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Abstract
Objectives To evaluate whether radiomics signature of pericoronary adipose tissue (PCAT) based on coronary computed to-
mography angiography (CCTA) could improve the prediction of future acute coronary syndrome (ACS) within 3 years.
Methods We designed a retrospective case-control study that patients with ACS (n = 90) were well matched to patients with no
cardiac events (n = 1496) during 3 years follow-up, then which were randomly divided into training and test datasets with a ratio
of 3:1. A total of 107 radiomics features were extracted from PCAT surrounding lesions and 14 conventional plaque character-
istics were analyzed. Radiomics score, plaque score, and integrated score were respectively calculated via a linear combination of
the selected features, and their performance was evaluated with discrimination, calibration, and clinical application.
Results Radiomics score achieved superior performance in identifying patients with future ACS within 3 years in both training
and test datasets (AUC = 0.826, 0.811) compared with plaque score (AUC = 0.699, 0.640), with a significant difference of AUC
between two scores in the training dataset (p = 0.009); while the improvement of integrated score discriminating capability (AUC
= 0.838, 0.826) was non-significant. The calibration curves of three predictive models demonstrated a good fitness respectively
(all p > 0.05). Decision curve analysis suggested that integrated score added more clinical benefit than plaque score. Stratified
analysis revealed that the performance of three predictive models was not affected by tube voltage, CT version, different sites of
hospital.
Conclusion CCTA-based radiomics signature of PCAT could have the potential to predict the occurrence of subsequent ACS.
Radiomics-based integrated score significantly outperformed plaque score in identifying future ACS within 3 years.
Key Points
• Plaque score based on conventional plaque characteristics had certain limitations in the prediction of ACS.
• Radiomics signature of PCAT surrounding plaques could have the potential to improve the predictive ability of subsequent
ACS.

• Radiomics-based integrated score significantly outperformed plaque score in the identification of future ACS within 3 years.
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Introduction

Acute coronary syndrome (ACS) can be often the first
manifestation of coronary artery disease (CAD) and the
main cause of death in the majority of the world’s pop-
ulation [1, 2]. As a widely used non-invasive imaging
modality, coronary computed tomography angiography
(CCTA) has shown its clinical value by enabling robust
coronary plaque characterization and quantification [3,
4], especially for the identification of adverse plaque
characteristics (APC) [5]. As plaque rupture is a com-
plicated biomechanical process, whether the clinical out-
come of vulnerable plaques developed into ACS may be
affected by several factors. Among them, vascular in-
flammation is recognized as a key factor to both plaque
formation and rupture, resulting in the occurrence of
subsequent ACS [6]. A recent review of randomized
controlled trials suggested that reduction of inflamma-
tion with colchicine on patients with CAD could lower
the incidence of ACS [7]. Therefore, a comprehensive
evaluation combining plaque characteristics with vascu-
lar inflammation may further enhance the prediction of
ACS.

It has been established that there is a constant bidirec-
tional manner between the vascular wall and pericoronary
adipose tissue (PCAT); pro-inflammatory factors released
from the inflamed vascular wall spread to PCAT in a
paracrine manner to inhibit preadipocytes differentiation
and lipid accumulation [8–10]. Antonopoulos AS et al
proposed a novel imaging biomarker, fat attenuation in-
dex (FAI), that captured the CT attenuation changes of
PCAT and further revealed changes in PCAT composition
induced by vascular inflammation [10]. Recent clinical
studies indicated that PCAT attenuation measured from
CCTA may contribute to identify high-risk plaque
(HRP) progression and improve prediction for adverse
cardiac events [11, 12]. Nevertheless, the changes in

PCAT composition were not only related to vascular in-
flammation but also to dysfunctional adipose tissue re-
modeling characterized by fibrosis and vascularity [13,
14]. Thus, this approach only relying on CT attenuation
to reflect changes in PCAT composition without consid-
ering complicated spatial relationship among voxels might
lead to certain overlaps between pathologies.

