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A B S T R A C T   

Background: Ophthalmological screening for cytomegalovirus retinitis (CMVR) for HIV/AIDS 
patients is important to prevent lifelong blindness. Previous studies have shown good properties 
of automated CMVR screening using digital fundus images. However, the application of a deep 
learning (DL) system to CMVR with ultra-wide-field (UWF) fundus images has not been studied, 
and the feasibility and efficiency of this method are uncertain. 
Methods: In this study, we developed, internally validated, externally validated, and prospectively 
validated a DL system to detect AIDS-related from UWF fundus images from different clinical 
datasets. We independently used the InceptionResnetV2 network to develop and internally 
validate a DL system for identifying active CMVR, inactive CMVR, and non-CMVR in 6960 UWF 
fundus images from 862 AIDS patients and validated the system in a prospective and an external 
validation data set using the area under the curve (AUC), accuracy, sensitivity, and specificity. A 
heat map identified the most important area (lesions) used by the DL system for differentiating 
CMVR. 
Results: The DL system showed AUCs of 0.945 (95 % confidence interval [CI]: 0.929, 0.962), 
0.964 (95 % CI: 0.870, 0.999) and 0.968 (95 % CI: 0.860, 1.000) for detecting active CMVR from 
non-CMVR and 0.923 (95 % CI: 0.908, 0.938), 0.902 (0.857, 0.948) and 0.884 (0.851, 0.917) for 
detecting active CMVR from non-CMVR in the internal cross-validation, external validation, and 
prospective validation, respectively. Deep learning performed promisingly in screening CMVR. It 
also showed the ability to differentiate active CMVR from non-CMVR and inactive CMVR as well 
as to identify active CMVR and inactive CMVR from non-CMVR (all AUCs in the three indepen-
dent data sets >0.900). The heat maps successfully highlighted lesion locations. 

Abbreviations: AIDS, Acquired immune deficiency syndrome; ROC, Receiver Operating Characteristic; AUROC, Area under the ROC curve; 
CMVR, Cytomegaloviral retinitis; CI, Confidence interval; DL, Deep learning; DNA, Deoxyribonucleic acid; HIV, Human immunodeficiency virus; 
UWF, Ultra-wide-field; SD, Standard deviation. 
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Conclusions: Our UWF fundus image-based DL system showed reliable performance for screening 
AIDS-related CMVR showing its potential for screening CMVR in HIV/AIDS patients, especially in 
the absence of ophthalmic resources.   

1. Introduction 

Cytomegalovirus retinitis (CMVR) is a type of severe, blindness-causing ocular disease that occurs among immunosuppressed 
groups, especially patients with acquired immune deficiency syndrome (AIDS) [1]. In China, the upsurge of HIV/AIDS cases among 
college students has aroused great concern from the Chinese government [2]. Young patients can experience restored health via 
successful antiretroviral therapy, but undiagnosed or inadequately treated CMVR can lead to permanent blindness [3]. Since the last 
century, an increasing number of experts have promoted regular ophthalmological screening for CMVR in patients with HIV/AIDS to 
curb visual impairment [4–7]. 

Traditionally, CMVR diagnosis or screening was conducted by trained ophthalmologists for the dilated examination of the entire 
retina with an indirect ophthalmoscopy [4]. However, we are facing challenges in terms of structural obstacles, such as the imbalanced 
distribution of medical resources in different venues [8]. Some HIV/AIDS specialized hospitals in China do not have an ophthalmology 
department nor the resources to implement ophthalmological screening. Only after they are discharged from local hospitals, patients 
might obtain a delayed diagnosis and treatment of CMVR at a higher-level hospital. Whereafter, telemedicine screening of CMVR by 
ophthalmologists or nonophthalmologists using digital fundus photography or UWF fundus image emerged [9–12]. Telemedicine 
screening provided obvious improvement by saving labor and facilitating remote diagnosis. However it is still limited to labor costs. 
Besides, some cases still need blood tests or chamber paracentesis for aqueous humor tests, which are invasive and costly [13,14]. 

Artificial intelligence (AI), represented by deep learning (DL), has incorporated image-processing tasks into everyday clinical 
practice, thus filling the need for relatively rapid interpretation of images and the lack of local expertise [15,16]. The combination of a 
DL system and digital fundus photographs, slit-lamp images, or oct has shown potential applications towards the automated detection 
of various ocular diseases, including diabetic retinopathy, glaucoma, age-related macular degeneration, optic disc diseases, lattice 

Table 1 
Previous relevant study analysis.  

