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Abstract

We study correlations between the structure and properties of a free association network of

the English language, and solutions of psycholinguistic Remote Association Tests (RATs).

We show that average hardness of individual RATs is largely determined by relative posi-

tions of test words (stimuli and response) on the free association network. We argue that the

solution of RATs can be interpreted as a first passage search problem on a network whose

vertices are words and links are associations between words. We propose different heuristic

search algorithms and demonstrate that in “easily-solving” RATs (those that are solved in 15

seconds by more than 64% subjects) the solution is governed by “strong” network links (i.e.

strong associations) directly connecting stimuli and response, and thus the efficient strategy

consist in activating such strong links. In turn, the most efficient mechanism of solving

medium and hard RATs consists of preferentially following sequence of “moderately weak”

associations.

Introduction

Representation of a large number of interacting agents by a network is one of the most power-

ful ways of efficient treatment of various types of data in biological, technological, and social

systems [1, 2], as well as in cognitive processes. A network is a set of nodes (the elementary

indivisible units of a distributed system) and binary relations (links) between them. There is a

plenty of ways to build networks in the cognitive science, with various setups relevant for a

problem-dependent specific conditions. Historically, semantic networks were used to repre-

sent a “knowledge” by establishing directed or undirected semantic relations (graph links)

between the “concepts” (graph nodes) [3]. Such networks are useful to study the “intermedi-

ate” (or “mesoscopic”) scale of organization in the human cognition [4]. However, in attempts

to model cognitive processes, it has been realized that the “microscale” network organization,

i.e the structure of the detailed concept-to-concept connections, is very important.
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Advances in graph-theoretic methods of studying cognitive functions are inextricably con-

nected with pioneering works [5–7]. Since then, the number of investigations in the field has

grown rapidly (for review, see [8]) and in particular a lot of attention has been paid to the

study of large-scale semantic networks. In such networks, words (e.g., nouns) are nodes con-

nected by links indicating semantic relations between them. There is a variety of characteristics

of semantic proximity: one can connect the nearest neighboring words in sentences (so-called

syntactic networks), one can connect words according to standard linguistic relations between

them (synonymy, hyper- or hyponymy, etc.), on their phonetic similarity, etc. Finally, one can

assemble networks of words based on various psycholinguistic experimental data.

Large-scale semantic networks possess specific patterns of connectivity, presumably

imposed by the growth processes by which these networks are formed. Typically, such net-

works demonstrate power-law distributions of node degree, such that most network nodes

have a low vertex degree, while there are some nodes with a very high degree, playing the role

of hubs.

Important and fast-growing area in the field of linguistic networks is related to the so-called

“word embedding” [9]. “Word embedding” is a set of language-modeling techniques based on

mapping of words to vectors of numbers, usually in a multidimensional Euclidean space. The

semantic similarity of two words is defined as a scalar product of the corresponding vectors.

Such a procedure results in construction of a complete weighted network of words (each pair

of words is connected by a weighted edge, whose weight is the semantic proximity) and the

majority of edges have very small weights. Removing all links with weights less than a preset

threshold results in a network with nontrivial topological properties. It might be very produc-

tive to generalize the “word embedding” ideology to non-Euclidean spaces, in particular to

spaces of constant negative curvature which are natural target spaces for scale-free networks

[10, 11]. It is known from other applications that such a non-Euclidean embedding might

allow to radically decrease the dimensionality of embedding space. To complete this short

overview of various theoretic approaches, let us mention that recently several attempts have

been made to treat semantic networks as multiplex networks. Such approaches seem to give

deeper insight into the formation of mental lexicon [12] and early word acquisition [13].

One particularly interesting class of semantic networks is a network of free associations

[14–18]. This class of networks is obtained in the following real experiment. Participants (“test

subjects”) receive words (“stimuli”) and are asked to return, for each stimulus, the first word

coming to their mind in response. The responses of many test subjects are aggregated resulting

in a directed network of weighted links between the words (stimuli and responses) reflecting

the frequencies of answers. The study of these networks has a long history [14, 15]. In what fol-

lows we use a free association network constructed in frameworks of the “English Small World

of Words” project (SWOW-EN) [16]. The online data collection procedure allowed the

authors of [16] to aggregate data for more than 12 000 stimuli words. The data was collected in

2011-2018 and consists of responses of more than 90 000 test subjects. As a result, this network

includes many weak, rare associations, which have not been registered in earlier experiments.

