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Abstract

The purpose of this article is to investigate approaches for modeling individual patient count/rate 

data over time accounting for temporal correlation and non-constant dispersions while requiring 

reasonable amounts of time to search over alternative models for those data. This research 

addresses formulations for two approaches for extending generalized estimating equations (GEE) 

modeling. These approaches use a likelihood-like function based on the multivariate normal 

density. The first approach augments standard GEE equations to include equations for estimation 

of dispersion parameters. The second approach is based on estimating equations determined by 

partial derivatives of the likelihood-like function with respect to all model parameters and so 

extends linear mixed modeling. Three correlation structures are considered including independent, 

exchangeable, and spatial autoregressive of order 1 correlations. The likelihood-like function is 

used to formulate a likelihood-like cross-validation (LCV) score for use in evaluating models. 

Example analyses are presented using these two modeling approaches applied to three data sets of 

counts/rates over time for individual cancer patients including pain flares per day, as needed pain 

medications taken per day, and around the clock pain medications taken per day per dose. Means 

and dispersions are modeled as possibly nonlinear functions of time using adaptive regression 

modeling methods to search through alternative models compared using LCV scores. The results 

of these analyses demonstrate that extended linear mixed modeling is preferable for modeling 

individual patient count/rate data over time, because in example analyses, it either generates better 

LCV scores or more parsimonious models and requires substantially less time.
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1. Introduction

An ongoing study (NIH/NINR 1R01NR017853) of patients with cancer is collecting daily 

longitudinal count/rate data including numbers of pain flares per day and numbers of as 

needed pain medications taken per day. Data are being collected for each study participant 

over periods of up to five months long. A completed study (NIH/NINR RC1NR011591) 

collected numbers for cancer patients over 3 months of around the clock pain medications 

taken per day per dose, that is, the number of times a medication is taken in a day relative to 

the number of doses that are supposed to be taken in a day. Standard assumptions of means 

linear in time and dispersions constant over time are not always appropriate for such data. 

Also, a Poisson process assumption of independence over time needs not always hold. A 

model selection score needs to be defined for evaluating models for the data and for use 

in searches over alternative models. Times to conduct these searches need to be as short as 

possible, especially as the number of time measurements increases.

Approaches are presented for modeling mean counts/rates over time separately for 

each individual patient controlling for temporal correlation as well as for time-varying 

dispersions. These approaches use Poisson regression methods, because count/rate data are 

being modeled. Generalized estimating equations (GEE) methods [1] [2] provide a natural 

choice for modeling correlations for such count variables. However, standard GEE methods 

have limited value, because they assume constant dispersions. Furthermore, GEE methods 

avoid specification of likelihood functions, which are useful for generating model selection 

criteria. In what follows, two extensions of GEE methods are formulated and evaluated that 

address temporal correlation and time-varying means and dispersions for repeated count/rate 

measurements. A likelihood-like function, that is, a function used like a likelihood but 

which needs not integrate to 1, is defined and used in computing parameter estimates for 

these extensions along with a model selection criterion for comparing alternative models. 

Example analyses of selected individual cancer patient count/rate data are presented using 

adaptive regression methods [3] for identifying possibly nonlinear trajectories for means and 

dispersions of counts/rates over time while controlling for temporal correlation.

2. Modeling Individual Count/Rate Data

2.1. Generalized Linear Modeling of Means

Let yt(i) denote count values for an individual patient observed at N distinct times within 

a general set T of times, that is, t(i) ∈ T = {t(i):1 ≤ i ≤ N}. Combine these into the N × 

1 vector y. Let μt(i) = Eyt(i) denote associated mean or expected counts and combine these 

into the N × 1 vector μ. Denote the residuals as et(i) = yt(i) − μt(i) for t(i) ∈ T and combine 

these into the N × 1 vector e = y – μ. Let xt(i), j denote predictor values over times t(i) ∈ T 
and over predictors indexed by 1 ≤ j ≤ J and combine these into the J × 1 vector xt(i) with 

transpose denoted by xt(i)
T  for t(i) ∈ T. Let X be the N × J matrix with rows xt(i)

T  for 1 ≤ 

i ≤ N. Let β denote the associated J × 1 vector of coefficient parameters. Use generalized 

linear models [4] [5] of μt(i) for t(i) ∈ T with natural log link function h(μ) = loge (μ) so 

that ℎ μt(i) = xt(i)
T ⋅ β for t(i) ∈ T. When xt(i),1 = 1 for t(i) ∈ T, the first entry β1 of β is an 
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intercept parameter. Treat each yt(i) as Poisson distributed so that its variance is V (μt(i)) = 

μt(i).

The counts yt(i) sometimes have associated totals Yt(i) > 0, and then the model for the mean 

counts μt(i) is converted to a model for the means μt(i)′  of the rates yt(i)′ = yt(i)/Y t(i) using 

offsets ot(i) = log(Yt(i)). Formally, replace xt(i)
T ⋅ β by xt(i)

T ⋅ β + ot(i) so that mean counts are 

μt(i) = exp xt(i)
T ⋅ β + ot(i)  and then

μt(i)′ = Eyt(i)′ = μt(i)/Y t(i) = exp xt(i)
T ⋅ β

are the mean rates.

2.2. Time-Varying Dispersions

Let xt(i), j′  denote predictor values over times t(i) ∈ T and over predictors indexed by 1 

≤ j ≤ J′ and combine these into the J′ × 1 vectors xt(i)′  for t(i) ∈ T. Let X′ be the N 

× J′ matrix with rows xt(i)
′T  for 1 ≤ i ≤ N. Let β′ denote the associated J′ × 1 vector 

of coefficient parameters. Let φt(i) denote dispersion values over times t(i) ∈ T satisfying 

log φt(i) = xt(i)
′T ⋅ β′ and define the extended variances as

σt(i)
2 = φt(i) ⋅ V μt(i) = φt(i) ⋅ μt(i)

and the extended standard deviations as σt(i) = φt(i)
1/2 ⋅ μt(i)

1/2 for t(i) ∈ T. Informally, these 

quantities extend the usual Poisson variances and standard deviations through multiplication 

by dispersions. These are used to compute the standardized residuals stdet(i) = et(i)/σt(i). 

