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Abstract: Neuroendocrine neoplasms (NEN) are characterized by a wide clinical heterogeneity and
biological variability, with slow progression and long survival in most cases. Although these tumors
can affect young adults, there are few studies that focus on the sexual and reproductive system. The
aim of this review was to evaluate the effect of NEN treatment, including somatostatin analogues
(SSA), targeted therapy (Everolimus and Sunitinib), radiolabeled-SSA and chemotherapy, on male
and female reproductive systems and sexual function. This narrative review was performed for all
available prospective and retrospective studies, case reports and review articles published up to
March 2022 in PubMed. To date, few data are available on the impact of SSA on human fertility and
most of studies come from acromegalic patients. However, SSAs seem to cross the blood—placental
barrier; therefore, pregnancy planning is strongly recommended. Furthermore, the effect of targeted
therapy on reproductive function is still undefined. Conversely, chemotherapy has a well-known
negative impact on male and female fertility. The effect of temozolomide on reproductive function is
still undefined, even if changes in semen parameters after the treatment have been described. Finally,
very few data are available on the sexual function of NEN treatment.

Keywords: fertility; sexual dysfunction; sexual function; neuroendocrine tumors; neuroendocrine
neoplasms; treatment; QoL

1. Introduction

Neuroendocrine neoplasms (NENSs) are a relatively rare and complex group of neo-
plasms that originate from the cells of the diffused neuroendocrine system, with an in-
cidence of 6.98/100,000 [1]. NENs are characterized by a wide clinical heterogeneity of
site of origin (i.e., gastroenteropatic, pulmonary, etc.), biological variability and gener-
ally long survival and slow progression. Somatostatin analogues (SSA), octreotide and
lanreotide represent the main systemic treatments for advanced well-differentiated neu-
roendocrine tumors (NET). Regarding the other treatment options for the management of
unresectable or metastatic NETs, targeted therapy (Everolimus and Sunitinib), radiolabeled-
SSA such as the 3-emitter 177Lu-DOTA-D-Phe-Tyr3-octreotate (177Lu-oxodotreotide or
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177Lu-DOTATATE) for peptide receptor radionuclide therapy (PRRT) and chemother-
apy have been approved [2]. These also represent the standard of care for patients with
neuroendocrine carcinomas (NEC) [3].

Recent evidence suggests that both clinical severity and heterogeneity of NENs have a
negative impact on the patient’s quality of life (QoL) [4]. However, although sexual health
should be considered an essential component of QoL, few studies have explored sexual
function and dysfunction in patients with NENs, with non-univocal results.

Furthermore, many NETs have been described in the context of heritable tumor
syndromes, such as multiple endocrine neoplasia types 1 and 2 and Von Hippel-Lindau
disease, involving young subjects [5]. Over the past decades, many studies have highlighted
the importance of reproductive health and the preservation of fertility in cancer patients,
mainly in young patients, with the development of the oncofertility, defined as the study of
interactions between cancer, anticancer treatment and reproductive health [6]. However,
little is known regarding the effects of the treatment in patients with NEN.

The aim of this review was to evaluate the effect of NEN treatment, including SSA,
PRRT, targeted therapy and chemotherapy, on male and female reproductive systems and
sexual function.

2. Materials and Methods

This narrative review was performed for all available prospective and retrospective
studies, case reports and review articles published up to March 2022 in PubMed. Data
were extracted from the text and from the tables of the manuscript. The keyword search

V77

used included “female fertility”, “male fertility”, and “sexual dysfunction” plus: “neuroen-

”ou ”ou

docrine tumors”, “neuroendocrine neoplasm”, “carcinoid”, “neuroendocrine tumors and

/a7

Somatostatin analogues”, “neuroendocrine tumors and SSA”, “neuroendocrine tumors
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and octreotide”, “neuroendocrine tumors and lanreotide”, “neuroendocrine tumors and

targeted therapy”, “neuroendocrine tumors and everolimus”, “neuroendocrine tumors and

sunitinib”, “neuroendocrine tumors and radiolabeled-SSA”, “neuroendocrine tumors and
/TS AT

peptide receptor radionuclide therapy”, “neuroendocrine tumors and PRRT”, “neuroen-
docrine tumors and chemotherapy”, and “neuroendocrine carcinomas and chemotherapy”.