We use free associations network to propose some heuristic mechanisms of solving the so-

called Remote Associates Tests (RATs). RAT had been invented by S. Mednick in 1962 [22]

and was repeatedly used in cognitive neuroscience and psychology [19–21] to study insight,

problem solving and creative thinking. In a RAT test subjects are given a set of three stimuli

words (e.g. “surprise”, “line”, “birthday”) and are requested to find a fourth “return” word,

which is simultaneously associatively related to all three stimuli (in our example it is the word

“party”). According to [22], creative ideas arise by forming new combinations of remotely

associated elements. These elements are organized in lexical–semantic and associative struc-

tures termed “associative hierarchies”. Mednick suggested that formation of new links via
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remotely associated elements (i.e. creativity), is more pronounced for individuals who have

many relatively weak associations. To the contrary, test subjects whose internal lexical-seman-

tic structure consists of fewer and stronger associations (which are typically also common

and conventional), are less capable of forming creative ideas. Mednick designates the cases

described above as “flat” and “steep” associative hierarchies, respectively. In contrast to this

interpretation of creativity, other researchers have suggested that creativity may result not

from the difference in the lexical–semantic maps of the subjects but rather form better adaptive

control of the thought processes [23–25]. For instance, inhibition and switching have been

shown to play an important role in overcoming stereotyping and suppressing prepotent

responses in the solution of RATs [26].

Here we use network-analytical techniques to elucidate the process of solving RATs. It has

been demonstrated recently [27, 28] that lexical–semantic and associative networks for more

creative and less creative individuals actually are substantially different: the networks of more

creative individuals are more interconnected, flexible, and robust, thus supporting Mednick’s

conjecture [22] about the nature of creativity. These observations justify the application of net-

work-based methods for the study of RAT solving, and indeed over the years there were several

attempts to approach this problem from the network-analytical perspective. In [29] authors

analyzed sequences of guesses, which came to mind during RAT solving. They measured the

similarity between guesses, stimuli, and responses using the “Latent Semantic Analysis” [29]

and concluded that there are two systematic strategies of solving multiply constrained prob-

lems. In the first strategy, generation of guesses is primarily based on just one of three stimuli,

while in the second strategy, it is implied that the test subject is making new guesses based par-

tially on his/her previous guesses. In [30] the Metropolis-Hastings search model has been

used, which involved the transition probabilities based on geodesic (shortest) distances along

the network from the stimuli to the response. The authors underline the importance of associ-

ation strength between words in the process of RAT solving. The work [31] is devoted to the

design, implementation and analysis of a computational solver, which can answer RAT queries

in a cognitively inspired manner. In [31] authors developed an artificial cognitive system

based on a unified framework of knowledge organization and processing. They took into

account associative links between the concepts in the knowledge base and the frequency of

their appearance. In the latter work [32], it has been shown that the association strength and

the number of associations both have important separated effects on success rate of RAT solv-

ing. Finally, the spiking neural network model is proposed in [33]. There, RAT solving is simu-

lated as a superposition of two cognitive processes: the first one generates potential responses,

while the second one filters them.

In our study we address two main questions. First, we study the connection between the

average hardness of a particular RAT and the position of stimuli and response words on the

free association network. We show that the RAT hardness can be predicted reasonably well by

examining the network structure. Second, we discuss possible heuristic cognitive search algo-

rithms of solving RATs, and study ways of their optimization.

The paper is organized as follows. We provide a brief characteristic of used datasets: the

structural properties of the free association network, and the quantitative definition of RAT

hardness. Further we study correlations between the RAT hardness and the relative position of

stimuli and response on the free association network. We show that RAT hardness correlates

with the aggregated weight of directed bonds stimuli! response, as well as with the aggre-

gated weight of multi-step chains of associations. On the other hand, there are no substantial

correlations between RAT hardness and the weights of reverse (response! stimuli) bonds.

