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ABSTRACT
Serous ovarian cancer (SOC) is a main histological subtype of ovarian cancer, in which cancer stem 
cells (CSC) are responsible for its chemoresistance. However, the underlying modulation mechan
isms of chemoresistance led by cancer stemness are still undefined. We aimed to investigate 
potential drug-response indicators among stemness-associated biomarkers in advanced SOC 
samples. The mRNA expression-based stemness index (mRNAsi) of The Cancer Genome Atlas 
(TCGA) was evaluated and corrected by tumor purity. Weighted gene co-expression network 
analysis (WGCNA) was utilized to explore the gene modules and key genes involved in stemness 
characteristics. We found that mRNAsi and corrected mRNAsi scores were both greater in tumors 
of Grade 3 and 4 than that of Grade 1 and 2. Forty-two key genes were obtained from the most 
significant mRNAsi-related gene module. Functional annotation revealed that these key genes 
were mainly involved in the mitotic division. Thirteen potential platinum-response indicators were 
selected from the genes enriched to platinum-response associated pathways. Among them, we 
identified 11 genes with prognostic value of progression-free survival (PFS) in advanced SOC 
patients treated with platinum and 7 prognostic genes in patients treated with a combination of 
platinum and taxol. The expressions of the 13 key genes were also validated between platinum- 
resistant and -sensitive SOC samples of advanced stages in two Gene Expression Omnibus (GEO) 
datasets. The results revealed that CDC20 was a potential platinum-sensitivity indicator in 
advanced SOC. These findings may provide a new insight for chemotherapies in advanced SOC 
patients clinically.
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Introduction

Ovarian cancer (OC) is the leading lethal malig
nancy occurred in female reproductive organs. 
Serous ovarian cancer (SOC) is a distinct histological 
subtype of OC and is often diagnosed at advanced 
stages [1]. Poor drug response often leads to 
a disappointing prognosis of SOC patients. In recent 
years, the hypothesis of cancer stem cells (CSCs) has 
been widely accepted. CSCs possess potential fea
tures of self-renewal and uncontrolled growth [2]. 
The subpopulation of cells has persistently main
tained the competence of self-perpetuation and 
simultaneously given rise to differentiated types of 
progeny tumor cells through asymmetrical division 
[2]. The stemness of CSCs is an important cause of 
tumor chemoresistance as well as a potential target 
of anticancer strategies [3,4]. Investigating stemness- 
associated genes in advanced SOC might be feasible 
to explore drug response indicators [5].

In the last decade, high-throughput technology 
has achieved a considerable amount of data sto
rage in public databases and provided high-quality 
data for deeper data mining. Therefore, machine 
learning has been successfully applied to the med
ical fields, particularly in oncological research [6]. 
To summarize the features of stem cells, Malta 
et al. [7] used a one-class logistic regression 
(OCLR) machine learning algorithm to extract 
transcriptomic feature sets from normal tissue- 
derived pluripotent stem cells and their differen
tiated progeny, which have different degrees of 
stemness. They identified stem cell signatures and 
quantified stemness by using transcriptome data. 
Ultimately, a stemness index, mRNAsi was pro
posed in their study. The researchers had further 
analyzed cancer stemness in 33 tumor types in 
TCGA to verify mRNAsi scores. Based on the 
study, we obtained the mRNAsi of each SOC sam
ple in TCGA to further utilize in our study.

In the present study, the clinical significance of 
mRNAsi and identified stemness-associated genes 
in advanced SOC samples from TCGA were 
explored by using mRNAsi and WGCNA. 
Function annotation and pathway enrichment 
analysis were conducted to recognize platinum 
response-associated pathways and genes. 
Potential platinum response indicators would be 
selected from the identified genes by survival 

analyses and validation on multiple databases, 
which provided a possible hypothesis for screening 
advanced SOC patients who are more likely to 
have a positive response to platinum-based che
motherapy. In summary, we aimed to investigate 
the cancer stemness-associated genes by bioinfor
matic methods and selected potential platinum- 
response indicators among them by prognostic 
value and expression level. This study may provide 
new clues for drug response prediction to guide 
platinum administration in advanced SOC 
patients.

Materials and methods

Data acquisition and pre-processing

The RNA sequencing (RNA-seq) expression data 
used in this study were downloaded from the 
UCSC Xena project (https://xena.ucsc.edu/) based 
on February 2020. The datasets included tumor 
tissue samples from TCGA (N = 379 for SOC) 
and normal ovarian tissue (N = 88) from GTEx. 
Both cohorts have been previously recomputed to 
minimize differences from distinct sources based 
on a standard pipeline. The corresponding clinical 
information was downloaded from the TCGA-OV 
dataset (https://portal.gdc.cancer.gov/). The 
mRNAsi indices of 273 SOC samples in TCGA 
were obtained from a previous study [4]. Perl 
language (https://www.perl.org/) was used to con
vert gene IDs to gene symbols. The RNA-seq data 
of the included normal and tumor samples were 
combined into a matrix file by R language.