3. Results
3.1. NET Treatment and Fertility
3.1.1. Somatostatin Analogues

Somatostatin (SST) is a polypeptide hormone existing in two forms (14 and 28 amino
acids). The properties of SST consist of antisecretory, antiproliferative and antiangiogenic
effects [7]. SST has a short half-life and binds with high affinity to five different subtypes
of receptor ubiquitously distributed. The binding of SST with its receptor determines
several biological functions [7]. The expression levels of SST receptors (SSTRs) have
been determined in multiple human tissues across the human body, including the brain,
gastrointestinal tract, pancreas, lung and genitourinary tract.

SST is involved in several physiological functions. In the central nervous system, it is
synthesized in the serotoninergic neurons of the raphe nuclei, acting in the regulation of
mood, sexuality, anxiety, sleep, appetite and body temperature. At the peripheral level, SST
is synthesized by specialized enteroendocrine cells located in the gastrointestinal tract, with
a role in modulating gut motility. SSTRs are present both in normal and in tumor tissues
which enables their response to applied SST analogs (SSA). SSAs have a longer half-life
than SST and they have a similar STTR binding profile, with high SSTR2 and moderate
SSTRS affinity. SSAs are very effective drugs for hormonal syndrome control in functioning
tumors and exert an antiproliferative effect by inducing cell cycle arrest and apoptosis, and
through immunomodulatory effects and angiogenesis inhibition. Considering these data,
they have been approved for the treatment of acromegaly and NET [7,8]. SSAs allow the
control of cell proliferation through two different mechanisms: a direct one, consisting of
the binding to specific surface receptors, and an indirect one, consisting of the inhibition of
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growth factors and modulation of immune response [7]. If the suppressive effect of SSA
on GH and IGF1 is well established, those on the prolactin, luteinizing hormone (LH) and
follicular-stimulating hormone (FSH) are still unclear [8].

Few data are available on the possible impact of SSA on fertility. Considering the
male reproductive system, Sasaki et al. demonstrated for the first time the presence of SST
in human testicular extracts [9]. Subsequent studies on animal models demonstrated the
presence of all SSTRs in the testis and their possible impact on the development of Sertoli
cells and on spermatogenesis [10,11]. Specifically, Riaz et al. highlighted an overexpression
of SSTR2 in a rat’s testis [11]. In the same study, the authors demonstrated that SSTR2 and
SSTR5 receptors are crucial during the Sertoli cell developmental period [11]. These data
are also confirmed in porcine models [12]. In this regard, Goddard et al. demonstrated the
presence of SST2A in Sertoli cells and in spermatogonia in immature porcine testes [12].
These studies also showed that the treatment with SST promotes the apoptosis of Sertoli
cells and impaired spermatogonial development, interrupting them in G1 phase of the cell
cycle through the inhibition of FSH and stem cell factor expression in Sertoli cells [11,12].
Furthermore, the administration of SST induces a dose-dependent RNA suppression of
the kitl gene, which is involved in the regulation of spermatogenesis [11]. In human testes,
SSTR1 SSTR2 and SSTR5 were identified [13]. In particular, SSTR1 was detected in Leydig
cells, SSTR2 was found in the basal part of the tubules (Sertoli cells) while SSTR5 in the
luminal part, suggesting a possible role of SSA and SSTR in human germ cell development,
similar to what was described in animal models [13] (Table 1). Moreover, GH plays a key
role in gonadotropin secretion and tissue reactivity in men. This way, it supports gonadal
differentiation, steroidogenesis and gametogenesis [14]. SST has an inhibitory action on
GH secretion; therefore, it has been hypothesized that in studies conducted on males with
pituitary adenomas, SSA played a role in the impairment of male fertility [15] (Figure 1).

Table 1. Different SSTR subtypes of testicular expressions in humans and animals.

Cell Types SSTR1 SSTR2 SSTR3 SSTR4 SSTR5 Methods
g-PCR
Rat Sertoli cells + + + + + IHC
Animal Western Blot
. . RT-PCR
Porcine Sertoli cells + + + - - Western Blot
Human Sertoli cells + N ) ) + HC

Leydig cells

SSTR= Somatostatin receptors; IHC = Immunohistochemistry; qPCR = Quantitative polymerase chain reaction;
RT-PCR = Reverse transcription polymerase chain reaction.