We argue that such asymmetry means that solving a RAT is a first-passage problem: the cor-

rect response is easy to identify as soon as one finds it along a directed path on the network.
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Finally, we study various ways of enhancing the probability of a fast solution of a RAT. We

argue that search strategies with resetting seem are preferrable to both nearest-neighbor

searches, and searches by unlimited chains of associations. Further, we discuss in detail the

role of weak associations in the search. In particular, we show that the best strategy for solving

easy RATs implies removing all weak associations, and following only the strong ones. In turn,

solving medium, and especially hard RATs, in the same way is often impossible. The probabil-

ity to find a solution of hard RATs gets enhanced when the search runs preferentially along

moderately weak bonds (associations). In Discussion we summarize the obtained results and

propose possible direction of further investigations.

Data analysis

We use the free association network described in [16], known as “English Small World of

Words project” (SWOW-EN). It is a weighted directed network with N = 12 217 stimuli

words. Stimulus materials (cue words) were constructed using a snowball sampling method,

allowing authors [16] to include both frequent and less frequent cues at the same time. The

final set consists of 12 292 cues (stimuli), the weight of the link indicates fraction of the experi-

ment participants which gave this particular response to a cue (i.e. the conditional probability

of a response given a cue). Therefore, the total weight of links going out of each node is less or

equal to 1. For our analysis we used the strongly connected component of the SWOW-EN net-

work, the brief summary of the network topological characteristics is given in Table 1.

In Fig 1a we show the distribution of in- and out-degrees of the network. The out-degree

distribution (blue) is Poissonian, its average is controlled by the experimental setup: the bigger

the number of test subjects per stimulus word, the larger the average degree. In turn, the in-

degree distribution ρ(k) (orange), where k is the number of bonds coming into a node, has a

Table 1. Some topological properties of the SWOW-EN network.

Nodes 12 217

Mean in/out degree 31.67

Mean link weight 0.03

Diameter 8

Transitivity 0.08

Percolation threshold 0.08

https://doi.org/10.1371/journal.pone.0248986.t001

Fig 1. (a) Distributions of in- (blue) and out- (orange) vertex degrees of SWOW-EN; (b) Cumulative distribution of link weights of SWOW-EN;

(c) Fraction of nodes in strongly connected component of SWOW-EN in dependence on the link weight cutoff (see [16]).

https://doi.org/10.1371/journal.pone.0248986.g001
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power-law tail, i.e. ρ(k)�k−γ with γ� 3. Interestingly, such a shape of the in-degree distribution

seems to be quite universal: similar values of γ are observed for networks in other experiments

with English networks [14, 15], and also for the Russian free association networks [17, 18]. In

Fig 1b we demonstrate the cumulative distribution P(w) of weights w of links of SWOW-EN

(all weights lie within the interval [0.01, 1.00]) and in Fig 1c we depict the size of largest

strongly connected component of SWOW-EN as a function of the link weight cutoff, wcut.

Note that the size of strongly connected component of SWOW-EN collapses at the link cutoff

about w�cut ¼ 0:08, which corresponds to removal of 95% of network edges. The SWOW-EN

above w�cut is not percolating anymore, and splits into disjoint components.

In order to characterize the hardness of RATs we use empirical accuracies reported in [34].

Mednick’s original versions of the RAT contained 30 items each, and the solution word for

each item was sometimes associated with the words in a triad in several different ways. E.M.

Bowden and M. Jung-Beeman [34] proposed to use greater number of problems and made the

RATs more consistent, that is, the solution word is always related to the specific triad of words.

We restrict ourselves to 138 problems (combinations of three stimuli and response) out of 144

studied in [34], for which all four words are present in the strongly connected component of

the SWOW-EN network. The hardness of a RAT, for each of 138 problems under consider-

ation, is quantitatively characterized by the fraction H (0�H� 1) of test subjects who cor-

rectly solved it in 15 seconds. Additionally, we divide problems into three broad categories:

“easy”, “medium”, and “hard”. The problem is easy if it has been solved in 15 seconds by more

than 64% test subjects (0.64�H� 1), medium if it was solved by 32%�64% test subjects (0.32

�H� 64), and hard otherwise (0�H� 0.32). There are 15 easy, 38 medium, and 85 hard

problems. For completeness, we provide the hardness of 138 problems used here, and taken

from [34] as Supporting information.