Reference Disease type 
(s) 

Modality Dataset 
size 

Sample 
size 

AI problem Algorithm Model Best performance 

Shah et al. 
(2013) 
[10] 

CMVR in 
HIV patients 

Nine-field fundus 
photographs 
using a digital 
fundus camera 

370 
images 

188 HIV 
patients 

Classification Telemedicine 
screeningby retina 
specialists 

– Sensitivity:30.2 
%, 
Specificity: 99.9 
% 
Kappa values: 
0.739 to 0.987 

Jirawison 
et al. 
(2015) 
[11] 

CMVR in 
HIV patients 

Mosaic fundus 
photographs 
using a digital 
fundus camera 

272 
images 

103 HIV 
patients 

Classification Telemedicine screenng 
by retina specialists 

– Sensitivity: 302 
%, 
Specificity: 99.1 
% 

Yen et al. 
(2014) 
[9] 

CMVR in 
HIV patients 

Mosaic fundus 
photographs 
using a digital 
fundus camera 

182 
images 

94 HIV 
patients 

Classification Telemedicine screning 
by 
nonophthalmologists 

– Sensitivity: 4.1 %, 
Specificity:82.3 
%, 
Cohen κ: 0.83 

Du et al. 
(2020) 
[12] 

CMVR in 
HIV patients 

Ultra-wide-field 
imaging 

186 
images 

94 HIV 
patients 

Classification Telemedicine sreening 
by retina specialists 

– Sensitivity: 96.3 
%, Specificiy: 
100 %, 
Kappa value: 
0.978 

ingkosol 
et al. 
(2020) 
[28] 

CMVR in 
imunodefi- 
cient 
patients 

Fundus 
photographs 
using a digital 
fundus camera 

1112 
images 

249 eyes Classification ANN AWPT-based 
ANN. 

Sensitivty: 90.32 
%, 
Specifiity: 95.71 
%, 
AUC: 95.80 % 

Srisuriyajan 
et al. 
(2022) 
[29] 

CMVR in 
HIV patients 

A single central 
field of the fundus 
photographs 
using a digital 
fundus camera 

165 
images 

90 HIV 
patients 

Classification CNNs Keras 
application 
(VGG16) 

Sensiivity: 68.8 
%, 
Speificity: 100 %, 
Accuracy: 93.94 
% 

Ong et al. 
(2024) 
[13] 

NIU-PS, 
ARN, and 
CMVR 

Blood and 
serology test 

156 
CMVR 

156 
CMVR 

Classification DNNs MTL ROC-AUC: 0.982, 
PRC-AUC:0.807 

ANN = artificial neural network; ARN = acute retinal necrosis; AWPT = adaptive wavelet packet transform; NIU-PS = noninfectious uveitis of the 
posterior segment; DNNs = deep neural networks; CNNs = convolutional neural networks; MTL = multi-task learning; PRC-AUC = precision recall 
curve-area under the curve; ROC-AUC = receiver operating characteristic curve-area under the curve. 
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degeneration, and retinal breaks [17–25]. Automated CMVR screening using digital fundus images has become a reality with AI 
assistance [26 27]. However, the sensitivity was limited to a moderate level, because some peripheral CMVR lesions could be missed in 
digital fundus images. Compared with traditional single field or mosaic fundus images, UWF fundus images, with a 200-degree field of 
the retina, showed overwhelming advantages for capturing the whole CMVR lesions [12 28].UWF fundus image has also shown 
significant potential in the automatic diagnosis of retinal diseases [26,27]. However, the role of DL approaches in detecting CMVR 
from UWF fundus images has yet to be determined. 

With an urgent need for routine CMVR screening for AIDS patients and the great success of DL in clinical medicine, the current 
research aimed to develop a novel deep learning system for automated detection of CMVR with UWF fundus images alone to determine 
its possible use for AIDS-related CMVR screening and classification. To address this, we selected suitable neural network architecture to 
train and validate deep learning models using retrospectively collected UWF fundus images. Additionally, we also verified its per-
formance with prospective validation datasets and external validation datasets from different clinical settings. 

1.1. Related researches 

Some researchers have made progress in screening CMVR in a telemedicine and AI scenario. Table 1 summarizes the research, 
including algorithms, models, sample size, image modality, etc. A detailed comparison between these researches and the present study 
is completed in the Discussion section. 

Fig. 1. The flow chart of data selection.  