Considering female fertility, previous observations highlighted the importance of the
GH axis for the latest stage of puberty and start of fertility [16,17]. GH could promote
follicular maturation and make granulosa cells responsive to gonadotropins via the IGF-1
pathway [15]. The first ovulation seems to be facilitated by GH while it is delayed by SSAs,
since they reduce GH secretion. These data demonstrate that any factor (such as SSA) that
affects GH secretion during puberty could have deleterious effects not only on growth but
also on the onset of fertility [18] (Figure 2).
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Figure 1. Hypothesis of SSA impact on male fertility. SSA could negatively impact spermatoge-
nesis through two mechanisms. First, an inhibition of GH, and second, a dose-dependent RNA
suppression of the kitl gene, involved in the spermatogenesis process. SSA = Somatostatin analogues;
LH = Luteinizing hormone; FSH = Follicle-stimulating hormone; GH = Growth hormone.
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Figure 2. Hypothesis of SSA role in female fertility and pregnancy. SSA could cause a reduction in
GH secretion with a negative impact on the growth and onset of fertility. SSA could induce maternal,
placental and potentially relevant neonatal effects (as fetal growth retardation and low birth weight).
SSA = Somatostatin analogues; GH = Growth hormone.

Few data are available on the safety of SSA in pregnancy and studies are mainly
focused on acromegaly. SSA would cross by passive diffusion the blood—placental barrier
and bind all five subtypes of SSTRs of the placenta. SSAs have been found in various
maternal—fetal fluids, although the precise amount crossing the placenta has not yet been
clearly quantified in humans, especially concerning octreotide [19] (Figure 2).

Although most cases of SSA exposure during pregnancy have not been associated
with negative maternal-fetal outcomes, some cases of fetal growth retardation and low
birth weight have been reported [19]. Octreotide promotes a vasodilation action on the
splanchnic circulation [20]. Studies have shown a transient reduction in uterine artery flow
immediately following octreotide administration [19]. Fewer data are available concerning
the pregnancy safety of lanreotide than octreotide. For this reason, the FDA has included
them in different categories in the classification of risk in pregnancy: Lanreotide is in class
C, which means that adverse effects on the fetus were detected in animal studies, but
inadequate and uncontrolled studies were conducted for humans. Additionally, octreotide
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is in class B, which means that animal studies failed to demonstrate a risk to the fetus and
inadequate studies on pregnant women are available [19,21].

Considering these premises, the guidelines of the Endocrine Society suggest replacing
long-acting SSA with short-acting SSA, starting two months before conception [22]. In
the case of ascertained pregnancy in a patient with acromegaly, the suspension of SSA
is recommended, except in cases where there are symptoms or a lack of control over the
tumor [22].

In women with NET, pregnancy can impair the hormonal environment and influence
the progression of the tumors or symptoms. In the patients with Carcinoid Syndrome,
SSA therapy must be carefully considered to avoid cardiac complications. On the other
hand, therapy with SSA could suppress placental production of serotonin and impair fetal
neurogenesis [23,24]. For all these reasons, pregnancy planning is strongly recommended
in women with NET [23].

3.1.2. Peptide Receptor Radionuclide Therapy

PRRT is indicated in patients with metastasized or inoperable somatostatin receptor-
positive NETs. The currently most used radioligands are [90Y-DOTAO,Tyr3] octreotide
and [177Lu-DOTADQ,Tyr3] octreotate. PRRT is mostly associated with short-term adverse
effects [25]. Although some endocrine organs express SST receptors, it is still unclear
whether PRRT can lead to hormonal imbalances [26]. In normal tissues, the density of
SST receptors is lower than in NETs but it does not exclude that radiosensitive organs,
such as gonads, can be damaged by radiomarked-SSA systemically administered. In the
study of Teunissen et al., FSH and Inhibin B underwent significant variations after three
months from PRRT, suggesting a transient impairment of spermatogenesis. The hormonal
imbalance tended to restore in 24 months. A reduction in total testosterone and SHBG
at 3 months and a further decline at 24 months with a concomitant increase in the LH
level was also found [25]. Few data are available about the impact of PRRT on female
fertility. Zhang et al. reported a case report of a young women with an ovarian NET
who underwent four cycles of PRRT. In total, 67 months after four cycles of PRRT, she
naturally conceived and delivered a healthy baby [27]. Despite the authors of this case
report suggesting that pregnancy without complications is possible in patients with NET
undergoing PRRT, according to guideline indications, pregnancy is considered an absolute
contraindication to PRRT and breast feeding a relative contraindication [28,29].

To date, no human or animal studies on the use of 177Lu-DOTATATE in pregnancy
and its effects during breast feeding are available. Nonetheless, for the joint International
Atomic Energy Agency (IAEA), European Association of Nuclear Medicine (EANM) and
Society of Nuclear Medicine and Molecular Imaging (SNMMI) Guidelines and for the
European Neuroendocrine Tumor Society (ENETS) Consensus Guidelines for the Standards
of Care in Neuroendocrine Tumors, pregnancy status should be assessed before starting
PRRT therapy in women of childbearing age [28,29].