Combine the extended standard deviations into the N × 1 vector σ. When xt(i), 1′ = 1 for 

t(i) ∈ T, the first entry β1′  of β′ is an intercept parameter. The constant dispersion model 

corresponds to xt(i), 1′ = 1 for t(i) ∈ T with J′ = 1. This is the dispersion model used in 

standard GEE modeling.

When offsets ot(i) are used to convert the model for the counts yt(i) to a model for 

the rates yt(i)′ , they can also be added to the dispersions. The dispersions then satisfy 

log φt(i) = xt(i)
′T ⋅ β′ + ot(i) so that the extended variances for the counts yt(i) are

σt(i)
2 = φt(i) ⋅ μt(i) = exp xt(i)

′T ⋅ β′ ⋅ exp xt(i)
T ⋅ β ⋅ exp2 ot(i)

and then the variances for the rates yt(i)′  are

σt(i)
′2 = σt(i)

2 /Tt(i)
2 = φt(i)′ ⋅ μt(i)′

where
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φt(i)′ = exp xt(i)
′T ⋅ β′ .

2.3. Modeling Correlations

Denote the covariance matrix for the count vector y as Σ. Use the GEE approach [1] [2] to 

model the covariance matrix for y as Σ = Diag(σ)·R(ρ)·Diag(σ) where Diag(σ) is the N × N 
diagonal matrix with diagonal entries σt(i) for t(i) ∈ T and R(ρ) is a N × N correlation matrix 

with diagonal entries 1 and off diagonal entries Rt(i),t(i′) for 1 ≤ i ≠ i′ ≤ N determined by a 

correlation parameter ρ varying with the assumed correlation structure. Under independent 

(IND) correlations, Rt(i),t(i′) = ρIND = 0 for 1 ≤ i ≠ i′ ≤ N. A Poisson process generates such 

correlations. Under exchangeable (EXCH) correlations, Rt(i),t(i′) = ρEXCH for 1 ≤ i ≠ i′ ≤ 

N, that is, the correlations are constant. Under autoregressive of order 1 (AR1) correlations, 

Rt(i), t i′ = ρAR1
t(i) − t i′  for 1 ≤ i ≠ i′ ≤ N where |t(i) − t(i′)| is the absolute value of t(i) 

− t(i′). These differences are all assumed to be integers so that the correlations Rt(i),t(i′) 

are all well-defined. In general, Rt(i),t(i′) are spatial AR1 correlations. The special case of 

non-spatial AR1 correlations with t(i) = i treats times as equally spaced. The parameter ρAR1 

is called the autocorrelation.

2.4. Possible Extensions

The above formulation can be extended to address repeated measurements of types other 

than counts/rates and for multiple patients. More complex correlation structures based on 

multiple correlation parameters can also be considered. One such example is unstructured 

correlations with different correlations for different pairs of measurements, but this requires 

data from multiple patients to be reasonably estimated. These extensions are not addressed 

further.

3. Standard Generalized Estimating Equations Modeling

3.1. Notation and Parameter Estimation

Under standard GEE modeling, dispersions are treated as a constant φ0 so that the 

covariance matrix satisfies

Σ = φ0 ⋅ Diag V 1/2(μ) ⋅ R(ρ) ⋅ Diag V 1/2(μ)

where V(μ) is the N × 1 vector with entries V(μt(i)) = μt(i) for t(i) ∈ T. The generalized 

estimating equations are given by g(β) = 0 where 0 is the J × 1 vector with all zero entries, 

g(β) = DT · Σ−1 · e, and the N × J matrix D = ∂μ/∂β with entries Dt(i),j = ∂μt(i) / ∂βj = xt(i),j 

· μt(i) for t(i) ∈ T and 1 ≤ j ≤ J. Let H(β) = − DT · Σ−1 · D. Note that in the general GEE 

context with correlated outcomes for multiple subjects, the formulation for g(β) would equal 

a sum of terms like DT · Σ−1 · e for each subject and H(β) would equal a sum of terms like 

− DT · Σ−1 · D for each subject. Only one such term is needed here since data for only one 

subject/patient are being modeled. The GEE process for estimating β iteratively solves g(β) 

= 0 as follows. Given the current value βu for β, the next value is given by βu+1 = βu − H−1 
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(βu) · g(βu), thereby adapting Newton’s method with g(β) in the role of the gradient vector 

and H(β) in the role of the Hessian matrix.

The constant dispersion parameter φ0 is estimated using the Pearson residuals Pet(i) 

(β) = et(i)/V1/2 (μt(i)) evaluated at a given value for the mean coefficient parameter 

vector β. The bias-adjusted estimate φ0(β) of the dispersion parameter φ0 satisfies 

φ0(β) = ∑i = 1
N Pet(i)

2 (β)/(N − J) assuming N – J > 0. Next, the correlation parameter ρ(β) 

is estimated using standardized errors

stdet(i)(β) = φ0
−1/2(β) ⋅ Pet(i)(β)

for t(i) ∈ T as follows. The IND correlation structure has no need for an estimate. For the 

EXCH correlation structure and a given value β for the mean parameter vector, ρEXCH can 

be estimated by

ρEXCH(β) = ∑i = 1
N − 1 ∑i′ = i + 1

N stdet(i)(β) ⋅ stdet i′ (β)/(N ⋅ (N − 1)/2 − J)

assuming N · (N − 1)/2 − J > 0. For the AR1 correlation structure and a given value β for the 

mean parameter vector, the autocorrelation ρAR1 can be estimated by

ρAR1(β) = ∑i = 1
N − 1 stdet(i)(β) ⋅ stdet(i + 1)(β) 1/( t(i) − t(i + 1) )/(N − 1 − J)

assuming N − 1 − J > 0. In the non-spatial AR1 special case,

ρAR1(β) = ∑i = 1
N − 1 stdet(i)(β) ⋅ stdet(i + 1)(β) /(N − 1 − J)

because |t(i) − t i(+ 1)| = 1 for 1 ≤ i < N.