Correlation between average RAT hardness and weights of edges

in a free association network

The strength of an association between two given words (vertices) in a free association net-

work, G, is described quantitatively by the weight of the corresponding directed link. The

whole set of weights is encoded in the weighted adjacency matrix, W(G). The element, wij, of

the matrix W is equal to the strength of directed association i! j if such association exists,

and 0 otherwise (i.e. if the directed link i! j is absent).

Our main heuristic assumption is that to solve a RAT problem, a test subject performs a

search on a free association network, which is a proxy of a search process happening in mem-

ory. Such search process might imply, for example, exploration of all direct associations of all

three stimuli words, or following chains of consequently extracted associations starting from

stimuli words (such a chain may or may not be limited in length). More sophisticated search

strategies can be used as well: for example, one may follow paths on network with preference

of weak associations, or one may use some synergy between stimuli words (e.g. choosing

words with strong associations with two or more stimuli words), etc. Finally, there exist a pos-

sibility that the solution is found but it is not recognized as the right one.

In order to test the basic hypothesis that the RAT solution is governed by some search pro-

cess on the free association network, we study correlations between the RAT hardness and

probabilities of finding a solution in various simple search strategies.

We begin with a simplest possible one-step strategy: (i) choose one of the stimuli words at

random, (ii) jump to its neighbor along the directed link on the free association network (the

jump probability is given by the link weight), (iii) check whether the solution is correct. The
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probability of finding a correct answer in such a strategy is, obviously,

p0ðaÞ ¼
1

3
ws1a ;ra

þ ws2a ;ra
þ ws3a ;ra

� �
ð1Þ

where α enumerates different RAT problems (1� α� 138), the indices s1
a
; s2
a
; s3
a

designate

three stimuli words (vertices of the network) for a given problem α, and the correct response

is a network vertex with the index rα. Thus, wsja ;ra
is the weight of the directed bond sj

a
! ra,

where j = 1, 2, 3.

Another simple hypothetic model is as follows. Consider a search on the network as a

sequence (Markov chain) of associations: one generates a random walk trajectory with jump-

ing probabilities equal to wij, starting from one of stimuli words. In that case, the probability

πs,r of reaching the response word from one of the stimuli is

ps;r ¼ ws;r þ
X

k6¼r

ws;kwk;r þ
X

k;l6¼r

ws;kwk;lwl;r þ � � � ¼
W �

I � W �

� �

s;r

; ð2Þ

where W− is the adjacency matrix W, in which all weights wr,i out of the resposne word r are

set to zero, which guarantees that only first passage of the response word is counted, while all

the other elemenrts of matrix W are preserved.

If the starting stimulus word is chosen at random, the resulting probability of solving the

task by the proposed mechanism reads:

p1ðaÞ ¼
1

3
ps1a ;ra

þ ps2a ;ra
þ ps3a;ra

� �
ð3Þ

Every search is restricted in time. Therefore, the Markov chain representing the search on

the network, should be finite. Thus, it seems reasonable to truncate the maximal length of

search trajectories: if the search is not completed during the allowed time interval, we stop the

search and start the new one from the same stimuli. Such a strategy resembles the random

search with resetting [35, 36]. In case of a random resetting, the probability of solution in one

search, given a stimulus s and a response r, can be written as follows

ps;rðlÞ ¼
W �

I � lW �

� �

s;r

; plðaÞ ¼
1

3

X

i¼1::3

psia ;ra
ðlÞ ð4Þ

where λ is an additional weight (probability of keeping the search as opposed to stopping),

associated with each step. As a result, the probability of each N-step search is multiplied by an

additional factor λN−1, and, for any λ< 1, the long searches are suppressed.

In Fig 2a–2c scatter plots providing correlations between various search strategies and the

empirical hardness, H, are shown. In particular, Fig 2a presents the correlation between the

average association weight (4) from stimuli words to the response, pλ=0, and H; Fig 2b—the

correlations between the estimated probability of the random walk with resetting, pλ=1/2 and

H; (c)—the same as (b) for pλ=1 and H. Dashed lines show slopes of the linear regression analy-

sis, the corresponding Pearson correlation coefficient is designated by ρ. In all cases we observe

sufficiently large values of ρ, which confirms our hypothesis that the RAT hardness correlates

with relative locations of words in the associative network.