K. Du et al.                                                                                                                                                                                                              
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2. Materials and methods 

2.1. Study design and participants 

Current research was performed in Beijing Youan Hospital (Beijing, China) and Beijing Tongren Hospital (Beijing, China). In the 
first step, UWF images from HIV/AIDS patients attained using an OPTOS non-mydriatic camera (OPTOS® Daytona) were retro-
spectively collected from Beijing Youan Hospital between September 5, 2017 and October 31, 2020. The whole dataset was randomly 
split into two independent datasets with five-fold cross-validation: training and internal validation datasets [30]. The flow chart is 
shown in Fig. 1. If multiple images were obtained from the same eye, those images were included either in the training dataset or the 
internal validation dataset. 

In the second step, we validated the performance of the DL system. Another group of HIV/AIDS patients was retrospectively 
collected from Beijing Tongren Hospital between June 1, 2018 and November 30, 2020 as an external dataset. Their UWF fundus 
images were attained using another OPTOS camera of a different type (OPTOS® 200Tx). 

In the last stage, to further evaluate the applicability of the DL system, the UWF fundus images from HIV/AIDS patients who 
received OPTOS camera (OPTOS® Daytona) evaluation from Beijing Youan Hospital were collected as a prospective dataset (from 
April 1, 2021 to May 1, 2021). 

In real clinical scenes, stable CMVR means treated CMVR, and its severity is located between normal and active CMVR. Moreover, 
the sample number of stable CMVR is small. Therefore, we designed three binary classification problems (Active CMVR versus non- 
CMVR, Active CMVR versus non-CMVR and stable CMVR, and Active CMVR and stable CMVR versus non-CMVR). 

This research was conducted following the Declaration of Helsinki. Both the Ethics Committee of Beijing YouAn Hospital (LL-2018- 
150-K) and the Ethics Committee of Beijing Tongren Hospital (TRECKY2018-056) approved this research. Written informed consent 
was obtained from each subject. This trial is registered with ClinicalTrials.gov (NCT04831333). 

2.2. Image labeling 

Two experienced retinal specialists with more than 5 years of clinical experience in reading all UWF images independently and 
classified them into three groups: active CMVR, inactive CMVR, and non-CMVR. Any disagreement between the two human graders 
was further diagnosed by another senior retinal specialist. The UWF images of CMVR included various presentations: hemorrhagic 
necrotizing lesion, granular lesion, frosted branch angiitis, and optic neuropathy lesion [12]. Active CMVR and inactive CMVR were 
differentiated according to clinical evaluation and the opacity of the borders of the CMVR lesion [31]: active CMVR lesion was defined 
as obvious opacity (mild, moderate, severe, very severe), whereas inactive CMVR lesion was defined as a lack of opacity or ques-
tionable/equivocal activity. The non-CMVR images included normal retina and other retinopathies such as HIV-related microvascular 
retinopathy, diabetic retinopathy, retinal detachment, and vitreous hemorrhage (Fig. 2). These image labels were considered as 
reference standards for training and validation in this study. During image labeling, images were excluded if human graders did not 
give a consensus. 

2.3. Image preprocessing and quality control 

To improve the DL analysis, we resized the images to a unified resolution of 512 × 512 before developing the algorithm. In the 
control quality process, we filtered out unqualified images based on several criteria (the readable region ratio, illumination, blurriness, 
and image contents). The pixel intensity of the selected images was normalized from (0, 255) to (0, 1). 

Fig. 2. Image examples of non-CMVR (a), active CMVR (b), and inactive CMVR (c).  
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2.4. Algorithm development 

We applied a convolutional neural network to automatically detect CMVR. We first compared the performance of some archi-
tectures including ResNet-50 [32], ResNet-101 [33,34], InceptionV3 [35], InceptionV4, and InceptionResnetV2 [36]. InceptionRes-
netV2 [37], which achieved the best performance, was finally chosen to complete the task. Three models were separately trained to 
differentiate the following binary classification tasks: (1) active CMVR versus non-CMVR, (2) active CMVR versus non-CMVR and 
inactive CMVR and (3) active CMVR and inactive CMVR versus non-CMVR (Fig. 3). We established these three models for the better 
application in various clinical situations. We adopted subject independently [38,39] five-fold cross validation [40–42] to fairly test the 
performance of the models and selected the optimal one, at the same time, convolutional neural network (CNN) architectures were 
fine-tuned with the pre-trained models constructed with ImageNet dataset [43]. Furthermore, cross-validation is carried out in a 
subject-independent manner, namely, the images from one patient will not be split into training and validation datasets. To further test 
the performance of the DL models, we then used external validation and prospective validation datasets. All models were developed 
with TensorFlow 1.10.0 and Keras 2.2.4 [36] on a server with four TITAN XP GPUs. Because the dataset is imbalanced, we adopted 
class weights to avoid the biased towards the majority class [44]. 

