
MINI REVIEW
published: 13 November 2018

doi: 10.3389/fimmu.2018.02632

Frontiers in Immunology | www.frontiersin.org 1 November 2018 | Volume 9 | Article 2632

Edited by:

Lukas Martin,

Uniklinik RWTH Aachen, Germany

Reviewed by:

Johannes Ehler,

University of Rostock, Germany

Daniel Remick,

Boston University, United States

*Correspondence:

Yu Cao

yuyuer@126.com

Specialty section:

This article was submitted to

Inflammation,

a section of the journal

Frontiers in Immunology

Received: 11 August 2018

Accepted: 25 October 2018

Published: 13 November 2018

Citation:

Cheng Y, Marion TN, Cao X, Wang W

and Cao Y (2018) Park 7: A Novel

Therapeutic Target for Macrophages

in Sepsis-Induced

Immunosuppression.

Front. Immunol. 9:2632.

doi: 10.3389/fimmu.2018.02632

Park 7: A Novel Therapeutic Target
for Macrophages in Sepsis-Induced
Immunosuppression
Yanwei Cheng 1,2, Tony N. Marion 3,4, Xue Cao 2,3, Wanting Wang 1 and Yu Cao 1,2*

1West China Hospital Emergency Department, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University,

and Collaborative Innovation Center of Biotherapy, Chengdu, China, 2Disaster Medicine Center, Sichuan University,

Chengdu, China, 3Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,
4Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis,

TN, United States

Sepsis remains a serious and life-threatening condition with high morbidity and

mortality due to uncontrolled inflammation together with immunosuppression with few

therapeutic options. Macrophages are recognized to play essential roles throughout all

phases of sepsis and affect both immune homeostasis and inflammatory processes,

and macrophage dysfunction is considered to be one of the major causes for

sepsis-induced immunosuppression. Currently, Parkinson disease protein 7 (Park 7)

is known to play an important role in regulating the production of reactive oxygen

species (ROS) through interaction with p47phox, a subunit of NADPH oxidase. ROS

are key mediators in initiating toll-like receptor (TLR) signaling pathways to activate

macrophages. Emerging evidence has strongly implicated Park 7 as an antagonist

for sepsis-induced immunosuppression, which suggests that Park 7 may be a novel

therapeutic target for reversing immunosuppression compromised by sepsis. Here,

we review the main characteristics of sepsis-induced immunosuppression caused

by macrophages and provide a detailed mechanism for how Park 7 antagonizes

sepsis-induced immunosuppression initiated by themacrophage inflammatory response.

Finally, we further discuss the most promising approach to develop innovative drugs that

target Park 7 in patients whose initial presentation is at the late stage of sepsis.

Keywords: Park 7, sepsis-induced immunosuppression, inflammation, macrophages, ROS, p47phox, NADPH,

crystal structure

INTRODUCTION

Sepsis is a common clinical disease with high morbidity and mortality. Annually, ∼30 million (1)
people are affected by sepsis and more than 6–8 million (2) of those affected die. Despite significant
advances in treatment, sepsis is still a major clinical problem and remains the leading cause of death
in the critically ill patient population (3, 4) with an associated severe cost burden (5). In 2013, sepsis
was responsible for more than $23 billion (6) of hospital costs in the USA alone. Thus, sepsis has
been described as “the quintessential medical disorder of the twenty-first century.” On 26May 2017,
the World Health Organization listed sepsis as a global health priority by adopting a resolution to
improve the prevention, diagnosis and management of this deadly disease (7).
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In the recent “sepsis-3” consensus (8), sepsis is defined
as a life-threatening, multiorgan dysfunction caused by a
dysregulated host response to infection, which is primarily
caused by Gram-negative bacteria. However, a global study of
14,000 critically ill patients found that 47% of isolates were
Gram-positive, indicating that more patients currently become
septic from Gram-positive infections (9). Even after an inciting
infection has been resolved, septic patients continue to mount
an excessive inflammatory response (10) that leads to tissue
damage and organ failure. Key advances have made earlier
recognition and treatment of sepsis feasible with the result
that some patients can restore immune homeostasis, completely
clear infection, and achieve complete recovery (11). Otherwise,
patients progress into late stage sepsis and suffer from severe
immunosuppression characterized by an impaired activation
of the immune response and a hypo-inflammatory response
(12), resulting in more difficult recovery and poor long-term
outcomes with risk of cognitive and physical impairments, even
an increased incidence of delayed death due to the lack of
effective treatment for sepsis-induced immunosuppression (13).
At present, immunosuppression in septic patients constitutes an
important focus of research. Thus far, various interrelated, non-
mutually exclusive mechanisms have been proposed to explain
sepsis-induced immunosuppression, including cellular apoptosis
(14), autophagy (15, 16), regulation by the central nervous
system (17, 18), metabolic reprogramming (19), epigenetic
regulation (20–22), and endotoxin tolerance (23–25). The
immunopathogenesis of sepsis-induced immunosuppression is
a very complex process that involves both innate and adaptive
immune cells. In fact, it is at least partially caused by the
dysfuction of macrophages.