For any correlation structure, once the GEE estimate β(T) of the coefficient parameter vector 

β is computed using the observations indexed by t(i) ∈ T, the GEE estimate of the dispersion 

parameter φ0 is φ0 (T) = φ0 (β(T)). The GEE estimate of the correlation parameter ρ is ρ(T) 

= ρ(β(T)) computed using β(T) and φ0 (T).

3.2. The Likelihood-Like Function

Let θ = (βTφ0)T be the (J + 1) × 1 vector of the GEE mean and dispersion parameters. The 

correlation parameter ρ is a function of β and φ0 and so has not been included in θ. Use the 

multivariate normal likelihood to define the likelihood-like function L(T;θ) satisfying

ℓ (T ; θ) = log(L(T ; θ)) = − eT ⋅ Σ−1 ⋅ e/2 − log( Σ )/2 − N ⋅ log(2 ⋅ π)/2

where |Σ| is the determinant of the covariance matrix Σ. The vector ∂ℓ(T;θ)/∂β of partial 

derivatives of ℓ(T;θ) can be expressed as the sum of two terms. The first term corresponds 
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to differentiating the residual vector part e of ℓ(T;θ) with respect to β holding the covariance 

part Σ fixed in β and equals g(β), the gradient-like quantity used in standard GEE modeling. 

This fact seems to have been first recognized by Chaganty [6]. One advantage for having 

a likelihood-like function for GEE models is that it can be used to compute parameter 

estimates. Another is that it can be used to compute model selection criteria not otherwise 

available for GEE modeling.

3.3. Likelihood-Like Cross-Validation

Burman [7] defined k-fold cross-validation with observations partitioned into k disjoint 

subsets called folds. Fold observations are predicted using parameter estimates computed 

using the data from the other folds. In k-fold likelihood-like cross-validation (LCV), 

these deleted fold predictions are scored using the associated likelihood-like function L. 

Randomly partition the times t(i) ∈ T into k disjoint folds T(f) for 1 ≤ f ≤ k. Use the same 

initial seed for randomization with all models under consideration so that their LCV scores 

are comparable. Let θ(T\T(f)) denote the estimate of θ using the data with times in the 

complement T\T(f) of the fold T(f). For 1 ≤ f ≤ k, let T+(f) denote the union of all folds T(f) 
for 1 ≤ f ′ ≤ f with T+(0) the empty fold and set L(T+(0);θ) = 1. Define the LCV score to 

satisfy

LCV = ∏f = 1
k LCVf

1/N

where LCVf is defined as the conditional likelihood-like term for the data in fold T(f) 
conditioned on the data in the union T+(f − 1) of the prior folds using the deleted estimate 

θ(T\T(f)) of the parameter vector θ. Formally,

LCVf = L T(f) ∣ T+(f − 1); θ(T \T (f))
= L T+(f); θ(T \T (f)) /L T+(f − 1); θ(T \T (f))

Because fold assignment is random, folds can be empty when the number k of folds is 

large relative to the number N of measurements, and then those folds are dropped from the 

computation of the LCV score. Larger LCV scores indicate better models. Note that even if 

the full data are non-spatial with observations at consecutive integer times t(i) = i for 1 ≤ i 
≤ N, the folds T(f) and the fold unions T+(f) are not consecutive integer times except in rare 

cases and so require more general handling.

4. Incorporating Nonconstant Dispersions

4.1. Formulation

GEE modeling can be extended to handle nonconstant dispersions. Let θ = (βT β′T)T be the 

(J + J′) × 1 vector of the mean and dispersion parameters. The definition of the likelihood-

like function L(T;θ) given for standard GEE holds using the more general parameter vector 

θ. Differentiate ℓ(T;θ) = log(L(T;θ)) with respect to the vector β′ of dispersion coefficient 

parameters while holding the correlation parameter ρ fixed in the current parameter vector 

β′ to provide the J′ estimating equations g(β′) = ∂′ℓ(T;θ)/∂′β′ = 0 where the notation 
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∂′ℓ(T;θ)/∂′β′ is used to indicate that this is not the full partial derivative vector for ℓ(T;θ) in 

β′ due to not accounting for the effect of β′ on ρ. Now, combine these with the J standard 

GEE equations g(β) = 0 to solve for joint estimates of β and β′. Then, iteratively solve for

g(θ) = g(β)Tg β′ T T = 0

with g(θ) in the role of the gradient vector and the (J + J′) × (J + J′) matrix H(θ) in the role 

of the Hessian matrix. H(θ) has four component submatrices: the J × J matrix H(β) for the 

mean coefficients as defined for standard GEE, the J′ × J ′ matrix H(β′) = ∂′g(β′)/∂′β′ for 

the J′ dispersion coefficients, the J × J′ matrix H (β, β′) = ∂′g(β)/∂′β′, and its transpose H 
(β′,β) = H(β, β′)T.