2.5. Visualisation heat map 

We used Grad-CAM [45] to study whether DL models were able to detect the lesions in UWF fundus images. The results were 
presented as heat maps, which showed some pixels (red) as the most important clues for the classification task. 

2.6. Comparison between human and DL 

Two retinal ophthalmologists: a senior and a junior were required to independently evaluate the UWF fundus images in the 
prospective validation dataset. We compared the performance of these trained human ophthalmologists with the DL system. 

2.7. Statistical analyses 

All statistical analyses were performed using Python 3.7.3 (Wilmington, DE, USA) and MATLAB R2016a (https://www.mathworks. 
com/). We used the accuracy, sensitivity, specificity, and receiver operating characteristic (ROC) curve to assess the performance of the 
DL model. The area under the ROC curve (AUROC) with a 95 % confidence interval (CI) was calculated [46], in an internal cross 
validation dataset, point estimation was used to figure out the corresponding confidence interval [47]. Whereas in prospective and 
external validation, N-out-of-N Bootstrapping with 1000 replicates was used to estimate 95 % confidence intervals (95 % CI). 

3. Results 

Totally 6960 gradable UWF fundus images of 862 AIDS patients were retrospectively gathered for the training, tuning, and internal 
validation of the DL system (Table 2). Patients in this study were predominantly male (93.0 %), with a mean age of 38.8 ± 11.5 years. 
Most images were labeled as non-CMVR (61.3 %), and the percentages for active CMVR/inactive CMVR were 24.5 %/14.2 %. Sixty 
UWF images from 30 AIDS patients and 50 UWF images from 25 AIDS patients were collected as the external validation dataset and 
prospective validation dataset, respectively. Similar age, sex distribution, and percentages of non-CMVR, active CMVR, and inactive 

Fig. 3. Overview of a deep convolutional neural network–based model training pipeline to automatically identify active CMVR, inactive CMVR, and 
non-CMVR from ultra-wide-field fundus images. 
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CMVR were recognized in the different datasets. 
Table 3 displays the performance of the DL models to detect CMVR. All three models reached an average accuracy of greater than 

0.88 in the internal cross-validation. The average sensitivity and specificity were greater than 0.77 and 0.92, respectively, and the 
mean AUROCs were greater than 0.93 (Fig. 4). ROC curves are from the best models whose AUROC values are maximum. For the 
external validation dataset, both the accuracy and sensitivity surpassed 0.87 in the three tasks. The specificity and AUROCs surpassed 
0.81 and 0.93, respectively, in the three tasks. For the prospective validation dataset, the accuracy, sensitivity, specificity, and AUROC 
were greater than 0.93 in the first task. In the second task, except for the sensitivity being 0.8333, the other evaluation metrics were 
greater than 0.90. For the third task, all metrics were higher than 0.92. 

When comparing the performance between human ophthalmologists and the DL system, we found that the senior retinal 
ophthalmologist showed better average accuracy, sensitivity, and specificity than the junior retinal ophthalmologist did in all three 
tasks (Supplementary Table 1). In general, the performance of the DL system is better than that of the junior retinal ophthalmologist 
and reached a level similar to that of the senior retinal ophthalmologist (Fig. 4). 

The heat maps showed that regardless of whether the lesions were located at the peripheral retina, posterior retina, or the whole 
retina, DL successfully highlighted the locations of the lesions (true-positive findings; Fig. 5). 

4. Discussion 

To the best of our knowledge, this is the first DL system to screen AIDS-related CMVR from UWF fundus image. In this study, we 
developed, internally validated, externally validated, and prospectively validated a novel UWF fundus image-based DL system to 
screen CMVR in HIV/AIDS patients. This DL system showed consistently great performance for differentiating between eyes with 
active CMVR and eyes with non-CMVR. In addition, our DL system also had good performance with the presence of inactive CMVR, 
thus allowing screening in clinical settings. 

Early detection of CMVR is crucial to curb AIDS-related blindness and mortality. Patients with AIDS who have CMVR have a high 
risk of mortality, which could be reduced by the use of systemic anti-cytomegalovirus therapy [48]. Kingkosol and colleagues proposed 
an artificial neural network (ANN) for automated CMVR screening in immunodeficient patients using digital fundus images [28]. 

