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Abstract

Background: Automated machine-learning systems are able to de-identify electronic medical records, including
free-text clinical notes. Use of such systems would greatly boost the amount of data available to researchers, yet
their deployment has been limited due to uncertainty about their performance when applied to new datasets.

Objective: We present practical options for clinical note de-identification, assessing performance of machine learning
systems ranging from off-the-shelf to fully customized.

Methods: We implement a state-of-the-art machine learning de-identification system, training and testing on pairs of
datasets that match the deployment scenarios. We use clinical notes from two i2b2 competition corpora, the Physionet
Gold Standard corpus, and parts of the MIMIC-III dataset.

Results: Fully customized systems remove 97–99% of personally identifying information. Performance of off-the-shelf
systems varies by dataset, with performance mostly above 90%. Providing a small labeled dataset or large unlabeled
dataset allows for fine-tuning that improves performance over off-the-shelf systems.

Conclusion: Health organizations should be aware of the levels of customization available when selecting a de-
identification deployment solution, in order to choose the one that best matches their resources and target
performance level.

Keywords: De-identification, Electronic health records, Free text, Clinical notes, Natural language processing, Recurrent
neural networks

Introduction
Over the past several years, health service researchers have
significantly expanded their use of free text in medical re-
search [1]. For example, between 2007 and 2018, the number
of PubMed records with “free text” or “unstructured text”
more than tripled [2]. Advances in natural language process-
ing and machine learning, and access to de-identified clinical
datasets, have contributed to this increase [3].
De-identified clinical datasets are created by labeling

all words and phrases that could identify an individ-
ual, and replacing them with surrogate data or
context-specific labels. For example, “John London
complains of chest pain that started on January 1st

2012” becomes “[PersonNameTag] complains of chest
pain that started on [DateTag]”. The de-identification
process needs to have high recall (sensitivity) since
publicly releasing text containing protected health in-
formation (PHI) represents a legal and ethical liability.
On the other hand, it also needs to have reasonable
precision, because unnecessarily removing non-
identifying text limits the data’s usefulness to re-
searchers [4]. Notice also that the de-identification
system needs to be context-aware: London, usually a
location, is accurately labeled a name based on the
sentence structure.
Automatic de-identification systems have not been

widely adopted on a commercial level, despite the fact
that their performance already surpasses that of human
annotators: fully customized de-identification systems
achieve precision and recall of 97% or higher [5, 6],
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while the average human recall and precision are 81 and
98% respectively [7].
A blocking factor is that, like many other tools based

on machine learning, a de-identification system cannot
guarantee performance on all medical text it will ever
encounter. Structured data such as forms are easy to de-
identify, e.g., by removing “Name” and “Date” fields;
however, free-text clinical notes vary widely with note
purpose and institutional conventions, and include PHI
in ways that are challenging to identify and redact.
This challenge may necessitate customizing the de-

identification system in order to teach it about the format-
ting and jargon used in a particular organization. Consider
a note with the line “John referred to Alzheimer’s clinic ...”.
An off-the-shelf system knows “Alzheimer’s” as a medical
condition and de-identifies to “[PersonNameTag] referred
to Alzheimer’s clinic...”; a system customized on a target or-
ganization’s labeled data where Dr. Alzheimer and his clinic
appear frequently, would correctly give “[PersonNameTag]
referred to [PersonNameTag]’s clinic...”.
As reviews of de-identification strategies in healthcare

concluded, “True anonymization is challenging, and further
work is needed in the areas of de-identification of datasets”
[8] and “de-identification is not yet a solved problem.” [9]
Therefore, in such a privacy-sensitive field, healthcare

organizations need to employ de-identification systems in
a controlled manner, with performance assurances specific
to each deployment. In order to help organizations make
an informed decision, we use publicly available clinical
note datasets to assess the performance of automated de-
identification systems in several deployment scenarios.
Our first scenario is a fully customized system: a health-

care organization employs human annotators to label a
sufficiently large number of PHI examples for training a
new machine learning model to perform automated de-
identification. We assess performance in this scenario
using 3 medical datasets, training the model on part of a
dataset and evaluating on the remainder of the dataset.
Our second scenario is off-the-shelf use: the organization

provides no labeled data, instead using a pre-trained model
as-is. We replicate this scenario by training custom models
on 3 datasets and testing each model on all other datasets.
Our third scenario is partial system customization with

labeled data: the organization has the resources to provide
some labeled data. Since labeled data is an expensive re-
source, requiring the work of human annotators, we study
how many labeled examples are needed to improve per-
formance over the off-the-shelf scenario, and how many are
required to obtain results equivalent to the fully customized
scenario.
Our last scenario is partial system customization with

unlabeled data: the organization can avoid the legal and
privacy concerns involved with annotating data, and in-
stead improve performance using a large set of its

unlabeled data. With this data we create a custom token
embedding (data representation) for the machine learning
system.