Note that

loge( Σ ) = loge( R(ρ) ) + ∑i = 1
N loge φt(i) + ∑i = 1

N loge V μt(i) ,

φt(i) = exp xt(i)
′T ⋅ β′

and

eT ⋅ Σ−1 ⋅ e = stdeT ⋅ R−1(ρ) ⋅ stde

where stde is the N × 1 vector with entries stdet(i) = et(i)/σt(i) for t(i) ∈ T. Consequently, 

g(β′) has entries

gj β′ = stdexj′T ⋅ R−1(ρ) ⋅ stde − ∑i = 1
N xt(i), j′ /2

for 1 ≤ j ≤ J′ where stdexj′ is the N × 1 vector with entries

stdext(i), j′ = xt(i), j′ ⋅ stdet(i)/2

for t(i) ∈ T. H(β′) has entries

Hj . j′ β′ = − stdexxj . j′
″T ⋅ R−1(ρ) ⋅ stde − stdexj′T ⋅ R−1(ρ) ⋅ stdexj′′

for 1 ≤ j, j′ ≤ J′ where stdexj′ is the N × 1 vector with entries

stdexxt(i)j, j′″ = xt(i), j′ ⋅ xt(i), j′′ ⋅ stdet(i)/4

for t(i) ∈ T. H(β, β′) has columns
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Hj β, β′ = − DT ⋅ Diag σinvxj′ ⋅ R−1(ρ) ⋅ stde
− DT ⋅ Diag(1/σ) ⋅ R−1(ρ) ⋅ stdexj′

where σinvxj′ is the N × 1 vector with entries σinvxt(i), j′ = xt(i), j′ / 2 ⋅ σt(i)  for t(i) ∈ T and 1 

≤ j ≤ J′. If offsets are included, they are carried along in equations without any effect on 

derivatives.

4.2. Parameter Estimation

Given a value for the vector θ of all coefficient parameters, an estimate of the correlation 

parameter ρ can be based on the associated standardized residuals stdet(i). Calculate 

correlation estimates for the IND, EXCH, and AR1 correlation structures using the same 

formulas as before but computed with these more general standardized residuals. Iteratively 

solve g(θ) = 0 as follows. Given the current value θu for θ, the next value is given by 

θu+1 = θu − H−1 (θu) · g(θu), thereby adapting Newton’s method with g(θ) in the role 

of the gradient vector and H(θ) in the role of the Hessian matrix. The solution to the 

estimating equations for observations indexed by T is denoted as θ(T) = (β(T)T β′(T)T)T 

with associated correlation estimate ρ(T) = ρ(θ(T)).

5. Extended Linear Mixed Modeling

5.1. Formulation

GEE modeling can be further extended to handle full parameter estimation through 

maximizing the likelihood-like function. Let θ = (βT β′T ρ)T be the (J + J′ + 1) × 1 vector 

of the mean, dispersion, and correlation parameters. The definition of the likelihood-like 

function L(T;θ) given for standard GEE holds using this more general parameter vector θ. 

The likelihood-like function L(T;θ) is maximized in the coefficient parameter vector θ by 

solving the estimating equations

g(θ) = ∂ ℓ (T ; θ)/ ∂θ = 0

where ∂ℓ(T;θ)/∂θ is the vector of standard partial derivatives of ℓ(T;θ). The associated matrix 

H(θ) = ∂g(θ)∂θ. In this case, g(θ) is a true gradient vector and H(θ) a true Hessian matrix. 

This approach is extended linear mixed modeling in the sense that if the entries of y were 

continuous variables treated as normally distributed with V(μ) = 1, then it would be exactly 

linear mixed modeling. Formulations given in what follows are adapted from those of [8].

The gradient vector g(θ) = (g(β)T g(β′)T g(ρ))T. The gradient sub-vector g(β′) = ∂ℓ(T;θ)/∂β′ 
has the same formulation as for extended GEE modeling, only now its entries are standard 

partial derivatives. The gradient subvector g(β) = ∂ℓ(T;θ)/∂β has entries

gj(β) = stdexjT ⋅ R−1(ρ) ⋅ stde − ∑i = 1
N xt(i), j/2

where stdexj is the N × 1 vector with entries
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stdext(i), j = xt(i), j yt(i) + μt(i) / 2 ⋅ σt(i)

for t(i) ∈ T and 1 ≤ j ≤ J. The partial derivative g(ρ) = ∂ℓ(T;θ)/∂ρ satisfies

g(ρ) = − stdeT ⋅ ∂R−1(ρ)/ ∂ρ ⋅ stde/2 − ∂(log( R(ρ) ))/ ∂ρ/2

where

∂(log( R(ρ) ))/ ∂ρ = tr R−1(ρ) ⋅ ∂R(ρ)/ ∂ρ ,

tr denotes the trace function, and

∂R−1(ρ)/ ∂ρ = − R−1(ρ) ⋅ ∂R(ρ)/ ∂ρ ⋅ R−1(ρ) .

For IND correlations, ∂R(ρ)/∂ρ = 0. For EXCH correlations, ∂R(ρ)/∂ρ is the N × N 
matrix with diagonal entries all equal to 0 and off-diagonal entries all equal to 1. For 

AR1 correlations, ∂R(ρ)/∂ρ is the N × N matrix with diagonal entries all equal to 0 and 

off-diagonal entries equaling

t(i) − t i′ ⋅ ρAR1
t(i) − t i′ − 1

in the ith row and i′th column for 1 ≤ i ≠ i′ ≤ N.

H(β) has nine component submatrices: the J × J matrix H(β) = ∂g(β)/∂β for the mean 

parameters, the J ′× J ′ matrix H(β′) = ∂g(β′)/∂β′ for the dispersion parameters computed 

as for extended GEE modeling, the second partial derivative H(ρ) = ∂g(ρ)/∂ρ for the 

correlation parameter, the J × J′ matrix H(β, β′) = ∂g(β)/∂β′, and its transpose H(β, β′) = 

H(β, β′)T, the J × 1 vector H(β, ρ) = ∂g(β)/∂ρ and its transpose H(ρ, β) = H(β, ρ)T, and the 

J′ × 1 vector H(β′, ρ) = ∂g(β′)/∂ρ and its transpose H(ρ, β′) = H(β′,ρ)T. H(β) has entries

Hj, j′(β) = − stdexxj, j′
T ⋅ R−1(ρ) ⋅ stde − stdexjT ⋅ R−1(ρ) ⋅ stdexj′

for 1 ≤ j, j′ ≤ J′ where stdexxj, j′ is the N × 1 vector with entries

stdexxt(i)j, j′ = xt(i), j ⋅ xt(i), j′ ⋅ stdet(i)/4

for t(i) ∈ T. The second partial derivative H (ρ) satisfies

H(ρ) = − stdeT ⋅ ∂2R−1(ρ)/ ∂ρ2 ⋅ stde/2 − ∂2(log( R(ρ) ))/ ∂ρ2/2

where
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∂2(log( R(ρ) ))/ ∂ρ2 = − tr R−1(ρ) ⋅ ∂R(ρ)/ ∂ρ ⋅ R−1(ρ) ⋅ ∂R(ρ)/ ∂ρ

+tr R(ρ)−1 ⋅ ∂2R(ρ)/ ∂ρ2 .