There is, meanwhile, another interesting question. The simplest strategies suggested above

imply that solving RATs is a first-passage problem. This implies that when the solver finds a

solution, he immediately recognizes it. Is it indeed the case? We have not been able to check

this assumption directly but there is an indirect argument in support of it: if the task of
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recognizing of an already found response word was hard, it should have lead to consequences

which we do not see in the data.

The argument goes as follows. If people make mistakes recognizing an already found

response, they should do it differently for different RATs. In some cases an already found

response should be easy to recognize, in some others it should be more difficult. How to pre-

dict, for which RATs correctly recognizing the solution is hard? It seems self-evident, that the

inverse association weights wra ;sia
should play a role in such prediction. That is to say, if the

association from response word to stimuli is strong, the response word is easily recognized as

correct, while if that inverse association is weak, there is a larger probability that a test subject

finds the response word but fails to recognize it as a correct answer.

Therefore, we expect that if the task of recognizing the correct solution contributes mean-

ingfully to the overall probability of solution then there should be correlation between the

hardness of a RAT and the inverse weight wra ;sia
. In Fig 2d we show a scatter plot of the average

inverse weight, wa ¼
1

3

P
i¼1::3

wra ;sia
versus the RAT hardness. Clearly, the relation is very weak,

much weaker then the relation with direct weights. In our opinion, this indicates, although

indirectly, that the problem of recognizing an already found solution is of secondary impor-

tance, as compared to the problem of finding the solution, and one can indeed treat solution of

a RAT as a first passage problem.

Although Fig 2 provides much important information, it does not reveal which search strat-

egy is preferential. Indeed, pλ gives only a probability of finding a solution by a single Markov

chain search, regardless its length. In reality, since the search is limited in time, the test subject

might have enough time to try: either ten 1-step searches, or only one 10-step search.

Fig 2. The scatter plots of the empirical accuracy of the RAT solution versus following variables: (a) the average association weight from the stimuli

words to the response p0(α); (b) the estimated probability of random walk with resetting with λ = 1/2, p1/2(α); (c) the estimated probability of unlimited

(λ = 1) random walk, p1(α); (d) the average association weight from the response to the stimuli words wα. In all figures ρ is the Pearson correlation

coefficient.

https://doi.org/10.1371/journal.pone.0248986.g002
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Moreover, one expects that there is a high variability in how different test subjects treat the

RAT problems. Thus, the question “How to maximize the probability of solving a RAT?”

seems to be more reasonable than the question “How do people solve RATs on average?”

Enhancing the probability of correct solution

Here we discuss strategies which maximize the probability of solving a RAT problem. In par-

ticular, we are interested whether the heuristic optimal strategy depends on a RAT hardness.

Clearly, two simplest strategies, (1) and (4), outlined above, have significant drawbacks from

that point of view. Searching only in the immediate proximity of a stimuli might be sufficient

to solve easy RATs but for hard RATs there typically is no direct associations (direct links)

between stimuli and response, thus solving a problem by such a strategy is simply impossible.

In turn, searching via a random walk on a network might lead to excessively long solution

times.

Therefore, it seems natural to construct a search algorithm on a SWOW-EN network in a

way that search trajectories, while not artificially constrained to nearest neighboring nodes of

the stimuli, still are not fully random walks. One can think of these trajectories as of random

walks in an external attractive potential, which guarantees that the test subject does not ever

loose the stimuli words from his/her mental view. Such a strategy seems to be in agreement

with the experimental data on sequences of guesses provided in [29] and discussed briefly in

the Introduction.

