while in Ensembl rat multi-isoform genes have only
2.41 isoforms in average. Furthermore, the percent of rat
genes with at least three isoforms in RTR (22.1%) is over six
times as large as the one in Rat Ensembl release (version 97)
(3.5%).

We further used ASTALAVISTA (38) to characterize
these alternative splicing (AS) events into seven different
categories: intron retention (IR), skipped exon (SE), al-
ternative 5′ donor site (A5SS), alternative 3′ acceptor site
(A3SS), alternative first exon, alternative last exon and mu-
tually exclusive exons (MXE). The distribution of different
AS events is similar between RTR (Figure 1B) and Ensembl
(Supplementary Figure S1) with SE, the dominant mode of
AS (39), being more prevalent in RTR than Ensembl. Re-
tained intron splicing events accounted for only 16.62% of
all AS events in RTR which suggests that RTR is not likely
affected by the incomplete splicing of pre-mRNA.

Splicing factors (SFs), which are RNA binding proteins
that play key roles in AS regulation, often drive widespread
differences in AS patterns across different tissues through
tissue- and cell-type-specific expression (40). Therefore, we
further explored those SFs in rat to understand the mech-
anisms of various splicing events. By homology mapping
to human SFs (41), we identified 84 SF genes expressed in
rat (Supplementary Table S2). Interestingly, Esrp2 shows
higher expression levels in liver, lung and kidney while
it has very low expression levels in thymus and uterus;
Elavl2 shows obvious tissue specificity, which is highly ex-
pressed in brain at all development stages while having very
low expression in other tissues (Supplementary Figure S2).
These tissue-specific expression patterns of different SFs
potentially contribute to the tissue-specific regulation of AS
events in rat.

Gene coding ability and function prediction

Since current annotations of rat proteins include only 7989
proteins in UniProtKB/Swiss-Prot and 27 902 proteins in
UniProtKB/TrEMBL (42), we further predicted the po-
tential coding ability of the newly annotated transcripts
in RTR. Of all the 73 074 newly annotated transcripts,
34 213 and 24 728 were considered as highly confident
coding transcripts and long noncoding transcripts, respec-
tively (See ‘Materials and Methods’ section and Supple-
mentary Tables S3 and 4). The 34 213 coding transcripts
belong to 11 042 genes and these genes all have orthologs
in other species. Among the newly annotated transcripts
with high confidence in this study, 791 coding transcripts
were located in 564 newly annotated genes while 21 301
long noncoding transcripts were located in 17 913 newly
annotated genes. Interestingly, 39 newly annotated genes
possess both coding and long noncoding transcripts with
high confidence, similar to the 231 known genes with this
property in Ensembl. Genes such as SRA (43) and VegT
(44) have both coding and noncoding transcripts which
indicates a gene may possess versatile functions (45). A
published RT-PCR experiment confirmed three multi-exon
lncRNAs in rat (Supplementary Figure S3D in (28)), two
of which (rnor lincRNA13804051, rnor lincRNA4244571)
are verified as lncRNAs with high confidence in RTR
(RTRG.42653.1 and RTRG.13897.2, respectively); another
multi-exon lncRNA (rnor lincRNA4825071) has earlier
been added to Ensembl (ENSRNOT00000085828).

To further corroborate active transcription of the newly
annotated transcripts with high confidence, we intersected
intervals surrounding the TSSs of expressed transcripts in
male liver at 6 weeks in RTR with the ChIP-seq open source
data for histone 3 lysine 4 trimethylation (H3K4me3) ac-
quired from male liver at 9 weeks in rat (See ‘Materials
and Methods’ section and Figure 2A) (28). For comparison,
transcripts were classified into four categories: (i) known
coding transcripts in Ensembl; (ii) known lncRNAs in En-
sembl; (iii) novel coding transcripts with high confidence;
and (iv) novel lncRNAs with high confidence. Maximal en-
richment of H3K4me3 histone modification at the TSSs of
the newly assembled transcripts with high confidence but
not at randomly shuffled control regions suggests that these
transcripts possess actively regulated promoters.

To support the accuracy of 3′ end of the newly annotated
transcripts with high confidence, we intersected intervals in
the upstream 100 bp of the transcription termination sites
(TTSs) of all newly annotated transcripts with high confi-
dence in RTR with the hexamer polyA signals (AATAAA
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Figure 1. (A) The number of genes with different isoforms. Each block in a bar corresponds to the number of genes with multiple isoforms. Three tran-
scriptomes were compared, from left to right: RTR, Rat Ensembl release and Mouse Ensembl release. (B) The distribution of AS events in RTR.