For IND and EXCH correlations, ∂2R(ρ)/∂ρ2 = 0. For AR1 correlations, ∂2R(ρ)/∂ρ2 is the N 
× N matrix with diagonal entries all equal to 0 and off-diagonal entries equaling

t(i) − t i′ ⋅ t(i) − t i′ − 1 ⋅ ρAR1
t(i) − t i′ − 2

in the ith row and i′th column for 1 ≤ i ≠ i′ ≤ N. H(β′, β) has entries

Hj, j′ β′, β = − stdexxj, j′
′T ⋅ R−1(ρ) ⋅ stde − stdexjT ⋅ R−1(ρ) ⋅ stdexj′′

for 1 ≤ j, j′ ≤ J′ where stdexxj, j′′  is the N × 1 vector with entries

stdexxt(i)j, j′′ = xt(i), j′′ ⋅ stdext(i), j/2

for t(i) ∈ T, 1 ≤ j ≤ J, and 1 ≤ j′ ≤ J′. H(β, ρ) has entries

Hj(β, ρ) = stdexjT ⋅ ∂R(ρ)−1/ ∂ρ ⋅ stde

for 1 ≤ j ≤ J. H(β′, ρ) has entries

Hj β′, ρ = stdexj′T ⋅ ∂R−1(ρ)/ ∂ρ ⋅ stde

for 1 ≤ j ≤ J′.

5.2. Parameter Estimation

The parameter vector θ is estimated by iteratively solving g(θ) = 0 as follows. Given the 

current value θu for θ, the next value is given by

θu + 1 = θu − H−1 θu ⋅ g θu ,

thereby using Newton’s method with gradient vector g(θ) and Hessian matrix H(θ). The 

estimation process can be stopped early if ℓ(T;θu+1) does not increase by much compared to 

ℓ(T;θu). The solution to the estimating equations T for observations indexed by T is denoted 

as θ(T) = β(T)Tβ′(T )Tρ(T) T
.

The covariance matrix for the parameter estimate vector θ(T) can be computed as −H−1 

(θ(T)) and the variances corresponding to its diagonal entries can be used to compute z 
tests of zero individual model parameters. These are useful for fixed models of theoretical 

Knafl and Meghani Page 10

Open J Stat. Author manuscript; available in PMC 2022 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



importance. On the other hand, tests for parameters of adaptively generated models (as 

described in Section 6) are usually significant as a consequence of the model selection 

process, and so results for these tests are not reported for models generated in the example 

analyses.

6. Modeling Possibly Nonlinear Means and Dispersion over Time

Knafl and Ding [3] provide a detailed formulation for adaptively searching through 

alternative regression models for means and dispersions in a variety of contexts using 

adaptive fractional polynomial models [9]. A brief overview is provided here. These 

methods are used in the example analyses of individual cancer patient count/rate data 

presented later. Model selection proceeds through two phases. The expansion phase first 

grows the model adding in alternative power transforms of predictors for means and 

dispersions. The contraction phase then reduces the model to a parsimonious set of power 

transforms by removing transforms from the current model one at a time and adjusting the 

powers of the remaining transforms. Alternative models are evaluated using LCV scores. 

The modeling process is controlled by tolerance parameters indicating how much of a 

reduction in the LCV score can be tolerated at given stages of the process. Knafl and 

Ding [3] also provide a wide variety of example analyses demonstrating the usefulness of 

these adaptive regression methods. A description of these methods in the standard Poisson 

regression context is provided in [10].

A SAS® (SAS Institute, Inc., Cary, NC) macro has been developed for generating adaptive 

analyses including the reported example analyses. This macro as well as data and code used 

to generate the results of the example analyses are available from the first author.

7. Example Analyses

7.1. Pain Flare Counts per Day

Figure 1 displays pain flare counts for Cancer Patient 1 over a period of 34 days. Pain flares 

range from 0 to 4 per day and tend to increase over time. Data are available for N = 33 

days with a missing value for one day (day 33). These data were collected using Ecological 

Momentary Assessment (EMA) [11] as implemented in the mEMA app [12].

Table 1 contains results for adaptive models for means and dispersions of pain flare 

counts over time using the two modeling approaches extended GEE modeling and extended 

linear mixed modeling and the three correlation structures IND, AR1, and EXCH. Power 

transforms reported in Table 1 were generated by adaptively searching through alternative 

power transforms using the methods described in Section 6. LCV scores are based on k = 5 

folds with fold sizes ranging from 2 to 8 measurements and no empty folds. For extended 

GEE modeling, IND correlations generate the best LCV score 0.38018 over the three 

correlation structures. For extended linear mixed modeling, IND correlations also generate 

the best LCV score 0.40622. These results suggest that a Poisson process assumption is 

reasonable for these pain flare counts.
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Extended linear mixed modeling generates better LCV scores than extended GEE for all 

three correlation structures. Moreover, computation times are much shorter ranging from 

0.4 to 1.2 minutes compared to 13.9 to 35.5 minutes. These results suggest that extended 

linear mixed modeling is preferable for modeling these pain flare counts because it generates 

better LCV scores in less time. Consequently, only extended linear mixed modeling using 

IND correlations is considered further for these data, generating the model with means 

based on t(i)0.49 without an intercept and dispersions based on t(i)8.37 and t(i)0.5 without an 

intercept. Figure 2 displays estimates of mean pain flare counts over time along with unit 

error bands over time (i.e., the mean ±1 extended standard deviation at each time) to account 

for variability about the means. Mean pain flare counts increase over time, somewhat close 

to linearly in time. Variability in pain flare counts is smaller in the middle of the period, 

somewhat larger at the start of the period and even larger at the end of the period. Figure 3 

displays standardized residuals for this model, which range between ±2 without any extreme 

outliers, suggesting the model is a reasonable fit for these data.