Related work
The first automated approaches for medical free-text de-
identification were proposed in the late 1990s and were
mainly rule-based [10, 11]. Subsequent work applied
machine-learning algorithms and statistical methods
such as decision trees [12] and support vector machines
[13–15]. These methods required substantial feature-
engineering efforts. In the last few years, techniques have
shifted towards artificial neural networks and in particu-
lar deep neural networks; Yogarajan et al. review current
trends [16]. Dernoncourt et al. [5] were the first to use
artificial neural networks directly for de-identification of
medical texts, showing improved performance. Recently,
artificial neural networks were used in several studies,
often in combination with rule-based heuristics [6, 17,
18]. Although in practice heuristics are recommended
[19], in our work we choose not to use them in order to
isolate the contribution of the machine learning model.
Our partial customization scenario with labeled exam-

ples is an example of semi-supervised transfer learning/
domain adaptation; we build on the work of Lee JY et al.
in neural networks [20]. Lee H-J et al. compare 3 trans-
fer learning techniques for de-identification [21]. Kim
et al. study questions similar to ours but for concept ex-
traction from notes, also concluding that transfer learn-
ing improves performance of a general model [22]. Our
partial customization scenario using unlabeled examples
falls under unsupervised domain adaptation, techniques
for which include domain-specific embeddings [23] and
propensity score weighting [24]. Our off-the-shelf sce-
nario serves as a baseline for both adaptation scenarios.

Methods
Data sources
The US HIPAA de-identification standard specifies the
use of either “Expert Determination” or the “Safe Har-
bor” method to de-identify data [25]. In the Safe Harbor
method, 18 types of patient PHI are removed (Name,
Address, Day & Month, Age over 89, Telephone, etc).
We use publicly available datasets of de-identified clin-
ical records meeting the Safe Harbor criteria. These
datasets were de-identified by replacing PHI with plaus-
ible but realistic surrogate information; we evaluate our
systems on this surrogate PHI. Throughout the paper
the term PHI is used to mean such surrogate PHI.
From the i2b2 National Center for Biomedical Com-

puting for the NLP Shared Tasks Challenges, we use the
i2b2-2006 [26] and i2b2-2014 [9, 27] datasets. The i2b2-
2006 de-identification guidelines conform to the Safe
Harbor standard and further add hospital and doctor
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name to the list of removed identifiers; the i2b2-2014
guidelines are even more risk averse, removing also e.g.
all years [27]. Before release, these datasets were hand-
labeled and surrogated.
We also use the PhysioNet gold standard corpus of

de-identified medical text [28], containing surrogate in-
formation; annotators generated the labeling in-house
following the i2b2-2014 guidelines.
Finally, we use the Medical Information Mart for In-

tensive Care III (MIMIC-III) dataset [29]. This dataset
was de-identified before release using the PhysioToolkit
deid software package, which expands on Safe Harbor to
include ethnicities, clinical provider numbers, and other
indirect identifiers [7]. The PHI identification process
was based on regular expressions, and has a substantial
number of false positives [5]. Our annotators replaced
detectable false positives with plausible text. The
remaining placeholders were replaced with fictitious
values from “real world” distributions consistent with
the PHI type specified in the placeholder. We generated
three subsets from the MIMIC-III corpus: mimic3-
radiology, mimic3-echo, and mimic3-discharge, each
containing 1000 notes of the prescribed type.
The i2b2-2006, i2b2-2014, and Mimic-III de-identification

guidelines vary regarding which entities are considered PHI.
When dataset pairs in an experiment were annotated with
the same guideline, we report results on all PHI types in the
guideline; in cross analyses, we use the Name PHI, which is
labeled consistently across all guidelines. The train/test splits
were made by patient. The i2b2 datasets were released with a
supplied partition, and the remaining datasets were split ran-
domly. Descriptive statistics are given in Table 1.