Figure 2. TSS and TTS characterization in RTR. (A) ChIP-seq data enrichment for H3K4me3 from male liver at 9 weeks at 10-kb intervals surrounding
expressed TSSs (FPKM > 0.5) in male liver at 6 weeks in RTR. (B) Hexamer polyA signal (AATAAA, ATTAAA) enrichment in the upstream 100 bp of
TTSs in RTR.

and ATTAAA) (Figure 2B) (46). Transcripts were classified
into four categories for comparison as stated above. Max-
imal enrichment of the hexamer polyA signals upstream
from the TTSs of the newly assembled transcripts with high
confidence but not at randomly shuffled control regions
suggests that these transcripts possess actively polyadeny-
lation sites.

The 34 213 newly annotated coding transcripts with high
confidence were aligned to known proteins in all organ-
isms in UniProtKB/Swiss-Prot (27) with BLASTx and we
only retained the best hits (See ‘Materials and Methods’
section). Because of the relative paucity of rat proteins in
the databases used by BLASTx, ∼60% of the best hits were
proteins from mouse and human instead of rat (Figure 3A
and Supplementary Table S3). This cross-species transcript-

protein result supports the premise that the newly annotated
transcripts identified in RTR actually code for proteins.
There are 81 newly annotated genes encoding newly anno-
tated proteins not appearing in known rat annotations but
with unambiguous BLASTx hits in human or mouse (Sup-
plementary Table S5). The novel coding transcripts with
high confidence were then annotated with GO terms using
Blast2GO suite and 33 589 of them were found associated
with GO terms (Supplementary Table S6).

We further checked the cross-species conservation of 34
082 newly annotated junctions in the novel coding tran-
scripts with high confidence; long noncoding RNAs (such
as Air and Xist) were not examined because of lack of strong
conservation (47). A total of 32 571 of 34 082 junctions
belong to genes with homologous genes in human and 32
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Figure 3. Cross-species feature comparision of transcripts with high confidence in RTR. (A) The species distribution of the best BLASTx hits of newly
annotated coding transcripts with high confidence in RTR. (B) Repetitive content analysis between RTR and human in Ensembl. Sequence-based overlap
between exons and TEs was calculated.

212 of them belong to the genes with homologous genes in
mouse. We then aligned the 32 571 and 32 212 junctions
in rat to all the junctions in the corresponding homologous
genes in human and mouse, respectively. We found 41.1 and
49.2% of them were conserved in human and mouse, re-
spectively (See ‘Materials and Methods’ section and Sup-
plementary Tables S7 and 8).

Role of transposable elements in RTR

TEs, also known as repetitive DNA sequences, are spread
widely in the genome and are important in genome func-
tion and evolution (48). Some of the functional repeat se-
quences are located in known long noncoding RNAs in-
cluding Kcnq1ot1 (49) and Xist (50). Figure 3B shows
the percentages derived from dividing base-by-base over-
lap between different types of TEs and exons from differ-
ent types of transcripts by the total length of transcripts
in human and rat. The percentages in both coding and
long noncoding newly annotated transcripts with confi-
dence in RTR (15.9 and 28.6%, respectively) are higher
than the percentages in the counterparts in Ensembl in rat
(3.3 and 20.4%, respectively). The most abundant families
in novel transcripts with confidence in RTR are LINE/L1,
LINE/L2, SINE/Alu, SINE/B2, SINE/B4, SINE/MIR
and LTR/ERVL-MaLR, which is consistent with earlier re-

ports (51–53). To determine whether such increase in RTR
is due to the low annotation level of Ensembl in rat, we fig-
ured out that repetitive elements accounted for 11.4% of
exonic nucleotides of lncRNAs and 23.3% of exonic nu-
cleotides of coding transcripts in Ensembl in human, which
are quite close to the counterparts in RTR.