The associated model generated using k = 10 folds has similar means based on t(i)0.5 

without an intercept and simpler dispersions based on t(i)0.2 without an intercept. However, 

the 10-fold LCV score 0.38107 is smaller, suggesting that k = 5 is a better choice for these 

data. Moreover, there is one empty fold, suggesting that the choice of k = 10 folds is too 

large for these data with only N = 33 measurements. The associated model generated with 

k = 5 folds and assuming constant dispersions has a similar model for the means based on 

t(i)0.53 without an intercept but a smaller LCV score 0.37031, suggesting that the dispersions 

for these data are reasonably treated as nonconstant over time.

7.2. As Needed Pain Medications Taken Counts per Day

Figure 4 displays as needed pain medications taken counts for Cancer Patient 2 over a period 

of 100 days. As needed pain medications taken counts range from 0 to 4 per day and tend 

to decrease over time. Data are available for N = 92 days with a missing value for eight 

other days (days 4, 14, 52, 56, 74, 81, 85, and 89). These data were also collected using the 

mEMA app.

Table 2 contains results for adaptive models for means and dispersions of as needed pain 

medications taken counts over time using the two modeling approaches extended GEE 

modeling and extended linear mixed modeling and the three correlation structures IND, 

AR1, and EXCH. LCV scores are based on k = 5 folds with fold sizes ranging from 13 to 21 

measurements with no empty folds. For extended GEE modeling, AR1 correlations generate 

the best LCV score 0.41497 over the three correlation structures. For extended linear mixed 

modeling, AR1 correlations generate the best LCV score 0.40509. These results indicate that 

a Poisson process assumption may not be appropriate for these as needed pain medications 

taken counts.

Extended GEE modeling generates a better LCV score than extended linear mixed modeling 

for the IND correlation structure, but the scores for these two approaches are not too 

different. Extended linear mixed modeling generates a better LCV score than extended 

GEE modeling for the EXCH correlation structure. Extended GEE modeling generates a 

better LCV score than extended linear mixed modeling for the AR1 correlation structure. 
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Although this is the best overall LCV score, the associated model for extended linear mixed 

modeling is more parsimonious with an intercept and one time transform for the means 

compared to two time transforms and constant dispersions compared to dispersions based 

on and intercept and one time transform. Moreover, computation times are substantially 

shorter for extended linear mixed modeling ranging from 0.5 to 1.7 minutes compared to 

84.5 to 222.7 minutes or 1.4 to 3.7 hours. These results suggest that extended linear mixed 

modeling is preferable for modeling these as needed pain medications taken counts because 

it generates competitive or better scores or more parsimonious models in substantially 

less time. Consequently, only extended linear mixed modeling using AR1 correlations are 

considered further for these data, generating the model with means based on t(i)0.4 with an 

intercept, constant dispersions based on an intercept, and estimated autocorrelation ρAR1 = 

0.45. Figure 5 displays estimates of mean as needed pain medications taken counts over 

time along with unit error bands over time (i.e., the mean ±1 extended standard deviation 

at each time) to account for variability about the means. Mean as needed pain medications 

taken counts decrease nonlinearly over time. Variability in as needed pain medications taken 

counts is close to constant over time. Figure 6 displays standardized residuals for this model, 

which range well within ±3 without any extreme outliers, suggesting the model provides a 

reasonable fit to these data.

The associated model generated using k = 10 folds is about the same with means based 

on t(i)0.5 with an intercept, constant dispersions, and estimated correlation ρAR1 = 0.45. 

The 10-fold LCV score 0.40958 is larger, suggesting that k = 10 is a better choice for 

these data. There are no empty folds. The associated model generated using k = 15 folds is 

similar with means based on t(i)0.5 with an intercept, dispersions based on t(i)0.07 without 

an intercept, and estimated correlation ρAR1 = 0.46. The 15-fold LCV score 0.40353 is 

smaller, suggesting that k = 10 is a better choice for these data. There are no empty folds. 

The associated model generated with k = 15 folds assuming constant dispersions has means 

based on t(i)0.5 with an intercept and close 15-fold LCV score 0.40318. Consequently, 

models generated by 5, 10, and 15 folds using extended linear mixed modeling are not too 

different, suggesting that the results are reasonably robust to the choice of the number of 

folds.

7.3. Around the Clock Pain Medications Taken Rates per Day per Dose

Adherence data for around the clock pain medications were collected using pill bottles 

equipped with Medication Event Monitoring System (MEMS) devices (AARDEX North 

America, Boulder, CO) that recorded the date and time of each pill bottle opening and 

presumably of the taking of the pain medication [13] [14]. Cancer Patient 3 was monitored 

for a period of 91 days. Counts of around the clock pain medications taken were computed 

for 30 equal-sized subperiods of 3.03 days each, ranging from 0 to 18. Around the clock 

pain medications were to be taken five times a day by this patient. Methods for modeling 

such data assuming the special case of a Poisson process with constant dispersions are 

provided in [10]. Figure 7 displays around the clock pain medications taken rates per day 

per dose for Cancer Patient 3. The ideal rate of 1 means that the patient took around the 

clock pain medications at the appropriate rate over the associated time subperiod. Around 
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the clock pain medications taken rates range from 0 to 1.19 per day per dose and tend to 

decrease over time. Data are available for N = 30 subperiods with none missing.