Search with an attraction to the stimuli

The proposed heuristic search algorithm on SWOW-EN is organized as follows. At time t = 0

there are three stimuli (nodes of the network) si, i = 1, 2, 3 which are considered active. At the

next time step, t = 1, one of nearest neighbors of the active nodes, x, is activated with probabil-

ity P(x) proportional to the sum of links from active network nodes towards it, i.e.,

PðxÞ ¼
P

awa;xP
k

P
awa;k

; ðx; kÞ 2 NNðfagÞ; ð5Þ

where index a enumerates active nodes, while index k enumerates all possible target nodes

from the set of nearest neighbors of the active ones NNðfagÞ.
Thus, at time t = 1 there are four activated words. If the newly activated word is the correct

response, r, the search is completed. If it is not, on the next step, t = 2, we activate a new neigh-

boring word with the probability given by (5) but for the fact that now there are 4 instead of 3

active words in the set {a}. Simultaneously, we deactivate the word which was activated on a

previous step, and mark it as checked, so that it will not be ever activated again. Now we check

if the newly activated word is the correct response, r. If yes, we exit the search, if not, proceed

recursively as described above. At all times except t = 0 there are exactly 4 active words, and by

time t exactly t different possible response words have been checked.

By such rules we mimic a search strategy according to which the activated word, if it is not

a response (i.e. a correct answer), still can affect the search trajectory leading to the answer.

The fact that three stimuli remain always active at each time step, while intermediate guess

words are activated and deactivated during a search, guarantees that there is an effective

“attraction” of the search trajectory to the set of stimuli, which can be interpreted as a perma-

nent “memory” about the initial stimuli.

The search algorithm stops if either the correct answer is found or if the number of search

attempts exceeds tmax. We performed 104 runs of this algorithm for each RAT, and counted

the fraction of runs leading to a correct response. This fraction, which we call model accuracy,
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is a natural measure of the performance of the algorithm. Naturally, it is a monotonously

increasing function of tmax (see Fig 3a) and at tmax = 20 the average accuracy of hard, medium

and easy RATs numerically coincides with corresponding typical probabilities of correctly

solved RATs in 15 seconds [34].

In Fig 3b the scatter plot of the empirical RAT hardness versus the model accuracy is

shown. The strategy presented in this section has larger correlation between empirical and

model accuracy (ρ = 0.742) than the more naïve strategies discussed in the previous section

(maximal ρ = 0.718). Besides, the new algorithm also has a benefit of working in finite time,

which makes more sense from the psychological point of view, being also compatible with

results known about the RAT solving mechanism from psychological sources [29]. We believe

therefore that this heuristic strategy can work as a reasonable first proxy for the real mecha-

nism of RAT solving. However, some simple generalizations of this strategy lead to further

enhancement of the solvability of RATs, especially medium and hard ones. We discuss these

generalizations in the subsequent sections.

Activation algorithm with a threshold

Consider now a modification of our heuristic search algorithm described above. It is known

that many activation processes need a certain threshold (minimal activation impulse) to get

triggered. In the psycholinguistic context, the importance of the association strength and the

number of associations in the search processes is well known [32]. In the spirit of the work

[32] we introduce an activation threshold to our model: we modify (5) as follows

PðxÞ ¼

P
awa;xP

k

P
awa;k

if
P

awa;x � t; ðx; kÞ 2 NNðfagÞ

0 otherwise

;

8
>><

>>:

ð6Þ

Fig 3. (a) The dependence of model accuracy on the number of search attempts (steps on SWOW-EN); (b) the scatter plot of model accuracy versus

empirical accuracy of the RAT. The model accuracy is averaged over 104 simulations. The dashed line in (b) is the best linear fit to the data, ρ is the

corresponding Pearson correlation coefficient.

https://doi.org/10.1371/journal.pone.0248986.g003
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i.e., demand that target x can be activated only if the sum of activation signals exceeds a certain

threshold, τ.

Consider now how the solvability of a RAT should depend on the value of threshold τ. First

of all, in any experiment, including SWOW-EN, the relative accuracy of measuring very weak

links is low. Indeed, if an association is mentioned by just 1 or 2 test subjects, which corre-

sponds to w� 0.01 in terms of network weights in SWOW-EN network, the relative error of

meaurement is of order one. Inevitably, significant part of such weak associations are just

experimental noise. Increasing the threshold up from 0 effectively suppresses these very weak

and often erroneous associations. As a result, one expects that initially, for small enough τ the

solvability of RATs should grow with growing τ.