In this regard, effective contraception is recommended both during and for 7 months
following the last dose of radionuclide therapy; breastfeeding is also not recommended
for 2.5 months after therapy [28,30,31]. For male patients undergoing PRRT with female
partners of the reproductive age, the use of effective contraception for 4 months following
the treatment is strongly recommended [31]. Guidelines suggest considering sperm banking
before therapy due to the temporary impairment of fertility, related to a transient damage
to Sertoli cells [28]. On the contrary, no indications are available regarding cryopreservation
of oocytes in women [28]. Further investigations are needed to understand the impact of
SSA and PRRT on human reproductive function.

3.1.3. Chemotherapy

In recent decades, an increasing amount of evidence has suggested to pay more atten-
tion to fertility preservation in cancer patients [32]. National and international guidelines
have recommended discussions with patients and their families regarding these issues
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before the initiation of antineoplastic treatments, incase patients wish to consider a fertil-
ity preservation (FP) option [33-35]. Indeed, several studies have demonstrated that the
conventional treatments for cancer, chemotherapy and radiotherapy can trigger gonadal
dysfunction. Thus, gonadal dysfunction can cause premature menopause in women and
infertility in both men and women [36—40].

To date, no specific data are available regarding the impact of chemotherapy on fertility
in patients with NEN. However, robust data have been published about the independent
potential risk of infertility caused by carboplatin and/or cisplatin and etoposide in both
males and females [41,42]. These drugs represent the standard of care for patients with
NEC, independent of primary tumor origin [3]. Preclinical models have investigated the
mechanisms of platinum-based chemotherapy-induced gonadotoxicity [43], demonstrating
that chemotherapy damages the reproductive system by enhancing apoptosis [44]. No
significant differences in fertility impairments have been detected for cisplatin versus
carboplatin [45]. Interestingly, a role for platinum-based chemotherapy-related epigenetic
alterations in potentially threatening normal progeny development has been identified [46].

Preclinical studies have highlighted the adverse effects of etoposide on the developing
ovaries of female fetuses [47]. Additionally, alkylating agents, such as temozolomide (which
is an approved and effective treatment for patients with NET), can impair sperm production
in men or deplete the pool of ovarian oocytes in women [48]. To date, the specific effect
of temozolomide on reproductive function is still under debate [49]. Changes in semen
parameters after the treatment with temozolomide have been observed [50]. However, case
reports of both men and women who have produced healthy children after treatment with
temozolomide have been published [51].

3.1.4. Targeted Agents

In the era of personalized medicine, targeted agents are largely used across different
types of tumors. Two targeted agents have been approved for NETs, the mTOR inhibitor,
Everolimus, for lung and gastroenteropancreatic (GEP) NETs or NETs of unknown ori-
gin [52,53], and the tyrosine kinase inhibitor (TKI), Sunitinib, for those of pancreatic ori-
gin [54]. The toxicity profile of these drugs has been clearly elucidated and detailed in
literature while, unfortunately, only scarce data are available on gonadal function and no
indication for FP is available (Table 2) [52-54].

Table 2. The effect of neuroendocrine neoplasm treatment on male and female fertility.

Male Female

Blood-placental barrier crossing
with possible consequences for
offspring (fetal growth retardation

A possible detrimental effect due
SSA to the induction of Sertoli
cell apoptosis.

and low birth weight).
A possible transient impairment
PRRT of spermatogenesis and No sufficient data available.
testosterone reduction.
Gonadotoxicity by Gonadotoxicity by
enhancing apoptosis. enhancing apoptosis.
Chemotherapy Impairmegntiegarding sperm Depletior? ofplchz pool of

production. ovarian oocytes.
A possible seminiferous tubule

Everolimus dystrophy and reduced No sufficient data available.

tubule diameter.
A possible ovulation defect
Sunitinib No sufficient data available. and/or a luteinization
process inhibition.

SSA = Somatostatin analogues; PRRT = Peptide receptor radionuclide therapy.
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Everolimus

Preclinical data have demonstrated a risk for fertility due to seminiferous tubule
dystrophy and reduced tubule diameter after the treatment with Everolimus [55]. Few
case reports have shown sperm abnormalities after treatment with the other mTOR in-
hibitor, Sirolimus, in transplanted patients [56,57]. Other studies revealed significantly
lower testosterone levels and a significant increase in gonadotrophic hormones (FSH and
LH) in patients treated with Sirolimus [58,59]. Other preclinical studies have suggested a
protective role for mTOR inhibitors, leading to the preservation of the ovarian reserve dur-
ing chemotherapy administration in mice [60,61]. Unfortunately, so far, no clear evidence
is available about the impact of Everolimus on cancer patients, including NET patient
reproductive function. However, according to the Everolimus Summary of Product Charac-
teristics, women of childbearing potential are advised to use a highly effective method of
contraception for the duration of treatment with Everolimus and for up to 8 weeks after
the cessation of treatment [62]. This indication suggests that Everolimus could potentially
impair cancer patients’ fertility.