Text De-identification system architecture
Our machine learning model implements the state-of-the-art
in de-identification of medical notes [5, 6] and named entity
sequence tagging [30]. In our analyses, however, any suffi-
ciently powerful model could be substituted. The unbiased re-
call/precision/F1 of our system on i2b2-2014 (97.1/98.3/97.7)

is on par with Dernoncourt et al. [5] (97.4/98.3/97.8), Liu
et al. [6] (97.5/98.7/98.1), and the open-source NeuroNER
[31] (F1 of 97.7).
Figure 1 depicts our high level system design, with the

green block repeated for each token in the sequence.
Yellow blocks require training by labeled examples, pur-
ple blocks require training on large numbers of un-
labeled examples, and light blue blocks are hardcoded
rules. The architecture consists of the following blocks:

1. A Tokenizer, breaking down the input text into
tokens, e.g. “Patient prescribed 50mg...” is split into
(Patient, prescribed, 50, mg, ...).

2. vToken normalization, converting characters to
lowercase, and digits to zero.

3. A Pretrained token embedding, mapping each token
into a 200-dimensional vector space. We use either
GloVe [32] or a custom mapping.

4. A Character BiRNN, generating a corpus-specific,
character-based token embedding into a 25-
dimensional vector space. This mapping augments
the token embedding by learning corpora-specific
token and sub-token patterns. This augmentation
helps to tackle out-of-vocabulary words, abbrevia-
tions, and common prefix/suffix information.

5. A casing feature, giving information about the token’s
casing (upper, lower, mixed capitalization), and the
number of spaces and line breaks before the token.

6. A Named Entity Sequence Tagger, responsible for
converting a token sequence to a tag sequence
while taking into account context information. For
example, in the sentence “Mr. Jack London was
examined”, “London” should be tagged as a person’s
name. The Tagger consists of the following:

a. A Token BiRNN, adding context information to the
extracted token information.

Table 1 Descriptive statistics for datasets. Mimic3-echo does not contain enough PHI on which to train a model, and is thus used
for testing only. We select Name, Date, and Location to show the variety in frequency of PHI types within the datasets

Dataset Note source # of
patients

# of
notes

Train/Test partition by
note

Total
tokens

Total
PHIs

%
NAME

%
DATE

%
LOCATION

i2b2-2014 diabetic longitudinal
records

296 1304 61% / 39% 758 k 28.8 k 24.2% 43.3% 15.2%

i2b2-2006 discharge notes 889 889 75% / 25% 487 k 19.5 k 24.0% 36.4% 13.7%

physionet nursing notes 163 2434 59% / 41% 345 k 1.9 k 32.5% 29.7% 25.9%

mimic3-
radiology

radiology notes 1000 1000 50% / 50% 205 k 4.1 k 10.2% 44.8% 1.8%

mimic3-
echo

echocardiogram notes 1000 1000 Test only 276 k 2.5 k 9.7% 88.7% 1.1%

mimic3-
discharge

discharge notes 1000 1000 81% / 19% 128 k 40.8 k 21.2% 61.1% 9.9%
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b. A Tag prediction layer, projecting the 200
dimensional BiRNN into a probability distribution
over the PHI tags (name, age, location, other, etc),
including the “not PHI” tag.

c. A Conditional Random Field, imposing an
additional structured prediction layer to make sure
that PHI labels make sense as a sequence.

Model training was carried out using cross entropy
loss over the given set of labeled examples as the loss
function, and applying Adagrad [33] as the stochastic
gradient update function with a batch size of 20. We also
applied dropout in layers 1 and 2.
Evaluation results are given for recall (percent of de-

tected PHI out of total PHI), precision (percent of de-
tected PHI which was indeed PHI), and F1 score (the
harmonic mean of recall and precision). We can tune
the balance between recall and precision by setting the
activation bias for “not PHI” prior to the Conditional
Random Field block. In an off-the-shelf system, this tun-
ing would be accomplished using heuristics or manual
monitoring.