Radiomics refers to the process of converting digital med-
ical images into mineable higher dimensional data, the high-
throughput extraction of quantitative image features for pro-
viding clinical-decision support [15, 16]. Radiomics was orig-
inally applied in oncology. Notably, it has been gradually
applied to the coronary lesions and myocardium [17–21].
Oikonomou EK et al [22] primarily proposed that a novel
radiotranscriptomic signature of PCAT could detect additional
disease-related changes in PCAT composition; meanwhile,
their machine learning–powered radiomics analysis of
PCAT could lead to a significant improvement of cardiac risk
prediction. A recent report [23] based on CCTA-based
radiomics characterization of PCAT surrounding coronary
plaques found that there was a distinct PCAT radiomics phe-
notype between patients with acute MI and patients with sta-
ble or no CAD, yet the predictive value of PCAT radiomics
surrounding plaques for future adverse cardiac events has not
been mentioned. Therefore, our study aimed to develop a
CCTA-based radiomics signature of PCAT surrounding cor-
onary lesions to identify patients with future ACS within 3
years.

Material and methods

Study design and population

The study population was retrospectively enrolled consecu-
tive patients who underwent CCTA examinations for
suspected CAD from two different sites of our hospital be-
tween January 2013 and September 2019. We included pa-
tients who experienced an ACS event within 3 years since the
last CCTA examination and had a culprit lesion identified on
invasive coronary angiography. Patients with ACS were well
matched (according to age decile, gender, body mass index,
traditional cardiovascular risk factors, and baseline medica-
tions) to patients without adverse cardiac events during 3
years follow-up. A flowchart of patient recruitment and study
design is presented in Fig. 1. This retrospective study design
was approved by the local institutional review board (No.
2021PS010K), and no informed consent was required.

CCTA acquisition

All the CCTA scanning was performed on either a 256-slice
CT scanner or a dual-layer SDCT. Further details regarding
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the CCTA protocols from two different sites of our hospital
were provided in Supplementary Materials.

Coronary plaque analysis

Quantitative and qualitative analysis of coronary plaques
(Supplementary Materials) were performed in culprit lesions
of patients with ACS and highest-grade stenosis lesions of
control patients by an independent observer who was blinded
to the clinical data and CCTA results with semi-automated
software (IntelliSpace Portal, Philips Healthcare). Lumen
and vessel contours were manually adjusted if necessary.

Finally, a total of 14 conventional plaque characteristics were
obtained.

PCAT segmentation and radiomics feature extraction

Given that recent studies have shown that PCAT surrounding
coronary plaques have the potential to become a sensitive
imaging marker of plaque vulnerability [23–25], we per-
formed PCAT segmentation around culprit lesions in patients
with ACS. Since there was no culprit lesion in the control
group, we chose the highest-grade stenosis nonculprit lesion
of each patient for PCAT radiomics phenotyping [23]. PCAT

Fig. 1 A flowchart of patient recruitment and study design. CCTA, coronary computed tomography angiography; CAD, coronary artery disease; ACS,
acute coronary syndrome; BMI, body mass index
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was defined as all the voxels between −190 and −30 HU range
located within a radial distance from the outer vessel wall
equal to the average diameter of the target vessel. The detailed
process of PCAT segmentation was displayed in the
Supplementary Materials.

In tota l , we extracted 107 radiomics features
(Supplementary Materials) from PCAT surrounding plaques
with the reference of the image biomarker standardization
initiative (IBSI) [26] using an artificial intelligence kit (A.K.,
GE Healthcare).

In order to ensure the robustness and stability of our built
models, intra-class correlation coefficient (ICC) was used to
evaluate the inter-reader reproducibility of radiomics features
(SupplementaryMaterials). Features with an ICC value > 0.75
were considered a good agreement [27] and remained for sub-
sequent analysis. Figure 2 shows the radiomics workflow of
this study.