Clinical feature correlation analysis of mRNAsi 
and corrected mRNAsi

The tumor purity score of the SOC samples in 
TCGA was obtained from a previous study [8]. 
Corrected mRNAsi was calculated by the 
mRNAsi score/tumor purity score. A total of 262 
tumor samples with available information of 
mRNAsi and 254 samples with corrected 
mRNAsi score were included in the correlation 
analyses with histopathological grades, and clinical 
stages. Wilcox test was performed using 
a beeswarm package to determine the significant 
difference between the two groups. Removed the 
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samples with incomplete information of survival 
time, PFS analyses were conducted on 240 SOC 
patients of stage III–IV. The prognostic signifi
cance of mRNAsi and corrected mRNAsi was 
explored by survival and surviminer packages in R.

Differentially expressed genes (DEGs) analysis

The DEGs were screened with RNA-seq data in 
TCGA-OV and GTEs cohort. The limma package 
was applied to perform the differential expression 
analysis and the Wilcox test was used to determine 
the significant difference in the processing [9]. | 
Log2 Fold change (FC)| >1 and False Discovery 
Rate (FDR) <0.05 were the criteria to screen the 
DEGs between normal and tumor samples. 
Heatmap and volcano plot was drawn using the 
heatmap package. The Gene Ontology (GO) terms 
were visualized by the GO plot package.

Identification of key genes by WGCNA

The co-expression network of DEGs according to 
mRNAsi was constructed by WGCNA package in 
R [10]. The R packages ‘matrixStats’, ‘foreach’, 
‘Hmisc’, ‘doParallel’, ‘fastcluster’, 
‘dynamicTreeCut’ and ‘survival’ were also 
applied in this process. Following the removal 
of normal and SOC samples of stage I–II, 
a total of 352 SOC samples remained for subse
quent analysis. Samples were clustered with the 
average method according to the gene expression 
level. The cut-height was set as 100 and the 
minimum size of gene groups was set as 10 to 
exclude the outlier. In this procedure, 15 outlier 
samples were removed and 337 samples were 
included in the subsequent analyses. The pre- 
processed data was intersected with the 
mRNAsi data and analyzed.

The optimal power-value was selected to con
struct a scale-free network according to the 
Pearson correlation coefficient among genes. The 
power-value was then determined as 8 by calculating 
the correlated genes between the scale-free R2 and 
mean connectivity. A GeneTree was constructed 
with the power-value and the dynamic module was 
identified with a minimum gene size of 50. Adjacent 
modules were merged with the criteria MEDiss 

Thres <0.25. The module-trait correlations with 
mRNAsi and EREG-mRNAsi were plotted.

After selecting modules of our interest, we calcu
lated the gene significance (GS, a correlation 
between gene expression levels and sample traits) 
and module membership (MM, a correlation 
between genes in a certain module and gene expres
sion profiles for each gene). To obtain more possible 
enriched pathways, we defined cor. gene MM>0.80 
and cor.gene GS>0.4 instead of 0.50 [11] as the 
thresholds to obtain more potential key genes.

Function annotation and pathway enrichment 
analysis of key genes

The Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment ana
lysis were performed and visualized by 
clusterProfiler R package, enrichplot, and ggplot2 
[12]. The candidate key genes were eventually 
selected according to the enriched pathways.

The PPI network was constructed using the 
STRING platform (Version 11.0, https://string- 
db.org/) [13]. The minimum required interaction 
score was set as medium confidence (0.4). We 
calculated the number of adjacent nodes to show 
the connectivity of each protein in the PPI net
work. The Pearson’s correlation coefficient 
between the paired key genes was computed 
according to the gene expression levels and visua
lized by the corrplot package [11]. The results with 
a correlation coefficient >0.4 were considered 
a strong correlation between the paired genes.

Data validation

The significant differential expression of the 
selected key genes was showed by heatmap and 
ggpubr package. We further selected two datasets 
GSE18520 [14] and GSE69428 [15], from the GEO 
database (https://www.ncbi.nlm.nih.gov/geo/), to 
validate the differential expression level of the 
selected key genes. The GSE18520 dataset included 
10 normal ovarian surface epithelium samples and 
53 advanced, high-grade SOC samples. The 
GSE69428 dataset included 10 high grade serous 
ovarian cancer (HGSOC) samples and 10 paired 
normal oviducts samples. DEG analyses were con
ducted with a limma package. Oncomine (https:// 
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www.oncomine.org/) was utilized to investigate 
the mRNA expression levels of the key genes at 
a pan-cancer level.