Sunitinib

Preclinical studies have detected a negative impact of Sunitinib on ovarian func-
tion [63]. Specifically, Bernard and colleagues observed a significant impairment in corpora
lutea formation in mice receiving Sunitinib compared to control mice, as the consequence
of an ovulation defect and/or a luteinization process inhibition. Furthermore, the au-
thors hypothesized that Sunitinib could impact follicular activation and therefore increase
atresia [62]. Additionally, Sunitinib has shown to reduce the size of the endometrium
in mice [64]. Other studies have demonstrated that Sunitinib had no effects on female
and male rat reproduction [65]. Unfortunately, clinical data, in all types of cancer pa-
tients, including NET patients, regarding the effects of Sunitinib on gonadal function and
subsequent fertility are lacking [66].

3.2. NEN Treatment and Sexual Function

Sexual health is defined as “a state of physical, mental, and social well-being in relation
to sexuality” [67,68]; however, sexual disorders are often undiscussed during oncology
visits [69]. In this regard, cancer and cancer-related treatments could have a detrimental
effect on the sexuality of patients and their partners [70]. Stanton et al. highlighted that
cancer could affect sexual function, modifying erection, ejaculation and orgasm in male
patients as well as arousal, orgasm and satisfaction in females [70]. Therefore, although
sexual health should be considered an essential part of QoL in all cancer patients, there are
very few studies exploring sexual health in patients with NENs [71-76].

Van der Horst- Schrivers et al. explored sexual function in 43 patients with metastatic
midgut carcinoid tumors, 27 men and 16 women. Interestingly, the authors observed that
male patients with sexual dysfunction showed more long-standing disease as well as a
lower tryptophan level. The diagnosis was carried out through the Questionnaire for
Screening Sexual Dysfunction (QSD). However, they found sexual dysfunction in 29.6% of
men and 6.3% of women, and the prevalence was not higher than in the general population.
Considering medical therapy, SSA treatment was not related to a significant difference in
QSD score [71].

Similar results were obtained by Zaid et al., who evaluated sexual dysfunctions using
the Patient-Reported Outcomes Measurement Information System (PROMIS) on sexual
functioning in 57 women, enrolled through social media from eight countries [72]. They
found a similar prevalence of dysfunction in the study group compared to the controls.
The authors did not observe differences in sexual dysfunction prevalence according to
oncological treatment received (surgery alone, radiation alone, chemotherapy alone or
associations) [72].

Furthermore, Karppinen et al. evaluated sexual function in 134 patients (74 female
and 60 male) with small intestine NET, with a mean disease duration of 81 months; most
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patients had a metastatic disease, 79% of patients were in treatment with SSA, 26.9% with
PRRT and 9.7% receiving other treatments [73]. The diagnosis of sexual dysfunction was
carried out through the 15D questionnaire, with only one specific question on sexual activity.
Considering this outcome, the authors found worse results in patients compared to the
controls [73].

Finally, Talvande et al. described a rare case of a woman with ovarian carcinoid and
flushes during coitus [74], while Defeudis et al. reported a rare case of erectile dysfunction
after surgery in a patient with Pheochromocytoma [75].

4. Conclusions

To date, few data are available on the possible impact of SSA on fertility, mainly
based on acromegalic patients. However, pregnancy planning is strongly recommended
for women with NETs being treated with SSA, due to the blood—placental barrier crossing
of these drugs. Considering the two currently approved targeted agents (Everolimus
and Sunitinib), further studies are needed to assess the effects on NET patient fertility,
in order to optimize the FP strategy. Furthermore, platinum-based chemotherapy has
a well-known negative impact on NEC patient fertility and discussions with patients
regarding FP options should be encouraged to improve patient holistic management and
QoL. Considering Temozolomide, its effect on reproductive function is still undefined and
should be investigated properly, even if changes in semen parameters after treatment have
been described. Finally, very few data are available on the sexual function of NEN patients,
mainly focusing on the effect of the antitumor treatment. In this regard, further studies are
certainly needed, since sexual health should be considered an essential part of QoL.
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