Feature selection and prediction model building

We developed three predictive models to determine the dis-
crimination of patients with subsequent ACS; their building
process was detailed as follows:

Plaque score

Univariate logistic regression was used to select the plaque
predictors with p < 0.05, then multivariate logistic regression
was used to identify the significant features using the back-
ward stepwise elimination method. Finally, a plaque score
was calculated based on the above-selected plaque predictors
weighted by their respective coefficients.

Radiomics score

Firstly, we selected features with an ICC > 0.75 for subse-
quent analysis. Secondly, to reduce the risk of overfitting,
we further eliminated features with highly pairwise correla-
tions at the level of |r|≥ 0.9. Thirdly, the least absolute shrink-
age and selection operator (LASSO) regression was conduct-
ed to select the most significant radiomics features with non-
ze ro coef f ic ien t us ing 10- fo ld cross -va l ida t ion
(Supplementary Materials). Then radiomics score was calcu-
lated for each patient via a linear combination of the selected
features which weighed by their respective coefficient.

Integrated score

Using multivariate logistic regression, an integrated score was
calculated for each patient via a linear combination of
radiomics score and the selected plaque predictors.

Statistical analysis

All statistical analyses were performed with R software (ver-
sion 3.5.1; http://www.Rproject.org). R packages used in this
study were listed in the Supplementary Materials. Continuous
variables were presented as mean S ± SD or median (25th,
75th percentile) according to the data distribution. The chi-
square test was used to compare categorical variables between
two groups; either Student’s t-test or Mann-Whitney U test
was used for the continuous variables as appropriate.

The performance of three developed models was evaluated
with discrimination, calibration, and clinical application in an
independent test dataset.

Fig. 2 A flow chart displaying the process for development of radiomics-
based integrated score. CCTA, coronary computed tomography angiog-
raphy; PCAT, pericoronary adipose tissue; LAD, left anterior descending;

HRP, high-risk plaque; MLD, minimal lumen diameter; MLA, minimal
lumen area; DS, diameter stenosis; CP, calcified plaque; NCP, non-
calcified plaque
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Discrimination

The receiver operating characteristic (ROC) curve was
used to evaluate the diagnostic performance of three
predictive models in identifying patients with subse-
quent ACS. The DeLong test was used to compare the
area under ROC curves (AUC) between different
models or different datasets.

Calibration

Calibration curves were plotted to assess the agreement
between the observed outcome frequencies and predict-
ed probabilities of three predictive models. The
Hosmer–Lemeshow test was used to determine the
goodness of fit of the models, and p > 0.05 was con-
sidered good calibration.

Clinical application

Decision curve analysis (DCA) was conducted to evaluate the
clinical usefulness of three predictive models by quantifying
the net benefits at different threshold probabilities.

Stratification analyses were performed on different CT pro-
tocols and different scanning sites.

Results

Patients’ clinical characteristics

Patients’ clinical characteristics in the training and test dataset
were detailed in the SupplementaryMaterials. Of patients with
ACS, 13 (14.44%) presented with ST segment elevation myo-
cardial infarction (STEMI), 25 (27.78%) presented with non-
ST segment elevation myocardial infarction (NSTEMI), and
52 (57.78%) with unstable angina (UA). The average duration
time between coronary CTA scan and the occurrence of ACS
was 15.19 ± 11.15 months. There were no significant differ-
ences between the two groups with regard to the distribution
of clinical characteristics in both the training and test dataset.

Coronary plaque analysis

Conventional plaque characteristics in the training and test
dataset are presented in Table 1. Of the plaque analysis, we
observed that 4 plaque features (consisting of minimal lumen
diameter (MLD), minimal lumen area(MLA), DS, and HRP)
were significantly different between the two groups in the
training dataset, but no statistical significance was found in
the test dataset. There was no significant difference in all
plaque features between the training and test dataset (p >
0.05).

Feature selection and prediction model building

Three predictive models were respectively developed to deter-
mine the predictive capability of future ACS. The detailed
calculation formula and the distribution of three models are
shown in Supplementary Materials.