Prognostic and chemotherapeutic response 
predict the value of key genes

Survival analyses of key genes were conducted 
with the Kaplan Miere Plotter (https://kmplot. 
com/). The prognostic value of the key genes on 
OS was examined in SOC patients of all stages in 
the database. The impact of the selected key genes 
on the OS and PFS was examined on SOC patients 
of stage III–IV receiving platinum or the combina
tion of platinum and taxol. A p value <0.05 was 
considered statistically significant. In addition, 
GSE131978 [16] and GSE51373 [17] datasets 
were selected to validate whether the key genes 
were associated with platinum sensitivity in 
advanced SOC patients. In GSE131978, a total of 
7 platinum-based chemotherapy-resistant SOC 
samples of stage III–IV and 4 platinum-based che
motherapy-sensitive samples were selected for 
analysis. In GSE51373, 10 platinum-resistant and 
13 platinum-sensitive samples of stage III–IV were 
also utilized in the validation.

Results

The prognostic roles and clinical characteristics 
of mRNAsi/corrected mRNAsi in SOC

To obtained the platinum-based chemotherapeutic 
response indicators in advanced-stage SOC, we 
first analyzed the correlation between mRNAsi/ 
corrected mRNAsi scores and clinical characteris
tics in SOS samples. Subsequently, PFS analyses on 
mRNAsi/corrected mRNAsi were performed to 
reveal the prognostic value of advanced SOC 
patients. Next, DEGs between normal ovarian 
samples and SOC samples were screened. 
WGCNA was applied to distinguish mRNAsi- 
associated modules and genes. Then, The platinum 
response-associated pathways and key genes were 
selected by GO and KEGG analyses. Furthermore, 
a series of expression validations and prognostic 
value analyses of key genes were conducted using 
multiple databases. Finally, the differential expres
sions of key genes between platinum-resistant and 

-sensitive SOC samples were identified using two 
GEO datasets.

The mRNAsi index was reported to be derived 
from normal cells and cells with different degrees 
of stemness via calculating on the TCGA tran
scriptomic data [7]. It could be considered 
a quantitative marker of CSCs stemness. Tumor 
tissues were composed of different kinds of cells, 
including tumor cells and other types of cells, such 
as stromal and immune cells. Tumor purity was 
considered an interference factor affecting the eva
luation of the mRNAsi score. Here we obtained 
the tumor purity score of OC from a previous 
study, which had calculated the score of multiple 
cancers in TCGA [8]. The mRNAsi was corrected 
as previously reported (mRNAsi/tumor purity) 
[11]. The correlation analyses between mRNAsi/ 
corrected mRNAsi and clinical features were per
formed on all SOC patients in TCGA. Because of 
the extremely small sample size of Grade 1 and 
Grade 4, as well as stage I and stage IV in the 
TCGA database, we divided the SOC samples into 
two groups according to histopathological grades 
(G1+ G2 and G3+ G4) and clinical stages (stage I– 
II and stage III–IV), respectively. As shown in 
Figure 1(a,b), SOC samples of higher grades had 
greater mRNAsi and corrected mRNAsi score than 
those of lower grades with statistical significance. 
However, mRNAsi and corrected mRNAsi scores 
were not significantly associated with stages 
(Figure 1(c,d)). These results indicated that cells 
in SOC samples of higher grades had greater stem
ness than those of lower grades.

As reported, CSCs were the main cause of 
tumor chemoresistance. PFS was commonly 
used as a surrogate of chemotherapy response in 
OC [17]. Thus, we conducted PFS analyses on 
mRNAsi and corrected mRNAsi to reveal 
whether they had prognostic value among SOC 
patients of stage III–IV. SOC cases of stage III–IV 
with complete available information of PFS time 
were divided into low and high score groups 
based on the mRNAsi or corrected mRNAsi 
scores. We observed that there was no significant 
difference in PFS between low and high score 
groups (Figure 1(e,f)). More unexpectedly, 
advanced SOC patients with greater mRNAsi 
scores, which indicated stronger stemness of the 
tumor cells, had an even higher PFS rate within 
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approximately 4 years showed in the survival 
curve. Similar results were observed in the analy
sis on corrected mRNAsi. These findings were 
different from our understanding that greater 
stemness of tumor cells would indicate decreased 
PFS [18]. The above results indicated that the 

mRNAsi score in SOC samples had a close cor
relation with the histopathological grades. The 
corrected procedure didn’t obviously impact the 
results of clinical correlation. Therefore, mRNAsi, 
instead of corrected mRNAsi, was used in the 
subsequent analyses.