MACROPHAGES AND SEPSIS-INDUCED
IMMUNOSUPPRESSION

Macrophages play essential roles throughout all phases of
sepsis with their ubiquitous presence and comprehensive
effects on immune homeostasis and inflammatory process.
After infection, macrophage is activated through Toll-
like receptor (TLR) that recognizes pathogen-associated
molecular patterns (PAMPs) of the invading pathogen, such
as lipopolysaccharide (LPS) in Gram-negative bacteria and
lipoteichoic acid (LTA)/peptidoglycan (PGN) in Gram-positive
bacteria (26). In the early stage of sepsis, macrophages undergo
M1 differentiation and promote host defense by eliminating
invading pathogens or damaged tissues and releasing massive
amounts of pro-inflammatory cytokines such as tumor necrosis
factor alpha (TNF-a), interleukin-1 (IL-1), interleukin-6
(IL-6) and interleukin-8 (IL-8) (27). However, macrophages
may be excessively activated during the early phase and
produce excessive pro-inflammatory cytokines (28), which
have been identified as one of the major causes for the high
mortality rate in the early stage of sepsis (29). If macrophage-
mediated pro-inflammatory responses cannot be adequately
regulated, a cytokine storm may emerge (30) with the pro-
inflammatory response becoming pathogenic and eventually

immunosuppressive in late stage sepsis (31–33). As activated pro-
inflammatory macrophages undergo apoptosis and/or polarize to
the M2 phenotype that dampens the pro-inflammatory response,
they may contribute to immunosuppression. Due to the
cytokine storm, a large number of apoptosis-inducing factors are
generated and released, including TNF-a, high mobility group
box-1 protein (HMGB1) (34), thereby inducing and promoting
macrophage apoptosis (35). Previous studies (36, 37) have
determined the presence of an excessive level of macrophages
apoptosis in human autopsies and animal models of sepsis.
However, escaped M1 macrophages from apoptosis convert
into M2 macrophages, showing downregulated inflammatory
cytokines but upregulated anti-inflammatory cytokines (38).
Certain cytokines (i.e., TNF-a, IL-13, IL-4, IL-10 etc.) can
stimulate the polarization of macrophages toward M2 phenotype
(39–41). Porta et al. (42) found that LPS-tolerant macrophages
have the same characteristics as M2 macrophages. When a
gram-negative infection persists, long-term accumulation of LPS
can reprogram inflammatory responses (43) from activation to
suppression leading to decreased production of inflammatory
cytokines (44). The affected host may present a LPS-tolerant
state, and macrophages also display the phenomenon of LPS-
tolerance (45–47). In addition, M2 phenotype macrophages also
accelerate T cell apoptosis and suppress Th1 cell responses (48).
Collectively, this “dysfunctional” macrophage plays a key role in
the pathogenesis of sepsis-induced immunosuppression because
their pro-inflammatory cytokine secretions to support effective
immune reactivity against primary or secondary pathogens
is compromised. Therefore, modulating homeostasis of pro-
and anti-inflammatory responses and functional stabilities
of macrophages can be of great benefits for sepsis-induced
immunosuppression.