Plaque score

Among conventional plaque characteristics, we found that
two plaque features (MLD and HRP) were significantly asso-
ciated with the occurrence of future ACS using univariate and
multivariate logistic regression, then they were combined to
construct a plaque score by multivariate logistic regression
analysis.

Radiomics score

A total of 103 radiomics features showed good stability with
an ICC > 0.75 on inter-observer analysis(Supplementary
Materials); after redundancy with spearman correlation anal-
ysis, 41 features remained; finally, 14 significant radiomics
features with none-zero coefficient were selected after
LASSO regression analysis, which was devoted to calculating
radiomics score (Supplementary Materials).

Integrated score

An integrated score incorporating selected plaque predictors
(MLD, HRP) with radiomics score were further developed for
predicting subsequent ACS, and we presented it as a nomo-
gram (Fig. 3).

Performance evaluation

Discrimination

ROC curves of radiomics score, plaque score, and integrated
score were plotted to reveal the performance of discriminating
ACS in the training and test dataset (Fig. 4). The values of
AUC, sensitivity, and specificity were measured to quantify
the discrimination ability of three predictive models (Table 2).
The radiomics score achieved superior discrimination in the
training and test dataset (AUC = 0.826 [95%CI: 0.758–0.895],
0.811 [95%CI: 0.678–0.944]) compared with plaque score
(AUC = 0.699 [95%CI: 0.611–0.786]), 0.640 [95%CI:
0.473–0.807]), while the improvement of integrated score dis-
criminating capability (AUC = 0.838 [95% CI: 0.773, 0.904],
0.826 [95% CI: 0.700, 0.952]) was non-significant compared
with radiomics score.

Delong test revealed that there was no statistical difference
of the AUCs of three models between the training and test
dataset, with p values of 0.544, 0.841, and 0.865, respectively
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(Table 2). Furthermore, there was no significant difference
between the radiomics score and integrated score in the train-
ing dataset (p = 0.314), but both of them are statistically su-
perior to plaque score (p = 0.009 and p < 0.001, respectively);
there was no statistical difference between three scores in the
test dataset (all p > 0.05).

Calibration

The calibration curves of three predictive models all demon-
strated a good fitness (p > 0.05 in the Hosmer–Lemeshow test)
between prediction and observation for the probability of ACS
in both training and test datasets (Fig. 5).

Clinical application

The decision curves displayed the clinical usefulness of three
predictive models by comparing the net benefits at different
threshold probabilities in the training and test dataset and dem-
onstrated that the integrated score and radiomics score had a
higher net benefit than plaque score (Fig. 6).

Stratified analysis

As shown in Supplementary Materials, stratified analysis re-
vealed that the performance of three predictive models was
not affected by tube voltage (100kv, 120kv), CT version (iCT,

Table 1 Plaque characteristics of the study population and three predictive model score in the training and test dataset

Characteristics Training dataset Test dataset p
value

Control (n = 67) ACS (n = 67) p value Control (n = 23) ACS (n = 23) p value

Plaque characteristics

Lesion distribution 0.116 0.280 0.301

RCA 13 (19.40) 14 (20.90) 4 (17.39) 8 (34.78)

LAD 49 (73.13) 40 (59.70) 18 (78.26) 14 (60.87)

LCX 5 (7.46) 9 (13.43) 1 (4.35) 0 (0.00)

D 0 (0.00) 4 (5.97) 0 (0.00) 1 (4.35)

LL, median (25%, 75%) mm 14.20 (6.84, 22.14) 13.70 (8.62, 22.76) 0.342 17.80 (10.68, 30.30) 17.60 (6.44, 33.26) 0.742 0.140

MLD, median (25%, 75%) mm 1.20 (0.80, 1.88) 0.90 (0.42, 1.30) 0.001* 1.14 ± 0.58 0.91 ± 0.60 0.191 0.559