The behavior for larger τ is less easy to predict since it depends on a structure of a particular

RAT. If the solution of RAT depends on finding a very strong association between the stimulus

and the response (or the sequence of such strong associations), then increasing τ should be

beneficial: removing weak links, we make strong ones even more essential. In turn, if the solu-

tion of RAT is reached by following the chain of moderately weak bonds one expects the prob-

ability of solution to go through a maximum. For small τ the solvability of RATs increases with

increasing τ due to removal of the noisy weak links. But with further increasing τ the solvabil-

ity drops down when essentially important link (or links) cannot be activated due to a high

value of threshold.

In Fig 4a, 4c and 4e we show average predicted accuracy for different hardness categories as

a function of τ (τ 2 [0, 0.1]), while in Fig 4b, 4d and 4f we show corresponding average times

needed to solve easy/medium/hard RATs. For each τ, the accuracy is averaged over 104 simula-

tions of all RATs in a given hardness category (easy/medium/hard).

Solvability of easy RATs (Fig 4a) grows monotonously and approaches unity with increas-

ing τ. Indeed, in easy RATs there is at least one strong directed link from a stimulus to the

response. The situation is different for medium and hard RATs. In this case the accuracy goes

through a maximum at around τm = 0.04 (which is still below the percolation threshold corre-

sponding to w� = 0.08—see Fig 1c). The probability of a correct solution at the maximum,

P(τm), significantly exceeds the result of both a no-threshold model and of a model where only

strong links are retained. Compared to the last model (with only strong links left), the gain is

by a factor of 1.3 for medium RATs and by a factor of almost 2 for hard RATs. This means that

moderately weak links are instrumental for solving medium and hard RATs: eliminating these

moderate links decreases the solvability, and, as shown in Fig 4b, 4d and 4f, increases the mean

length of search trajectories.

Enhancing the role of weak associations

The result of previous section gives rise to the following natural question. Is it possible to

enhance the solvability of medium/hard RATs further by preferentially following moderately

weak links? To check this, let us, apart from removing weak links, remove also the strong ones.

That is to say, introduce a new adjacency matrix �W with matrix elements

�wij ¼ wijHð1 � wmaxÞ; ð7Þ

where H(x) is the Heaviside function, and wmax is the upper cutoff parameter. In Fig 4c and 4e

we show the model accuracy and mean length of solving trajectories for hard and medium

RATs for the null model (6) with no upper cutoff (wmax = 1) and for the same model with wmax

= 0.05. We see that by introducing a cutoff we can significantly increase the maximal accuracy

for hard and medium RATs, roughly by factors 1.3 and 1.1, respectively. Suppressing very

strong associations is beneficial for the solution of medium and, especially, hard RATs.
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Interestingly, despite the fact that introducing a cutoff removes some associations from the net-

work, the mean length of solving trajectories decreases in the model with cutoff as compared to

the null model. This indicates some sort of path length optimization in the cutoff model. Indeed,

paths from stimulus to response in the null model often consist of several intermediate activated

words, connected by strong associations. In the cutoff model typical solutions trajectories go

along shorter sequences of weaker bonds. Apparently, judging by the model accuracy, the sec-

ond strategy results in a better success rate. These results once again indicate the crucial role of

moderately weak associations in the solution of medium and hard RATs.

Fig 4. (a) The dependence of the model accuracy on the strength of the threshold τ for the RAT of different categories. The accuracy is calculated over

104 simulations and averaged over all RATs in a given hardness category. (b) The dependence of the mean length of solving trajectories on the threshold

strength.

https://doi.org/10.1371/journal.pone.0248986.g004
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Discussion

In this paper, we apply the network approach for studying the psycholinguistic mechanisms of

solving Remote Association Tests (RATs). Our treatment is based on available open data on

the network of free associations in English language (SWOW-EN) [16], and on standardized

concept of hardness of RATs [34].

We use network of free associations as a proxy of the mental lexicon structure. Clearly, the

real organization of the language is much more complex: one may think of it as a multiplex

network with layers corresponding to grammatical connections, phonetic relations, synoni-

mity, co-occurence in texts, etc. We checked several semantic networks (see S2 Fig) and

shown that search on free associations network is much more predictive for the experimentally

observed hardness of RATs than search on other linguistic networks. The reason for that, in

our opinion, is that association network is, to some extent, different in nature from other lin-

guistic networks. While constructing personal association networks people effectively integrate

information from all other networks of the language: phonetical, grammatical, corpus-based,

etc., into a single internal map. As a result, although association network is, of course, less

informative than the whole multiplex of linguistic networks, it seems, at least from the psycho-

linguistical point of view, to be more informative than any other separate (one-layer) linguistic

network.