REACTIVE OXYGEN SPECIES (ROS) AND
MACROPHAGES

In addition to its cytotoxic function, reactive oxygen species
(ROS) can initiate multiple signal transduction cascades to
modulate macrophage function and are critical to the regulation
of immune responses against pathogens (49). Previous studies
have shown that ROS have an established role in regulating
TLR signaling pathways, such as TLR/NF-κB and TLR/MARKs
pathways (50–52). In LPS-tolerant macrophages, LPS tolerance
blunts the TLR4 signaling, inhibiting the activation of the
NF-κB signaling pathway downstream of TLR4, resulting in
reduced production of inflammatory cytokines in response to
LPS challenge (53–55). ROS can modulate the production of
pro-inflammatory cytokines from LPS-tolerant macrophages
by activating TLR4/NF-κB and TLR/MARKs pathways (49)
mainly by accelerating the phosphorylation of IκBα and MAPK
phosphatases (56, 57), respectively. In addition, it has been
reported that TLR2-deficient macrophages lacked the response
to Gram-positive LTA and PGN (58, 59), which can interact
with TLR2, leading to NF-κB activation and induction of
proinflammatory mediators in macrophages (59, 60). Rajamani
(61) also demonstarted that high glucose mediated ROS could
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FIGURE 1 | The effects of Park 7 on macrophages in sepsis-induced immunosuppression. During the late stage of sepsis, the activation of macrophages is impaired

due to the blunted TLR/NF-κB and/or TLR/MARKs signaling pathways induced with LPS/LTA/PGN/pro-inflammatory cytokines. p47phox, a proenzyme subunit of

NADPH oxidase, is key to the assembly process of NADPH oxidase. Park 7 can interact with p47phox and promote its phosphorylation and membrane translocation

to form the holoenzyme complex. Subsequently the activation of NADPH oxidase produces ROS, which can activate the MAPKs and NF-κB signaling pathways

downstream of TLR signaling, resulting in the activation of macrophages. Activated macrophages protect against sepsis-induced immunosuppression by releasing

pro-inflammatory cytokines, killing pathogen, polarizing to M1 phenotype and the enhanced capacity of autophagy. Park 7, Parkinson disease 7; LPS,

lipopolysaccharide; LTA, lipoteichoic acid; PGN, peptidoglycan; ROS, reactive oxygen species; TLR, Toll-like receptor; NF-κB, nuclear factor

kappa-light-chain-enhancer of activated B cells; MAPKs, mitogen-activated protein kinases.

induce TLR-2 activation and downstream NF-κB signaling
mediating increased inflammation during diabetic retinopathy.
TLR4/NF-κB pathway also plays a central role in the regulation
of macrophage polarization (48). M1 macrophage polarization
is related to the activation of the TLR4/NF-κB pathway (62),
whereas M2 macrophage polarization is associated with the
down-regulatation of NF-κB pathway (63). A recent study has
confirmed that the p50 subunit of NF-κB inhibits the NF-κB
pathway and M1 polarization (42). Kuchler et al. (64) reported
that impaired ROS formation contributed to an M2 phenotype
shift of macrophages in sepsis by inhibiting NF-κB signaling.
Consequently, increased ROS formation may reduce the M2
polarization of macrophages and protect against sepsis-induced
immunosuppression.

The TLR4/MARKs pathway is also involved in regulating
the LPS/pro-inflammatory cytokines-induced autophagy (65).
Autophagy can induce cell death but can also be a cytoprotective
process. Deficient autophagy suppresses the immune response
in sepsis and increases mortality (15, 16, 66). Macrophage
autophagy is considered an important part of the host
immune defense, eliminating intracellular pathogens through
heterophagy. It has been reported that ROS can influence
the MAPK pathways to activate macrophage autophagy. In
hepatoma cells, migration inhibitory factor, produced by
many cells including macrophages, induced autophagy via
ROS generation (67). Likewise, autophagy also participates in

regulating functions of macrophages and affects their ability to
defend and clear pathogens through activating NF-κB pathway
(68) and enhancing phagocytic capacity of macrophages (69). All
of this suggests that ROS can activate macrophages to improve
bactericidal and autophagy and increase production of pro-
inflammatory cytokines, thereby helping to maintain immune
homeostasis. Thus, a novel approach to improve ROS production
in macrophages may be a useful therapy for sepsis-induced
immunosuppression.