MLA, median (25%, 75%)
mm2

1.60 (0.82, 3.34) 1.00 (0.52, 2.00) 0.013* 1.10 (0.82, 2.10) 1.10 (0.56, 2.10) 0.475 0.610

Diameter stenosis 0.022* 0.240 0.972

Mild (< 50%) 27 (40.30) 17 (25.37) 9 (39.13) 5 (21.74)

Moderate (50 to 70%) 26 (38.81) 25 (37.31) 9 (39.13) 11 (47.83)

Severe (≥ 70%) 14 (20.90) 25 (37.31) 5 (21.74) 7 (30.43)

Plaque volume, median (25%, 75%) mm3

Total plaque volume 48.30 (20.48,
73.24)

44.30 (24.68,
79.72)

0.915 35.30 (25.62,
115.86)

44.7 (20.12,
102.36)

0.660 0.871

CP volume 32.90 (14.96,
53.78)

30.20 (15.12,
51.66)

0.836 25.30 (9.38, 107.28) 37.60 (13.10,
80.96)

0.965 0.698

NCP volume 5.60 (1.54, 18.46) 8.90 (2.10, 23.28) 0.390 8.60 (1.26, 21.52) 5.00 (1.30, 31.42) 0.956 0.732

Low-attenuation NCP
(≤ 30 HU)

0.50 (0.00, 1.68) 0.80 (0.00, 2.88) 0.214 0.60 (0.00, 1.88) 0.90 (0.00, 3.26) 0.590 0.914

NCP (30–130 HU) 5.20 (1.40, 16.98) 5.40 (1.72, 18.96) 0.519 7.60 (1.22, 16.62) 4.60 (1.22, 24.00) 0.982 0.748

High-risk plaque, n (%) 5 (7.46) 17 (25.37) 0.005* 3 (13.04) 8 (34.78) 0.084 0.257

Plaque score (model 1) −0.19 (−0.83, 0.18) 0.28 (−0.35, 0.74) < 0.001* −0.05 ± 0.66 0.45 ± 0.93 0.042* 0.195

Radiomics score (model 2) −0.90 ± 1.33 0.94 ± 1.47 < 0.001* -0.85 ± 1.17 0.69 ± 1.61 0.001* 0.725

Integrated score (model 3) −1.00 ± 1.36 1.03 ± 1.52 < 0.001* −0.81 ± 1.10 0.88 ± 1.56 < 0.001* 0.934

LAD, left anterior descending; RCA, right coronary artery; LCX, left circumflex; D, diagonal branch; LL, lesion length;MLD, minimal lumen diameter;
MLA, minimal lumen area; CP, calcified plaque; NCP, non-calcified plaque. High-risk plaque was defined as the presence of at least two of the adverse
plaque characteristics including low-attenuation plaque, positive remodeling, spotty calcification, and napkin-ring sign

p values were derived from the univariable association analysis between different variables, * data are means with a statistical difference. p value
reflected the differences between the training and test dataset

1261Eur Radiol  (2022) 32:1256–1266



IQon CT), different sites of our hospital (Nanhu site,
Huaxiang site) (all p > 0.05).

Discussion

In this study, we developed an integrated score that incorpo-
rated radiomics features of PCAT surrounding target lesions
and significant plaque predictors based on CCTA and validat-
ed the performance with respect to discrimination, calibration,
and clinical application. This integrated score displayed supe-
rior diagnostic performance in the prediction of future ACS
within 3 years compared with plaque score.