Because recall is of highest importance for patient
privacy, we compare system recall using R@P as de-
scribed in, e.g., Eban et al. [34, 35] The metric takes the
highest recall for precision > = p (we select p = 85%),
while not adjusting if precision is less than this cutoff.
As shown in Table 1, the data is heavily imbalanced to-
wards non-PHI tokens; therefore, even a low-precision
de-identification system retains the vast majority of non-
PHI tokens.

Experimental setup for deployment scenarios
We perform four experiments using the text de-
identification system described in the previous section.

A fully customized system
We follow the standard machine learning setup of train-
ing and testing on the same dataset “A”.

An off-the-shelf system
We follow the standard machine learning setup of
training on a dataset “A” and testing on a different
dataset “B”.

Fig. 1 Our de-identification system architecture. Clinical notes are broken into tokens, which are run through the network to be tagged as Not-PHI or
Name, Date, etc.
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Partial customization using a small number of labeled
examples
We train the system on “A” augmented with “n” labeled
PHI instances from “B”, and test on “B”. We consider
three ways to make use of the additional “n” samples
from “B”:

1. Train from scratch: A new model is trained using
these “n” datapoints. We call this model “only B”.

2. Further tune an existing model: A model pre-
trained on “A” receives further training on “B”. We
call this model “A then B”.

3. Jointly train a new model: A model is trained from
scratch using an even mixture of “A” and “B”. We
call this model “A mix B”.

Partial customization using a large number of unlabeled
examples
We train the system on “A” only, using a custom token
embedding that is generated using unlabeled dataset “B”.
A token embedding maps a discrete word to a floating-
point vector; vectors corresponding to similar words
cluster together, thus providing information about the
language to the machine learning system. Token embed-
dings are built using large unlabeled text corpora; in
some settings, using domain-specific corpora improves
system performance [36, 37]. We replace the generic
GloVe [32] token embedding (2.2M unique tokens) used
in the first three scenarios with custom embeddings built
using the word2vec algorithm [38, 39], using tokens
(words) that appear at least 10 times. We build embed-
mimic (2M notes, 101 K unique tokens) as a general
medical embedding, and build 3 specific embeddings:
embed-mimic-nursing (223 K notes, 37 K unique to-
kens), embed-mimic-radiology (522 K notes, 24 K unique
tokens), and embed-mimic-discharge (59 K notes, 31 K
unique tokens).

Results
We go through our four scenarios, presenting results
and discussing their implications.

A fully customized system
We train custom models on the three datasets that con-
tain sufficient PHI for a fully trained model. The fully
customized results are given in Table 2, indicating that

state-of-the-art systems provide protected health infor-
mation recall >97%.
To illustrate the challenges remaining in even the

best-performing de-identification scenario, we consider
the errors on the i2b2-2014 model. From the 15,201 PHI
elements in the evaluation set, the model classified 15 K
true positives, 116 false negatives, and ~ 2.5 K false
positives.
We focus on the errors in Name, as the most identify-

ing field. Name had 14 false negatives, i.e. undiscovered
PHI: 3 doctor initials, 1 patient single-letter suffix (“I” as
in “John Smith I”), 1 dataset-mislabeled apostrophe-s,
and 9 names. All 9 names were dictionary words (“...saw
Guy in PT”, “Strong to cover for...”), showing remaining
challenges in automated de-identification.
False positives remove information useful to re-

searchers; they are worth reviewing both to see what is
being unnecessarily lost, and to get an intuition for the
workings of the algorithm. The Name false positives in-
cluded medical terms similar to names (“thrombosed St.
Jude valve”, “chronic indwelling Foley”, “per Bruce
Protocol”, “Zoran”), which could be corrected using heu-
ristics based on medical terminology; errors due to over-
reliance on sentence structure, e.g. the second word
after a title being labeled a name (“awoke” was labeled in
“Ms Mitchel awoke feeling...”); and misspellings creating
non-dictionary words (“Interesetd (sic) in quitting
smoking”).