Table 2 
Demographics and characteristics of the datasets.  

Characteristic Beijing Youan Hospital Beijing Tongren Hospital 

Development dataset and internal validation dataset Prospective validation dataset External validation dataset 

Total number of images 6979 50 60 
Total number of gradable images 6960 50 60 
Number of individuals 862 25 30 
Number of men (%) 802 (93.0) 22 (88.0) 25 (83.3) 
Age (mean ± SD, y) 38.8 ± 11.5 42.8 ± 14.7 36.6 ± 13.2 
Non-CMVRa 4265 (61.3) 27 (54.0) 32 (53.3) 
Active CMVRa 1705 (24.5) 20 (40.0) 26 (43.3) 
Inactive CMVRa 990 (14.2) 3 (6.0) 2 (3.3)  

a Data are presented as the number of images (percentage in total number of gradable, %). SD, standard deviation; CMVR, cytomegaloviral retinitis. 

Table 3 
Performance of the algorithms in different validation datasets.  

Classification Dataset Accuracy (95 % 
CI) 

Sensitivity (95 % 
CI) 

Specificity (95 % 
CI) 

AUROC (95 % CI) 

Active CMVR versus non-CMVR Internal cross- 
validationa 

0.923 (0.908, 
0.938) 

0.8015 (0.722, 
0.881) 

0.9704 (0.952, 
0.989) 

0.9454 (0.929, 
0.962) 

External validation 0.879 (0.794, 
0.918) 

0.9615 (0.869, 
0.997) 

0.8125 (0.733, 
0.854) 

0.9636 (0.870, 
0.999) 

Prospective validation 0.957 (0.851, 
0.995) 

1.0000 (0.889, 
1.000) 

0.9310 (0.827, 
0.970) 

0.9676 (0.860, 
1.000) 

Active CMVR versus non-CMVR and 
inactive CMVR 

Internal cross- 
validationa 

0.902 (0.857, 
0.948) 

0.7759 (0.659, 
0.893) 

0.9428 (0.848, 
1.000) 

0.9333 (0.900, 
0.967) 

External validation 0.900 (0.814, 
0.938) 

0.9615 (0.871, 
0.997) 

0.8529 (0.771, 
0.892) 

0.9819 (0.889, 
1.000) 

Prospective validation 0.900 (0.803, 
0.940) 

0.8333 (0.743, 
0.876) 

0.9375 (0.837, 
0.976) 

0.9058 (0.809, 
0.945) 

Active CMVR and inactive CMVR versus 
non-CMVR 

Internal cross- 
validationa 

0.884 (0.851, 
0.917) 

0.8225 (0.639, 
1.000) 

0.9234 (0.843, 
1.000) 

0.9393 (0.895, 
0.983) 

External validation 0.900 (0.814, 
0.938) 

0.9286 (0.841, 
0.965) 

0.8750 (0.792, 
0.913) 

0.9686 (0.877, 
1.000) 

Prospective validation 0.940 (0.839, 
0.978) 

0.9524 (0.851, 
0.990) 

0.9310 (0.831, 
0.969) 

0.9294 (0.830, 
0.968) 

data is presented as the mean value of the AUROC in five-fold internal cross-validation. CMVR, cytomegaloviral retinitis; CI, confidence interval. 

K. Du et al.                                                                                                                                                                                                              
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Srisuriyajan and colleagues proposed a CNN for automated CMVR screening using digital fundus images [29]. Ong et al. developed a 
multi-task learning model to detect necrotizing viral retinitis, including CMVR from common blood and serology tests (varicella-zoster 
virus immunoglobulin M (IgM), CMV IgM, and lymphocyte count). The related literature has been summarized in Table 1. Although 
their results were promising and provided proof-of-concept data on using AI to automate CMVR screening, their findings were based on 
a small sample. In addition, the sensitivity was limited to a moderate level, because these retinal fundus images were captured by a 
traditional digital fundus camera with a 45-degree retinal view, which might miss the peripheral necrotic retinitis. As compared with 
traditional fundus montage photography, the UWF fundus image in this study, with a 200-degree field of the retina, showed over-
whelming advantages for capturing the whole CMVR lesions [49]. By contrast, our DL system was developed with 6960 UWF fundus 
images from 862 AIDS patients, with 24.5 % of eyes with active CMVR, thus improving the efficiency of our DL system. 