Expression patterns among different tissues and stages

We used alignment files (BAM format) acquired from 320
samples to run Stringtie to calculate the expression levels of
genes and transcripts in RTR among different tissues and
stages in the reference-only mode with the parameter e (23).
Transcripts/genes which have FPKM > 0.5 in at least two
or more samples in a stage and tissue were considered to
be expressed in this biological condition. Transcripts/genes
which are considered to be expressed in at least one stage in
a tissue were considered expressed in this tissue. Expression
patterns of different tissues vary considerably. Most of the
genes and transcripts detected in one tissue were also ex-
pressed in at least one other tissue (designated as ‘common’
in Figure 4A). Testis possesses the most expressed genes and
transcripts and the highest proportions of unique genes and
transcripts among all organs, which is consistent with what
is seen in humans (54). Most of the testis-specific transcripts
are involved in spermatogenesis. We also drew a landscape
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Figure 4. Expression analysis among tissues. (A) The distribution of genes and transcripts among tissues. Blue bar means the gene number uniquely
expressed in the corresponding tissue. Pink bar means the number of genes not only expressed in the corresponding tissue but also expressed in at least one
other tissue. The aggregate length of blue bar and pink bar is the number of genes expressed in the corresponding tissue. The format of gene information
shown in the figure is the same as the one of transcript information. Tissues studied are: Ad, adrenal; Br, brain; He, heart; Ki, kidney; Lu, lung; Li, liver;
Mu, skeletal muscle; Sp, spleen; Th, thymus; Te, testis; and Ut, uterus. (B) The distribution of transcripts under all of the 44 conditions. (C) The statistics
of transcripts from Ensembl and RTR according to tissues. ‘Common 2’ denotes the transcripts that were identified in at least two tissues. ‘Common all’
denotes the transcripts that were identified in all of the 11 tissues.

of expression patterns of transcripts in RTR under all of
the 44 conditions with different tissues and developmen-
tal stages (Figure 4B). We then made a two-way ANOVA
analysis on the gene abundance of all genes in RTR and
found that tissue type has a significant influence on gene
abundance in 44 539 genes while developmental stage has
a significant influence in only 25 439 genes (Bonferroni-
adjusted, P-value < 0.05).

Transcripts in RTR are more tissue-specific than those
in existing databases like Ensembl (Figure 4C). Transcripts
which are expressed in at least two tissues are much more

prevalent than tissue-specific transcripts in both RTR and
Ensembl, which demonstrates that there are close associa-
tions among tissues. For example, transcripts in heart and
muscle are both enriched in several biological processes
in Gene Ontology by hypergeometric test (37), e.g. sar-
coplasmic reticulum calcium ion transport (GO:0070296),
endoplasmic reticulum to cytosol transport (GO:1903513)
(Bonferroni-adjusted, P-value < 0.05).

There are 15 852 transcripts expressed > 0.5 FPKM
among all of the 11 tissues, which we deem as house-keeping
transcripts (Supplementary Table S9). These transcripts
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Figure 5. Spearman’s correlation coefficients of gene abundance between all organs at 21 weeks in male (A) and female (B) rats, respectively. Numbers of
differential AS events (C) and the corresponding genes (D) between male and female rats for all nine non-sex organs at 21 weeks.

show enrichment for fundamental functional pathways in
KEGG (55) such as metabolic pathways, RNA transport
and spliceosome (Bonferroni-adjusted, P-value < 0.05). We
also found that 11 715 genes are expressed in all these tissues
which we deem as house-keeping genes (Supplementary Ta-
ble S10). A total of 849 house-keeping genes express differ-
ent isoforms among tissues (Supplementary Table S11) (56).

We then compared the gene abundance of RTR measured
by FPKM with an external gene abundance dataset mea-
sured by RPKM across rat organ development (E-MTAB-
6811) (57). Supplementary Table S12 shows the Spear-
man’s correlation coefficients between the common bio-
logical conditions available from the two gene abundance
datasets. RTR genes with transcripts in Ensembl were se-
lected to conduct the common gene set for the calculation.
Nearly all the coefficients are around 0.85 except for testis
at 2 weeks which may result from different reference tran-
scriptomes and technical effects.

Differences in splicing and gene expression between males and
females in adulthood

We calculated the Spearman’s correlation coefficients of
gene abundance between all organs at 21 weeks in male (Fig-
ure 5A) and female rats (Figure 5B), respectively (FDR-
adjusted P-value < 0.05). We restricted our analysis to the
genes which were considered to be expressed in at least
one biological condition (FPKM > 0.5) for each compar-
ison. Spleen and thymus, heart and muscle show the max-
imum values in both sexes as displayed in the hierarchi-
cal clustering heatmap of gene expression profiles in Figure
1C in the previous SEQC publication (17). Coefficients be-
tween testis and non-sex organs in male rats show the min-
imum values. Thymus shows the highest sum of absolute
value of coefficient difference from all other non-sex organs
(0.19), i.e. thymus in females shows lower correlations with
all other non-sex organs than the male counterparts, which
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may result from better thymic function in females compared
with males (58).