PARKINSON DISEASE 7

Parkinson disease 7 (Park 7), also known as DJ-1 (70), is
highly conserved in almost all organisms and is ubiquitously
expressed in all tissues and organs (71). Park 7 was initially
discovered as a novel oncogene product (72) and is considered
as a major causal factor for the early onset of Parkinson’s
disease (73). In the past two decades, Park 7 has been
intensely studied in many diseases including cancer (74),
neurodegenerative disorderes (75) and stroke (76). Among these
diseases, Park 7 not only serves as a reliable predictor of auxiliary
diagnosis, but also is a useful therapeutic target. Park 7 is a
multi-functional protein with transcriptional regulation, protein
chaperone, protease, and antioxidative stress functions (77). At
present, increasing evidence has demonstrated that Park 7 plays
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important functions in protecting neurons (78), astrocytes (79),
cardiomyocytes (80, 81), and renal proximal tubule cells (82)
against oxidative stress-induced cell injury. In addition, Park
7 played an important role in restoring impaired autophagy
and ameliorated phenylephrine-induced cardiac hypertrophy
in a repression of cardiac hypertrophy model (83). Oxidative
stress is strongly related to inflammation and is thought to be
involved in the processes of many diseases, including sepsis
(84). Recently, accumulating lines of evidence for Park 7 in
activating the inflammatory response through modulating ROS
regulating oxidative stress have also been reported (53, 85). As
an antioxidant, Park 7 helps to limit to cell and tissue injury
in a number of diseases by removing accumulated ROS (82,
86–89). However, studies had shown that Park 7 surprisingly
seems to be required for high intracellular ROS production
(85, 90). Therefore, Park 7 plays a dual role in buffering
cellular ROS levels: functions as a scavenger in high ROS
levels, whereas helps ROS production when essential ROS are
required. In view of the hypo-inflammation characteristics of
sepsis-induced immunosuppression and the critical role of Park
7 in modulating ROS production and initiating an inflammatory
response, recently it has been reported that Park 7 can protect
against sepsis-induced immunosuppression.

PARK 7 PROTECTS AGAINST
SEPSIS-INDUCED IMMUNOSUPPRESSION
(FIGURE 1)

In a park 7 knock-out (KO) mouse injected with LPS, Liu et al.
(53) found that park 7 KO mice present immunosuppression
phenotypes similar to the late stage of sepsis but not acute
inflammation state, suggesting that park7 KO mice could serve
as an animal model of sepsis-induced immunosuppression. In
this model, Park 7 absence led to macrophage paralysis that
resulted in increased abdominal bacterial burdens, reduced local
and systemic inflammation, and impaired pro-inflammatory
cytokines induction, eventually leading to high susceptibility
to LPS. Neutrophil paralysis, similar to macrophage paralysis
described above, was described in experimental studies of
patients and sepsis animal models and was associated with
decreased production of ROS in neutrophils (91, 92). In a liver
fibrosis model, Park 7 deficiency inhibited ROS production
in macrophages (93). Similarly, Liu et al. also observed
greatly reduced ROS production in macrophages from park 7
KO mice (53). Macrophages with Park 7 deficiency showed
downregulation of NF-κB and MAPK signaling pathways
downstream of TLR suggesting that Park 7 deficiency can reduce
the ROS production to limit TLR signaling and impair the
activation of macrophages. Restoration of Park 7 expression
with an inducible Park7 transgene restored the production of
ROS in Park 7 KO macrophages to subsequently restore TLR
signaling, pro-inflammatory cytokine production, bactericidal
function, and eventually improve survival of the Park 7 KO
mice in the late stage of sepsis. However, immunosuppressive
IL-10 was not simultaneously enhanced after restoration of
Park7 expression. During the late stage of sepsis, Park 7 may

also enhance the macrophage functions by restoring impaired
macrophages autophay through increased ROS and TLR/MARK
signaling. Macrophage autophagy can affect cell death via
complex pathways involving crosstalk with apoptosis, which may
also partly attenuate immunosuppression (94). Moreover, Park 7
may contribute to the M1 macrophages polarization and inhibit
the M2 macrophages polarization by the increased ROS.