Table 3 contains results for adaptive models for means and dispersions of around the clock 

pain medications taken rates over time using the two modeling approaches extended GEE 

modeling and extended linear mixed modeling and the three correlation structures IND, 

AR1, and EXCH. LCV scores are based on k = 5 folds with fold sizes ranging from 2 

to 8 measurements with no empty folds. For extended GEE modeling, EXCH correlations 

generate the best LCV score 0.051583 over the three correlation structures. For extended 

linear mixed modeling, AR1 correlations generate the best LCV score 0.053856, which is 

also the best overall LCV score for Table 3 models. For both modeling approaches, the LCV 

score for IND correlations is quite a bit smaller than the best LCV score over the three 

correlation structures. These results indicate that a Poisson process assumption may not be 

appropriate for these around the clock pain medications taken rates.

Extended linear mixed modeling generates better LCV scores than extended GEE for the 

IND and AR1 correlation structures. Its LCV score is smaller for the EXCH correlation 

structure, but its model is more parsimonious based on one time transform for the means 

with constant dispersions compared to one time transform plus an intercept for the means 

with constant dispersions. Furthermore, computation times are much shorter for extended 

linear mixed modeling ranging from 0.2 to 0.7 minutes compared to 5.1 to 11.9 minutes. 

These results suggest that extended linear mixed modeling is preferable for modeling these 

around the clock pain medications taken rates because it generates the best LCV score in 

less time. Consequently, only extended linear mixed modeling using AR1 correlations are 

considered further for these data, generating the model with means based on t(i)1.1 without 

an intercept, dispersions based on t(i)6.1 with an intercept, and estimated autocorrelation 

ρAR1 = 0.75. Figure 8 displays estimates of mean around the clock pain medications taken 

rates over time along with unit error bands over time (i.e., the mean ±1 extended standard 

deviation at each time) to account for variability about the means. Mean around the clock 

pain medications taken counts decrease close to linearly over time. Variability in around 

the clock pain medications taken rates is larger at the end of the period. Figure 9 displays 

standardized residuals for this model, which range well within ±3 without any extreme 

outliers, suggesting the model provides a reasonable fit to these data.

The associated model generated using k = 10 folds is somewhat similar with means 

based on t(i)0.4 without an intercept, constant dispersions based on an intercept, and 

estimated autocorrelation ρAR1 = 0.76. However, the 10-fold LCV score 0.052023 is smaller, 

suggesting that k = 5 is a better choice for these data. Moreover, there is one empty fold, 

suggesting that the choice of k = 10 folds is too large for these data with only N = 30 

measurements. The associated model generated with k = 5 folds and assuming constant 

dispersions has a model for the means based on based on t(i)1.01 without an intercept, an 

autocorrelation estimate of ρAR1 = 0.75, and a smaller LCV score 0.0.050386, suggesting 

that the dispersions for these data are reasonably treated as nonconstant over time.
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8. Discussion

8.1. Summary

Methods are formulated for modeling individual patient count/rate data over time allowing 

for nonlinear trajectories for means, time-varying dispersions, and temporal correlation. 

Three correlation structures are considered including IND, EXCH, and spatial AR1 

correlations. Two extensions of standard GEE modeling are considered. Extended GEE 

modeling augments standard GEE mean parameter estimating equations with dispersion 

parameter estimating equations while using the GEE approach for correlation parameter 

estimation. Extended linear mixed modeling estimates all model parameters using estimating 

equations for mean, dispersion, and correlation parameters. These new estimating equations 

are determined by partial derivatives of a likelihood-like function based on the multivariate 

normal density. This likelihood-like function is also used to define a likelihood-like cross-

validation (LCV) score for evaluating models. LCV scores are used to control adaptive 

regression modeling of possibly nonlinear means and dispersions over time. It is also 

possible to generate penalized likelihood-like criteria for model selection generalizing 

standard penalized likelihood criteria [15] such as the commonly used Akaike information 

criterion (AIC) and Bayesian information criterion (BIC). Pan [16] has formulated 

a penalized model selection criterion related to the AIC called the quasi-likelihood 

information criterion (QIC) for GEE model selection, but the QIC score does not fully 

account for the correlation structure. Model selection criteria based on the likelihood-like 

function fully account for the correlation structure.

Example analyses using these methods are provided using three types of count/rate data 

for individual cancer patients including cancer pain flares per day, as needed cancer pain 

medications taken per day, and around the clock cancer pain medications taken per day 

per dose. Extended linear mixed modeling generates models with either better LCV scores 

or more parsimonious models than extended GEE modeling. Moreover, times to compute 

models are substantially smaller for extended linear mixed modeling than for extended GEE 

modeling. Time differences can be extreme for even moderate samples sizes, for example, 

analyses for the second example data set with 92 observations required at most 1.7 minutes 

for extended linear mixed modeling compared to up to 3.7 hours for extended GEE. These 

results indicate that extended linear mixed modeling is preferable for modeling individual 

patient count/rate data over time. This is likely to hold in more general modeling situations 

with other types of data and for combined data for multiple patients.

8.2. Alternative Approaches

The formulation provided here assumes that separate modeling of each patient’s longitudinal 

data is preferable to modeling the combined data for all patients. Separate modeling is a 

person-centered approach to modeling longitudinal data as opposed to a variable-centered 

approach using the combined data [17] [18]. This is only feasible when there are substantial 

numbers of time measurements for each patient. Modeling the combined data for all patients 

typically involves the assumption that means and dispersions for all patients are reasonably 

treated as having the same functional form. Knafl et al. [10] provide an example where this 

is not an appropriate assumption for a specific set of data on medication taken rates per 

Knafl and Meghani Page 15

Open J Stat. Author manuscript; available in PMC 2022 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



day for HIV patients on antiretroviral medications. In any case, the methods considered here 

generalize to handle combined data for multiple patients, not only count/rate longitudinal 

data but also continuous and dichotomous longitudinal data, and not just data for cancer 

patients.