We then calculated the Spearman’s correlation coeffi-
cients of gene abundance between male and female rats in
different non-sex organs (FDR-adjusted P-value < 0.05).
Genes were selected as stated above. The coefficients are
∼0.96 except for the coefficient in liver (0.92), which is
consistent with the fact that the liver shows the most sex-
different DEGs (1478) among non-sex organs as is shown
in the result below.

Differential gene expression profiles between male and fe-
male rats for all nine non-sex organs at 21 weeks were an-
alyzed with the DESeq2 package and a gene was consid-
ered differentially expressed when at least a 1.5-fold differ-
ence in expression existed between sexes (|log2FoldChange|
> 0.585) plus a FDR-adjusted P-value < 0.05 (See ‘Mate-
rials and Methods’ section and Supplementary Tables S13
and 14). More genes showed sex-different expression in
the liver and kidney as reported in previous publications
(17,59). Totally, there are 3044 sex-different DEGs, only
12.5% of which are sex-different DEGs in more than one
tissue. More genes were found preferentially expressed in
male vs female. Male-dominant genes outnumbered female-
dominant genes in each non-sex organ (1951 versus 1212 in
all).

We used rMATS to identify five types of AS events be-
tween male and female rats for all nine non-sex organs at 21
weeks: SE, IR, MXE, alternative 5′ donor site (A5SS), al-
ternative 3′ acceptor site (A3SS) (36). Among the five major
types of differential AS events, SE was the most frequent in
most organs except for spleen (See ‘Materials and Methods’
section). In contrast, MXE was the least common differen-
tial AS pattern (Figure 5C). Most of the differential spliced
genes (DSGs) undergo only one differential AS event (Fig-
ure 5C and D).

To assess the global correlation in AS patterns between
male and female rats for all nine non-sex organs at 21 weeks,
we restricted our analysis to the alternatively spliced cas-
sette exons with at least 20 reads mapped to one of the three
exon-exon junctions in an AS event in all samples during
comparison. We observed high correlations in the exon in-
clusion levels of these exons which means high similarities
of AS events between male and female rats for all nine non-
sex organs (Pearson correlation r: ∼0.98, P-value < 2.2e-16)
(Supplementary Figure S5). The exon inclusion level of an
alternatively spliced cassette exon in any given tissue was
estimated from the counts of ESTs mapped uniquely to the
exon inclusion or skipping exon–exon junctions.

To analyze DEGs and DSGs between sex gonads, we
compared testis and ovary at 16 weeks from the same exter-
nal rat RNA-seq dataset used above (E-MTAB-6811) with
DESeq2 and rMATS after processing the fastq files (35,36).
A total of 4013 differential AS events were identified from
2361 DSGs. Similar to the expression trend in non-sex or-
gans, more genes were preferentially expressed in male vs
female (9079 versus 5087). Among 2361 DSGs detected in
testis vs ovary at 16 weeks, 833 DSGs undergo more than
one differential AS event, which is much higher than those
multi-differential AS events happened between male and fe-
male rats in all nine non-sex organs (Figure 5C and D).
Whether a gene is a DEG has no correlation with whether

it is a DSG (Chi-square test, P-value > 0.05) between male
and female rats for the same non-sex organ at 21 weeks and
between testis and ovary at 16 weeks.

RTR presentation in website

RTR is freely available at http://www.unimd.org/rtr/. There
are six sections in the website: Home, Browse, Down-
loads, FAQ, Search and Contact Us. In the Browse sec-
tion, our website displays all 52 807 genes in the order of
their locations in the rat reference genome (rnor6). IDs of
newly annotated genes begin with ‘RTRG.’ while IDs of
genes/transcripts in known databases (Ensembl, RefSeq)
are retained. Transcript information can be searched by
clicking the Gene ID field of the queried gene. A gene can
be displayed in Genome Browser of UCSC by clicking its
Location field. The information in each cell in the table can
be displayed in real time by typing key words in the search
box. Since there is loading delay in the Browse section ow-
ing to the large dataset, we offer the Search section without
loading delay. Records can be displayed by typing key words
in the search box in the Search section.