To increase applicability, we intentionally included UWF fundus images obtained by different OPTOS cameras (OPTOS® 200Tx 
and Daytona) from different clinical centers. Meanwhile, we also intentionally included eyes with inactive CMVR. Because studies 

Fig. 4. Receiver-operating characteristic curves illustrate the performance of the algorithms and human ophthalmologists in internal cross- 
validation (a), external validation (b), and prospective validation (c). Triangle: junior retinal ophthalmologist; pentagram: senior retinal 
ophthalmologist. 

Fig. 5. Ultra-wide-field fundus images and corresponding heat maps showing typical true-positive cases. Lesions shown in a1, b1, and c1 correspond 
to the highlighted regions displayed in heat maps a2, b2, and c2, respectively. 

K. Du et al.                                                                                                                                                                                                              
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have shown some HIV/AIDS patients could present with healed scars consistent with CMVR [50,51]. Of note, our DL system has good 
robustness in differentiating active CMVR from non-CMVR and inactive CMVR. These findings suggest that active CMVR has 
remarkable UWF image features that can be easily distinguished from other eye diseases. 

HIV/AIDS-related discrimination and stigma are identified barriers to the control of the AIDS epidemic and are common among 
healthcare providers in various countries [52,53]. A more comprehensive health system for HIV patients could help to address 
challenges. New strategies have been promoted, including the integration of both HIV and non-HIV medical services [54]. Our pro-
posed UWF fundus image-based DL system provides a proof-of-concept solution to address the current gap in AIDS-related CMVR 
screening, Firstly, this DL system-based CMVR diagnosis can be conducted without the assistance of retinal specialists. The identified 
patients can then be referred to inpatients with subsequent systemic anti-CMV treatment and other opportunistic infection screening 
because CMVR is an important sign of the AIDS stage. Secondly, CMV-DNA tests of ocular specimens [55] or manual observation of the 
opacity of CMVR lesion borders [31] were used to monitor the efficacy of anti-CMV treatment. This DL system could also be imple-
mented as a cost-effective and noninvasive tool for monitoring CMVR via discerning active CMVR from inactive CMVR. It can improve 
the patient’s ability to follow-up. Thirdly, with advances in DL technology and the increasing popularity of non-mydriatic UWF fundus 
cameras, a future CMVR self-screening program using our DL system holds promise and could also be high-demanding, such as with 
HIV self-testing in China [56]. 

Strengths of this study include a large clinical HIV/AIDS sample, with datasets from different clinical centers and different fundus 
cameras. Furthermore, this DL system was based on a non-mydriatic, noninvasive, and 200-degree field fundus image with reasonably 
high AUROC, sensitivity, and specificity. In general, the DL system has reached a similar diagnostic level to that of a senior retinal 
ophthalmologist. The heat maps also prove that the system was able to precisely locate the lesions, which is similar to the working style 
of the human brain. At the same time, we have selected a suitable neural network architecture for UWF fundus images which covers 
more area than conventional fundus images. 

Several limitations of current research should be discussed. Firstly, our dataset cannot cover all populations from multiple ethnic 
and regions. Although our study included a considerable number of HIV/AIDS patients, we did not involve non-HIV-related CMVR 
because of its great variety and rarity. CMVR shows similar clinical features in patients both with and without HIV, including the rate of 
foveal involvement, retinal detachment, involved zone, mortality of CMVR, and types of retinitis (fulminant/indolent) [57,58]. Future 
investigations should focus on the use of our DL system in CMVR screening in various non-HIV populations, which may have similar 
results to those obtained in our study. Secondly, a few eyes with CMVR might present complications, such as cataracts or vitreous 
hemorrhage/inflammation [1], which could be excluded from the present dataset. However, such cases were also a challenge for 
retinal specialists, and could not necessarily weaken the present results. In addition, various commercial fundus cameras, such as Zeiss 
Clarus® systems, are also widely used. These cameras have properties that are different from those of the OPTOS system [59]. Whether 
our results will apply to other UWF cameras or real-world settings deserves further investigation. 

5. Conclusions 

In conclusion, we developed, internally validated, externally validated, and prospectively validated a UWF fundus image-based DL 
system to screen CMVR in HIV/AIDS patients. Our study provides a unique and novel model that could be used in clinical settings, 
especially in the absence of ophthalmic resources. Further clinical investigation of this DL system across diverse populations, clinical 
settings, or different retinal cameras in the real world will be required. Some comorbidity should be included to construct a real clinical 
circumstance that could improve the robustness of the DL system. Additionally, multi-modality data could be integrated to build a 
comprehensive diagnostic model for CMVR. 
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