An off-the-shelf system
Our next deployment scenario is an organization using
an off-the-shelf system with no customization. We use
our custom models from the previous section. We test
each model on the datasets with compatible labeling
schemes, reporting recall/precision/F1 for all PHI types
combined. We then present a full cross-dataset analysis
using Name only.
The i2b2-2014 model tested on physionet yields 76.6/

60.5/67.6. Error analysis shows that 272 of the 441 false
negatives (i.e. missed PHI) are of type Location, and con-
sist mainly of “MICU”, “PMICU”, “cath lab”, and similar.
Investigation revealed that these initials appear only in
physionet, not i2b2-2014, thus providing a good example
of an off-the-shelf system missing local jargon. Dropping
Location from the analysis yields an improved 89.1/59.8/
71.6; this improvement shows that a real deployment
could consider using an off-the-shelf model together
with heuristics (such as a list of local PHI abbreviations)
gleaned from a manual error analysis.
The mimic-discharge model tested on mimic-

radiology yields 65.7/90.9/76.2. Error analysis shows that
595 of the 597 false negatives are of type Id; of these er-
rors, 577 are the 7-digit record number at the top of
every note. This error is again dataset-specific and easily

Table 2 Clinical note de-identification using fully customized
systems, showing >97% recall of protected health information

Dataset Recall (%) Precision (%) F1

i2b2-2014 99.1 85.7 91.7

i2b2-2006 99.6 90.7 94.9

mimic-discharge 97.1 96.3 96.7
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fixed with a simple heuristic. Including the heuristic
yields 99.4/95.2/97.3, on par with a custom model.
The mimic-discharge model test on mimic-echo yields

99.7/98.7/99.2, on par with a custom model and thus
showing that de-identification of some datasets can be
accomplished without a customized system.
Table 3 presents results for a full cross-dataset analysis

using Name only. Results show more variability than in
the fully customized scenario, although recall is always
above 90%. The exception is i2b2-2006’s experiments;
error analysis showed that the made-up names used in
the dataset [26] (“FREIERMFETHBREUN, HILDERI-
NEMI”, “DALEJESC, OIE”) contained little information,
hampering the model’s ability to learn.

Partial customization using a small number of labeled
examples
For the large labeled dataset “A” we use i2b2-2014; for
the partially labeled dataset “B” we run experiments
using physionet, mimic-radiology, and mimic-discharge.
Figure 2 shows recall as a function of the number of

Names in “B”. “A mix B” roughly follows “A then B”.
From the “only B” curves for physionet and mimic-
radiology, it is clear that we run out of data long before
the models have finished learning; the datasets benefit

greatly when supplemented from “A then B”. For mimic-
radiology, using ~ 20 labeled examples in “A then B” has
raised the performance over the off-the-shelf result from
the previous section. Although this small number seems
surprising, radiology notes have a relatively uniform
structure easily learned from the context surrounding
the examples. For the more varied physionet, ~ 100 la-
beled examples are necessary to achieve the same gain.
The larger mimic-discharge shows that over ~ 500 la-

bels, one can train solely on “B”. Around 1000 labels,
performance reaches that of fully customized (97.1%);
around this number, one sees diminishing returns from
further labeling effort. At ~ 80 labels, the “A then B”
model is already better than the off-the-shelf system,
again demonstrating the usefulness of even small labeled
datasets.

Partial customization using a large number of unlabeled
examples
We train using i2b2-2014 as dataset “A” with different
token embeddings, and select test dataset “B” from phy-
sionet, mimic-radiology, mimic-discharge, and mimic-
echo. For each choice of “B”, we evaluate three different
token embeddings: the generic GloVe embedding,
embed-mimic, and the embed-mimic-* that matches “B”.
(For physionet, which contains nursing data, we use a

Table 3 Off-the-shelf systems recall >90% of Names, with the exception of experiments using the i2b2-2006 dataset

Train on

Test on i2b2-2014 mimic-discharge i2b2-2006

i2b2-2014 98.8/94.6/96.7 95.7/85.6/90.3 86.2/85.2/85.7

physionet 92.9/73.1/81.8 94.3/70.6/80.7 69.0/78.6/73.4

mimic-radiology 92.9/85.7/89.1 97.0/87.0/91.7 78.2/75.8/76.8

mimic-discharge 92.5/85.4/88.8 97.9/85.2/91.0 79.1/85.4/82.1

mimic-echo 95.5/61.4/74.7 99.6/86.6/92.6 54.2/20.3/29.0

i2b2-2006 87.5/86.7/87.0 76.9/85.1/80.8 97.0/97.2/97.1

Fig. 2 System performance as a function of number of labeled names. In each subfigure, an off-the-shelf system trained on dataset “A” (i2b2-
2014) is partially customized using labeled examples from the target dataset “B”, then the system is evaluated on “B”. Training a system from
scratch on “only B” is provided for comparison
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subset of nursing data from the much larger mimic cor-
pus). For the mimic datasets, we give recall/precision/F1
on Name PHI; for physionet, whose labeling matches
i2b2-2014’s, we also report on all types.
Table 4 shows that switching from GloVe to embed-