We quantitatively characterize the correlation between the hardness of a particular RAT

and the location of stimuli on the directed network of free associations. Hardness of a RAT

turns out to be strongly correlated with the aggregated weight of bonds from the stimuli to the

response, as well as with the aggregated weight of multistep chain of consecutive associations.

On the other hand, there is no significant correlation between the RAT hardness and weights

of reverse (response! stimuli) bonds.

We investigate the efficacy of RAT solution using an activation algorithm which resembles

the random walk in a potential well with attraction to the stimuli words of the RAT. We show

that while for easy RATs the solution is mostly governed by strong associative bonds from sti-

muli to response, the solution of medium and especially hard RATs, is mostly determined by

moderately weak bonds, i.e. bonds with weights about w = 0.04±0.01. Indeed, for the threshold

model, while neglecting very weak bonds is beneficial for the solution efficacy, neglecting

moderately weak bonds suppresses the efficacy of finding the correct response. Even more,

one can further enhance the solution probability for medium and hard RATs by removing

strong bonds with weights larger than w = 0.05.

Thus, “very weak” and “moderately weak” bonds behave differently in our consideration.

That could be related to inevitable errors in measurement of very weak bonds in free associa-

tion network experiments, so that significant number of registered very weak bonds are just

experimental noise. We expect that the efficacy of the solution might be additionally increased

by replacing the experimental free association network with a “cleaned-up” one in the spirit of

[37]. From a more general perspective, the importance of weak associations in the solution of

RATs seems to be an example of the ubiquitous importance of weak ties in social sciences [38].

This gives rise to a very interesting question related to the long-standing polemic in the the-

ory of creativity. It is clear from our results that enhancing weak associations is beneficial for

the solution of RATs, and, more generally, for human creativity. However, it is not clear how

exactly do creative people enhance such weak associations. One option, suggested in [22] and

supported by recent work [27, 39] is that mental lexicon of creative people is intrinsically dif-

ferent from that of less creative ones in a sense that the weight distributions of their individual

association networks are more flat, i.e., strong associations in their individual networks typi-

cally have smaller weights than on average in the population, and weaker associations have
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relatively higher weights. Another option, suggested in particular in [23–25] is that it is not the

difference in individual association networks which is important, but rather a difference in

search algorithms that people use: that creative people are capable of suppressing strong and

stereotypical associations at will.

In this paper we study only average aggregated data describing association networks and

hardness of the RATs. As a result, our main finding, “moderately weak bonds are essential for

solving medium and hard RATs”, is compatible with both interpretations stated above. It

would be extremely interesting to distinguishing between these two conjectures, but that needs

a much more fine-grained data on individual test subjects. In our opinion, it might be a very

interesting topic for further experimental and analytical work.

Supporting information

S1 Fig. Complementary cumulative distribution functions of in degree distribution and

fitted power law, lognormal and truncated power law distributions. We compared the fits

of three candidate distribution using Python package powerlaw [40], results of likelihood-ratio

test are presented in S1 Fig.

(TIF)

S2 Fig. The scatter plots of the empirical accuracy of the RAT problems versus the average

semantic similarity from the stimuli words to the response. We used pre-trained vector rep-

resentations for words from different model: (a) word2vec GoogleNewsvectors [9]; (b) Fast

Text Wiki News [41]; (c) Glove Wikipedia + Gigaword [42]; (d) Glove Twitter [42]. In all fig-

ures ρ is the Pearson correlation coefficient.

(TIF)

S1 Table. Log likelihood ratios for different compared distributions. The best fit to trun-

cated power law p(k) = k−α e−βk is established with the respective parameters: α = 2.3, β =

0.002.

(PDF)

S2 Table. Hardness data for Remote Association Tests. The list of 138 RATs we have used in

our research and their hardness according to the data of [34].

(PDF)

S1 Text.

(PDF)
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