As many ACS events usually occur in patients without
obstructive plaques, we should pay more attention to the iden-
tification of vulnerable plaques instead of the degree of lumi-
nal stenosis. The current CCTA could not only identify ob-
structive atherosclerotic plaques and plaque burden but also
evaluate HRP features beneficial to risk stratification [4, 28].
Although the detection of HRP features has provided the in-
cremental predictive value of coronary events to a certain
extent [29], they are not a direct indicator of inflammation,
just anatomical signs of vulnerable plaques and markers of the
risk of rupture [4]. Recent studies [10] have suggested that
coronary inflammation drives dynamic changes in
perivascular adipose tissue (PVAT) composition, captured

by a novel CCTA-derived imaging biomarker, the
perivascular FAI, which reflects inflammation-induced
PVAT changes in adipocyte size and lipid content are related
to CT attenuation gradients. However, this metric based on
CT attenuation simply reveals the average voxel intensity
values without considering the complex spatial relationship
among voxels. Radiomics enables help to provide the spatial
distribution of voxel gray-level intensities and a quantification
of heterogeneity [16].

In our study, we selected 14 most significant predictors
from 107 radiomics features of PCAT based on CCTA using
multivariate logistic regression analysis and found that pa-
tients of which PCAT with lower uniformity and higher het-
erogeneity were correlated with high possibility of future
ACS, which indicated that heterogeneity of PCAT revealed
by radiomics may reflect early pathophysiological changes in
the adipose tissue around plaques; besides, the difference of
PCAT radiomics parameters between two groups may be in-
fluenced by the related local inflammatory response, and
PCAT radiomics characterization may be closely associated
with subsequent plaque rupture. We further developed and
validated that integrated score combining radiomics features
with significant plaque predictors yielded a good diagnostic
performance in identifying patients with ACS in both training
and test datasets. Indeed, a recent prospective case-control
study [23] suggested that a distinct radiomics phenotype of

Fig. 3 Developed integrated
model nomogram. The integrated
score nomogram was developed
in the training dataset with
minimal luminal diameter
(MLD), high-risk plaque (HRP),
and a Rad-score of the selected
radiomics features incorporated

Table 2 Comparison of AUCs between the plaque score, radiomics score, and integrated score

Model Training dataset (n = 134) Test dataset (n = 46) p value (Delong test)

Cutoff AUC (95% CI) SPE SEN AUC (95% CI) SPE SEN

Plaque score 0.230 0.699 (0.611–0.786) 0.791 0.522 0.640 (0.473–0.807) 0.739 0.565 0.544

Radiomics score −0.293 0.826 (0.758–0.895) 0.701 0.836 0.811 (0.678–0.944) 0.696 0.826 0.841

Integrated score 0.201 0.838 (0.773–0.904) 0.821 0.716 0.826 (0.700–0.952) 0.826 0.696 0.865

AUC, area under ROC curve; 95% CI, 95% confidence interval; SEN, sensitivity; SPE, specificity. p value reflects the differences of three predictive
models between the training and test dataset respectively
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PCAT exists between patients with acute MI and patients with
stable or no CAD, especially textural and geometric features
that provided more additional information than the average
attenuation of PCAT; moreover, their radiomics-based model
outperformed PCAT attenuation-based model in identifying
patients with MI. Oikonomou EK et al [22] developed a novel
fat radiomics profile (FRP) using CCTA-based radiomics

phenotyping of coronary PVAT and validated its performance
in three different patient cohorts, which show that FRP con-
tributed to further improve cardiac risk prediction for major
adverse cardiac events beyond common established risk fac-
tors. Nevertheless, our study showed that the selected plaque
predictors could not significantly improve the discriminating
ability of integrated score in identifying patients with

Fig. 4 Comparison of ROC curves for the plaque score (yellow lines), radiomics score(blue lines) and integrated score(pink lines) in the training (a) and
test (b) dataset

Fig. 5 Calibration curves for the integrated score (pink lines), radiomics
score (blue lines), and plaque score (yellow lines) in the training (a) and
test (b) dataset. The calibration curves represented the fitness of three
models between the predicted probability and the real outcomes. A

closer fitness to the diagonal line represented a well-calibrated model.
The fitness of integrated score and radiomics score is superior to plaque
score in the test dataset since calibration curves of the former are closer to
the diagonal line
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subsequent ACS compared with radiomics score, which could
not mean that we did not need conventional plaque character-
istics anymore to determine future ACS risk in the light of
small sample size.