Multilevel (or hierarchical linear) modeling [19] [20] could alternatively be used to provide 

for individual patient differences, but that usually accounts for nonlinearity using polynomial 

models, often simple quadratic models. Polynomial models can be too simplistic for 

addressing general nonlinearity. Knafl and Ding [3] provide an example for independent 

data where the polynomial model generating the best LCV score for degrees 0–3 is the 

degree 0 constant model, but a nonlinear adaptive regression model generates a much better 

LCV score. Future research is needed to investigate general nonlinearity using adaptive 

regression methods applied to multilevel models as well as to random effects models [21] 

and to generalized linear mixed models [22].

Spatial AR1 correlations generate better models than independent and exchangeable 

correlations for two of the three example data sets. This suggests consideration of 

autoregressive and/or moving average correlations [23] of orders more than 1. As the 

number of time points increases, even relatively large autocorrelations can generate small 

correlations for larger distances apart. For example, the third example data set had an 

estimated autocorrelation of ρAR1 = 0.75 with integer time measurements ranging from 

1 to 30 so that the smallest correlation is 0.7529 = 0.0002. The second example data set 

had an even smaller estimated autocorrelation of ρAR1 = 0.45 with an even larger range 

of 1 to 100 integer time measurements so that the smallest correlation is 0.4599 = 4.7 × 

10−35.These results suggest consideration of banded correlation autoregressive structures 

with zero correlations for measurements further apart than some fixed amount.
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Figure 1. 
Pain flare counts over time for cancer patient 1.

Knafl and Meghani Page 18

Open J Stat. Author manuscript; available in PMC 2022 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Mean pain flare counts (middle curve) with unit error bounds for cancer patient 1.
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Figure 3. 
Standardized residuals for the model of Figure 2.
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Figure 4. 
As needed pain medications taken counts over time for cancer patient 2.
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Figure 5. 
Mean as needed pain medications taken counts (middle curve) with unit error bounds for 

cancer patient 2.
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Figure 6. 
Standardized residuals for the model of Figure 5.
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Figure 7. 
Around the clock pain medications taken rates per day per dose over time for cancer patient 

3.
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Figure 8. 
Mean around the clock pain medications taken rates per day per dose (middle curve) with 

unit error bounds for cancer patient 3.

Knafl and Meghani Page 25

Open J Stat. Author manuscript; available in PMC 2022 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Standardized residuals for the model of Figure 8.
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Table 1.

Adaptive models for means and dispersions of pain flare counts over time for alternative modeling approaches 

and correlation structures.

Modeling Approach
Correlation Power Transforms

a
5-fold LCV Score Time

b

Structure Estimate Means Dispersions

IND 0 t(i)0.54 t(i)0.12 038018 13.9

extended GEE EXCH 0.001 t(i)0.869 t(i)0.29 0.34712 35.5

AR1 0.10 t(i)0.59 t(i)0.1 0.37404 17.6

IND 0 t(i)0.49 t(i)8.37, t(i)0.5 0.40622 0.4

extended LMM EXCH 0.42 t(i)0.511 t(i)0.2 0.36590 1.2

AR1 0.20 t(i)0.4 1, t(i)1.01, t(i)1.01 0.37693 0.4

AR1—autoregressive of order 1; EXCH—exchangeable; GEE—generalized estimating equations; IND—independent; LCV—likelihood-like 
cross-validation; LMM—linear mixed modeling.

a.
The ith time value is denoted as t(i). A 1 corresponds to an intercept parameter; otherwise, the model has a zero intercept.

b.
Difference in minutes of clock times between the start and end of computations.
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Table 2.

Adaptive models for means and dispersions of as needed pain medications taken counts over time for 

alternative modeling approaches and correlation structures.

Modeling Approach
Correlation Power Transforms

a
5-fold LCV Score Time

b

Structure Estimate Means Dispersions

IND 0 1, t(i)0.5 1 037030 84.5

extended GEE EXCH −0.01 1, t(i)0.5 1 0.36340 202.3

AR1 0.57 t(i)−0.12, t(i)3 1, t(i)−1.5 0.41497 222.7

IND 0 t(i)0.3, t(i)0.1 1 0.36845 0.5

extended LMM EXCH −0.01 1, t(i)0.4 1 0.37379 1.7

AR1 0.45 1, t(i)0.4 1 0.40509 0.8

AR1—autoregressive of order 1; EXCH—exchangeable; GEE—generalized estimating equations; IND—independent; LCV—likelihood-like 
cross-validation; LMM—linear mixed modeling.

a.
The ith time value is denoted as t(i). A 1 corresponds to an intercept parameter; otherwise, the model has a zero intercept.

b.
Difference in minutes of clock times between the start and end of computations.
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Table 3.

Adaptive models for means and dispersions of around the clock pain medications taken rates per day per dose 

over time for alternative modeling approaches and correlation structures.

Modeling Approach
Correlation Power Transforms

a
5-fold LCV Score Time

b

Structure Estimate Means Dispersions

IND 0 t(i)0.7 1 0.046556 5.1

extended GEE EXCH −0.03 1, t(i)5 1 0.051583 11.9

AR1 0.58 t(i)1.1 1 0.048525 6.9

IND 0 t(i)0.8 1 0.046837 0.2

extended LMM EXCH −0.03 t(i)0.9 1 0.045251 0.7

AR1 0.75 t(i)1.1 1, t(i)−1.5 0.053856 0.2

AR1—autoregressive of order 1; EXCH—exchangeable; GEE—generalized estimating equations; IND—independent; LCV—likelihood-like 
cross-validation; LMM—linear mixed modeling.

a.
The ith time value is denoted as t(i). A 1 corresponds to an intercept parameter; otherwise, the model has a zero intercept.

b.
Difference in minutes of clock times between the start and end of computations.
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