Although there are many sources of ROS within macrophages,
NADPH oxidase-derived ROS are critical in host defense. When
macrophages are stimulated by an extracellular stimulus such
as hormones, cytokines, and other inflammatory factors, the six
proenzyme subunits of NADPH oxidase (95), including p22phox,
gp91phox, GTPase Rac, p40phox, p47phox, and p67phox, form the
holoenzyme complex that catalyzes the transfer of NADPH
electrons to oxygen molecules to produce ROS (96). Key to the
assembly process of the holoenzyme complex is p47phox (97,
98). After macrophages are stimulated extracellularly, p47phox,
which resides in the cytosol during the resting state (95),
is phosphorylated and translocated to the plasma membrane
together with the remaining proenzyme subunits and activation
of NADPH oxidase (99, 100). Consistent with Liu’s study (53),
by interacting with p47phox andmodulating phosphorylation and
membrane translocation of p47phox, Park7 promoted NADPH
oxidase assembly and induced the production of ROS in
macrophages. This mechanism supports the hypothesis that Park
7-targeted therapy maybe useful in the future in the treatment of
sepsis-induced immunosuppression.

IS PARK 7A POTENTIAL TARGET FOR
DRUG TREATMENT IN THE FUTURE?

In this decade, many reports have shown the therapeutic potency
of Park 7 and Park 7-targeting molecules/compounds in treating
several neurodegenerative disorders (101–103). Can Park 7
be a potential target for drug treatment for sepsis-induced
immunosuppression in the future? Structure-based drug design
(SBDD) (104), as a valuable pharmaceutical lead discovery tool,
opens up new opportunities for drug design for the patient
with sepsis-induced immunosuppression. A typical example is
the successful design of many valuable drugs by SBDD based
on the crystal structure of Class B G-protein-coupled receptors
(105). As noted above, the interaction of Park 7 and p47phox is
a decisive factor in activating macrophages to ameliorate sepsis-
induced immunosuppression, suggesting that the interaction
between Park 7 and p47phox may be an ideal target for drug
design. Single crystal structures of Park 7 and p47phox have been
determined. Human Park 7 consists of 189 amino acids from
N-terminus to C-terminus, which folds into a helix-strand-helix
sandwich structure (106). The C-terminal domain (CTD) of Park
7 physically interacts with p47phox in vitro (53). In addition, the
C106 and L166 residues in the CTD of Park 7 are important for
its functions (107, 108), suggesting the two residues might play a
key role in Park 7 interacting with p47phox. However, the details
of the interaction depend on the crystal structure of the Park7-
p47phox complex. Therefore, determing Park7-p47phox complex
structure should be an urgent issue for future research.
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With regard to a potential drug treatment based on Park 7 in
the future it might be important to discuss three relevant points
here. (1) It would be necessary to detect/diagnose the immune
status of the patient in sepsis-induced immunosuppression. (2)
In line with this it would be crucial to find the right timing to start
drug treatment to overcome sepsis-induced immunosuppression.
(3) Considering the complexity of the host response during
sepsis and the variety of pathophysiological pathways involved,
it is unlikely that the current “one-target” and “one-size-fits-all”
approach will ever be successful. To date, absolute lymphocyte
count and decreased expression of HLA-DR by monocytes seem
to be the most robust markers for patient stratification in
multicenter clinical trials (109–112). Measurement of soluble
mediators such as IL-6, IL-10, and TNF-a can also help detect
immune status. However, a convenient, faster detection protocol
and other effective drugs are extremely necessary. These are
interesting issues that are worth pursuing in the future.

CONCLUSION

In summary, macrophages, as one of the most important
cells of the innate immune system, play an important role
in inflammatory and immune processes. In the early stage of
sepsis, macrophages usually have a pro-inflammatory phenotype,
whereas the excessive inflammatory macrophage response
can lead to macrophages apoptosis and change macrophage

polarization contributing to the immunosuppression. ROS have
the capacity to initiate many TLR signaling pathways and in

turn modulate macrophage functions and are produced by the
activation of NADPH oxidase. Park 7 has been extensively
studied in many diseases and can serve as an effective therapeutic
target. For research on sepsis in the late stage, Park7 KO
mice can be an ideal model. The interaction of Park7 and
p47phox can activate NADPH oxidase and subsequently increase
ROS in macrophages to initiate TRL signaling to in turn,
reinforce macrophage functions to protect against sepsis–
induced immunosuppression. In light of this understanding, the
Park 7/p47phox/ROS axis may become an effective therapeutic
target for sepsis induced immunosuppression.
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