mimic improves results for all datasets. Using a match-
ing embedding resulted in equivalent or decreased per-
formance. Studying the false negatives in the specific
embeddings reveals that most (70–100%) were from out-
of-vocabulary tokens, showing that these specific embed-
dings did not encompass a large enough vocabulary.
Thus, organizations can gain significant improvement
from this partial customization technique, but only if
they are able to provide a sufficiently large corpus.

Discussion
In our work we follow the same datasets through various
levels of system customization, thereby creating a robust
picture of the performance a health organization can ex-
pect from a de-identification system under different sce-
narios. This is while obtaining results on par with the
available literature at comparable data points [5, 6, 20, 37].
Automated de-identification systems can be used to add

an extra layer of security while working with trusted research
collaborators, or to minimize exposure of PHI to human an-
notators who will complete the de-identification task. Auto-
mated de-identification can also play a role in a HIPAA-
compliant data release, with the additional step of “Expert
Determination,” wherein a human expert in the field deter-
mines if the de-identification process has ensured that “the
risk is very small that the information could be used ... to
identify an individual.” [25] Selecting a “sufficient” level of
performance for these applications remains a question of bal-
ancing the resources required to de-identify to a certain priv-
acy level, the analytic utility of the resulting dataset for
researchers, and the risk of re-identifying an individual [40].
Future work should focus on taking lessons learned from
real-world deployments and strive to establish metrics that
incorporate these concerns.

Conclusions
Based on our results, we present broad guidelines to in-
form an organization’s approach to de-identification
using machine learning.

Organizations able to label on the order of 10 K PHI
examples can expect their fully customized system to
have a recall of 97–99%. Organizations also have the
control to fine-tune the balance between recall and
precision.
Organizations should try using an off-the-shelf system

before committing to customization. Although perform-
ance varied widely, our experiments showed that recall
can be dramatically improved (to 89–99%) with simple
heuristics gleaned from manual error analysis.
Organizations with the resources to provide a small

amount of labeled data will benefit from partial
customization. Labeling even a small amount of PHI, ~
20 to ~ 80 examples, will raise system performance over
an off-the-shelf solution. Labeling ~ 1000 PHI will give
results on par with full customization.
Organizations can avoid the cost and privacy concerns

of labeling data, yet still gain in performance over off-
the-shelf-systems, by creating a custom embedding using
a large set of their unlabeled data.
These guidelines generalize from results on available

datasets, and thus cannot provide performance guaran-
tees. In practice one can ensure better baseline perform-
ance with additional de-identification techniques, such
as adding organization-specific or generic heuristics, or
enhancing a pure machine learning system with a hu-
man in the loop.
Our results highlight the need for additional medical cor-

pora with identical labeling schemes. Contributions of notes
from a variety of healthcare systems, large and small, encom-
passing different jargon and distributions of identifiers, would
go a long way towards the goal of building a truly generic,
off-the-shelf system requiring no customization. Such a col-
lection could also form a universally recognized benchmark
for evaluating commercial offerings.
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Table 4 Performance of an i2b2-2014 model with custom embedding tested on 4 different datasets

Test on PHI
type

Embedding

GloVe embed-mimic Matching embedding

physionet All 76.2/61.3/67.9 81.8/64.1/71.8 76.9/62.4/68.9 - embed-mimic-nursing

physionet Name 92.9/73.1/81.8 95.5/81.8/88.1 91.0/73.4/81.3 - embed-mimic-nursing

mimic-radiology Name 92.9/85.7/89.1 97.2/85.9/91 92.0/87.2/89.4 - embed-mimic-radiology

mimic-discharge Name 92.5/85.4/88.8 93.4/89.8/91.6 92.1/86.3/89.1 - embed-mimic-discharge

mimic-echo Name 95.5/61.4/74.7 98.7/64.4/77.3 too small to build embedding
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