For each selected gene, we displayed the expression pro-
file in each tissue and developmental stage in a boxplot. We
also calculated the positively/negatively correlated genes of
the selected gene by organ. We displayed these highly corre-
lated genes with the selected gene in a table with correlation
coefficients from high to low with the minimum value over
0.9 in the organ-specific mode and over 0.7 in the global-
organ mode. We only calculated the genes with the expres-
sion level over 1 FPKM in at least two samples. By hovering
the mouse over the correlated gene in the table, the correla-
tion coefficient is displayed; upon mouse click, the boxplot
of this correlated gene is displayed.

DISCUSSION

RNA-seq data provide great advantages in both biologi-
cal status and genome coverage for the comprehensive un-
derstanding of the transcriptome. By developing and ap-
plying novel software and streamlined analysis pipelines
for integrating dispersed RNA-seq data into reliable and
reusable data resources, transcriptome analysis and mining
to understand biological function can be enhanced. In this
study, we reconstructed a rat transcriptome by combining
existing rat annotation resources with rat BodyMap data.
This new comprehensive rat transcriptome now has com-
pleteness and annotation comparable to the well-annotated
mouse transcriptome. Transcripts in RTR cover over 97%
of the identified transcripts in 5 other datasets which ver-
ifies the accuracy of RTR (Supplementary Table S1). This
small difference may be attributable to unique transcripts in
a certain individual and sequencing errors.

Although the analysis pipeline has been documented, re-
liable sample-specific transcriptome needs improvement in
each link. Since novel coding transcripts of high confidence
in RTR were predicted in-silico, it is worthwhile to con-
sider some additional studies to produce specific antibod-
ies of some interesting newly discovered coding isoform se-
quences of genes. As the transcriptome is better defined, the
accurate definition of each gene becomes more complicated.

http://www.unimd.org/rtr/
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RTR is a re-annotated transcriptome derived from com-
mon tissues of different developmental stages under normal
experimental conditions. In its present development, RTR
may not contain all genes/transcripts because RNA-seq
data are not available from every rat tissue/cell type under
all possible experimental conditions, diseases and patholo-
gies. Although expression of genes/transcripts may oscillate
with a period of about 24 h (60), the RTR website only cov-
ers the expression of genes/transcripts at one point in the
44 conditions.

However, RTR appears to accurately and comprehen-
sively represent the transcriptome landscape of the rat to
a considerable extent (Supplementary Table S15). For ex-
ample, RTR contained 98.5% of transcripts identified in
a normal liver sample (SRP028932; Supplementary Table
S1), while only 94.3% were identified in hypertensive liver
samples from the same experiment. Further, RTR identi-
fied 98.6% of transcripts in an independent study of the
whole kidney (SRP041131; Supplementary Table S1) but
only 97.2% of the transcripts in the S1 renal proximal tubule
from the same experiment. Thus, for a more complete def-
inition of the rat transcriptome, additional RNA-seq data
is required from tissues and cell types not represented in
the Rat BodyMap database, as well as transcripts from rats
with disease/pathological states and under different envi-
ronmental conditions.

The rat has been widely used in toxicological studies.
However, results from preclinical findings in the rat model
sometimes cannot be reliably extrapolated to human clini-
cal trials. The underlying mechanisms behind this problem
have not been fully understood. The incomplete annotation
for the rat genome and transcriptome has seriously inhib-
ited the cross-species comparison studies necessary to in-
vestigate these inconsistencies between rat and human, and
this may have contributed to the limitations of this animal
model. Our new comprehensively re-annotated transcrip-
tome provides a valuable reference for biomedical research
in understanding human diseases, and performing studies
on drug toxicity and adverse effects using the rat animal
model.

Of the detected 73 074 newly annotated transcripts,
19.3% of the transcripts could not be assigned a coding
function by our pipeline. Inconsistent results from software
used for the judgement of coding ability appeared to be the
cause. Newly annotated transcripts with ambiguous coding
ability may be due to shortcomings of these softwares or
because a transcript may act in both coding and noncoding
roles (45,61).

This comprehensive re-analysis of the rat BodyMap
RNA-seq data significantly expands the rat transcriptome.
The numbers of genes and transcripts were increased greatly
over existing databases. The ratio of multi-isoform genes
has been extensively increased from 15.4% in Ensembl to
34.3% in RTR (Figure 1). Based on the information by tis-
sue in RTR, we found that most of the transcripts are widely
shared among tissues and we also identified a more compre-
hensive set of house-keeping genes and transcripts than ever
before. This new rat transcriptome provides an essential ref-
erence for genetics and gene expression studies in rat disease
and toxicity models.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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