Based on our results, there was a statistical difference in
MLD, MLA, DS, and HRP of plaque characteristics between
two groups in the training dataset, but none of them was sig-
nificantly different in the test dataset, which may be affected
by the small sample size. Simultaneously, HRP was a more
significant predictor among them. The present study [3] based
on CCTA also showed that HRPwas an independent predictor
of ACS. Lee JM et al [30] also displayed that the culprit le-
sions had more frequent HRP than nonculprit lesions, and
HRP further improved discriminatory ability in the identifica-
tion of subsequent ACS. Nonetheless, our plaque score that
was derived from MLD and HRP did not show a much better
performance on predicting ACS outcomes in the test dataset.
This might be due to the occurrence of ACS events is affected
by many factors. Although coronary CTA has the ability to
identify HRP features, there are still certain limitations in de-
tecting small but vulnerable plaques which are potential to
either rupture or rapidly progress to obstructive heart disease
[31]. Moreover, HRP usually has a heterogeneous natural his-
tory and only a small proportion of them actually cause ACS
events [32], several pieces of evidence suggested that half of
ACS events happened without anatomically significant ath-
erosclerotic plaques. Motoyama S et al showed that 83.7%
ofHRP identified byCCTAdid not cause any ACS events [3].

Application of CCTA-based radiomics analysis to PCAT
surrounding lesions in patients with ACS may increase our
understanding of the related inflammatory response in the
pericoronary environment. We developed a more comprehen-
sive ML model for identifying patients with future ACS at a
noninvasive imaging level by integrating radiomics features

with plaque predictors, then found that the integrated score
obviously added incremental discriminatory value in identify-
ing patients with subsequent ACS over plaque score. The
better performance of the radiomics-based score demonstrated
that radiomics methods could extract more predictive infor-
mation from PCAT based on CCTA than conventional plaque
characteristics and have the potential to enhance the predictive
ability of subsequent ACS. These findings further proved the
important role of radiomics information in PCAT for the pre-
diction of ACS.

There are still several limitations in our study. Firstly, we
presented a retrospective case-control study design within a
single center. The sample size of our work is relatively small;
there is still a need for further external validation in an indepen-
dent cohort to verify our findings. Secondly, although our work
performed stratified analysis on three predictive models that
indicated a good reproducibility and robustness exist, the appli-
cation of our predictive models to general populations is limited
to a single-center study. Several studies [33–35] indicated that
image acquisition, reconstruction, and analysis have a certain
impact on the reproducibility of radiomics features. Thirdly, our
study merely concentrated on PCAT radiomics phenotyping at
a per-patient level, further study extended to a larger population
at per-lesion level would be carried out. Furthermore, the cur-
rent method of manually delineating ROI in our study is rela-
tively time-consuming and easy to be affected by human fac-
tors, especially the process of image reconstruction greatly af-
fected by the experience of radiologists. Although we did ICC
to verify the stability of the extracted features, eliminate unsta-
ble features and try to build a robust model, we still hope to use
semi-automatic or fully automatic segmentation technology to
perfect this part of the work.

In conclusion, CCTA-based radiomics signature of PCAT
could have the potential to improve the predictive ability of

Fig. 6 Decision curve analysis for the integrated score (pink lines),
radiomics score (blue lines), and plaque score (yellow lines) in the
training (a) and test (b) dataset. The y-axis represented the net benefit,
the x-axis represented threshold probability. The gray curve line
represented the assumption that all patients have an ACS event, while

the black curve line represented the assumption that no patients have
ACS. The pink line, blue line, and yellow line represented the net
benefit of the integrated score, the radiomics score, and plaque score,
respectively. The integrated score and radiomics score had a higher net
benefit than a plaque score
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subsequent ACS. Radiomics-based integrated score signifi-
cantly outperformed plaque score in identifying future ACS
within 3 years.
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