Figure 1. Correlations between mRNAsi/corrected mRNAsi and clinical characteristics in SOC of stage III–IV. (a, b) The clinical 
correlation of mRNAsi and corrected mRNAsi with histopathological grades; (c, d) The clinical correlation of mRNAsi and corrected 
mRNAsi with stages; (e, f) PFS analyses of mRNAsi and corrected-mRNAsi among SOC patients of stage III–IV; p < 0.05 indicates 
statistical significance.
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DEGs between normal ovarian and SOC tissues

To reveal the potential stemness-associated key 
genes according to mRNAsi, we screened DEGs 
between normal ovarian samples and SOC samples 
of all stages (N = 379). Thus, we identified 7255 
DEGs, including 3790 upregulated ones and 3465 
downregulated ones (Figure 2(a,b)). Among the 
GO categories (Figure 2(c)), ‘mitotic nuclear divi
sion’ was the most enriched biological process 
(BP) of the DEGs.

Identification of mRNAsi-related modules and 
key genes by WGCNA

To identify mRNAsi-associated modules and key 
genes, WGCNA was used to construct a co- 
expression network to cluster the samples and 
DEGs into biological modules. In the study, outlier 
samples were first eliminated from the analysis 
(Figure S1A) and the remained samples of stage III– 
IV (N = 337) were clustered according to mRNAsi 
and EREG-mRNAsi score (Figure S1B). β = 8 (scale- 
free R2 = 0.950) was selected as the soft threshold to 
ensure the scale-free network (Figure S1C). Thus, we 
obtained 9 biological gene modules (Figure 2(d)).

To explore the relationship between gene mod
ules and the mRNAsi scores, we used module 
significance (MS) to quantify the correlation 
between the overall gene expression level of the 
corresponding module and mRNAsi. The upper 
row of each module was the R2 value, representing 
the degree of correlation between gene expression 
and mRNAsi or EREG-mRNAsi in the corre
sponding module (Figure 2(e)). According to the 
R2 value, the green module was most positively 
associated with mRNAsi (with a correlation coeffi
cient close to 0.80, p value = 1.8e-68) and the blue 
module was most negatively associated with 
mRNAsi (with a correlation coefficient of 0.71, 
p = 7.9e-62) (Figure 2(f,g)). To study the key 
genes positively correlated to stemness character
istics of advanced-stage SOC, we chose the green 
module for further study. To avoid missing some 
crucial enriched pathways caused by a lack of 
included genes, the criteria were defined as cor. 
MM > 0.80 and cor. GS > 0.40 (not 0.50 as 
reported [11]) to acquire full information of 
enriched pathways. Finally, we obtained 42 key 

genes including AURKA, AURKB, BIRC5, BUB1, 
CCNA2, CCNB2, CDC20, CDC6, CDCA5, CDK1, 
CENPA, CKAP2L, DEPDC1, DLGAP5, ECT2, 
ERCC6L, EXO1, FAM83D, HJURP, KIF15, 
KIF18B, KIF23, KIF2C, KIF4A, MCM10, MELK, 
MYBL2, NCAPG, NCAPH, NDC80, NEK2, NUF2, 
NUSAP1, ORC1, PLK1, RACGAP1, RRM2, SGO1, 
TOP2A, TPX2, TTK, and UBE2C.

Function annotation and pathway enrichment of 
the selected key genes

To elucidate the biological process and signaling 
pathways the selected key genes involved in GO 
and KEGG analyses were performed. The results 
revealed that the top 5 BP of the green module was 
mainly associated with cell mitosis and prolifera
tion (Figure 3(a)). These key genes were mainly 
involved in the ‘cell cycle’ pathway (Figure 3(b)). 
Interestingly, the selected key genes were also 
enriched to the platinum response-associated 
pathways ‘cellular senescence’ [19,20], ‘p53 signal
ing pathway’ [21,22], and ‘platinum drug resis
tance’ (Figure 3(b)). Cell cycle arrest was also the 
main molecular mechanism of the platinum antic
ancer effect [23,24]. To explore the potential pla
tinum-based therapeutic response indicator, we 
obtained a total of 13 key genes enriched to the 
four aforementioned pathways to be further ana
lyzed in advanced SOC.

Correlation between key genes at mRNA and 
protein level

To explore the mutual correlation of the key genes 
and their protein products, we used the Pearson 
correlation method and STRING online tool to 
perform the analysis. As shown in Figure 3(c), 
each node represented a protein in the network. 
The PPI network showed a wide and strong rela
tionship among the encoded proteins of the 
selected key genes. We calculated the edge 
(Figure 3(d)) and found every node in the network 
was connected to the rest 12 proteins, indicating 
a mutual correlation with all of the rest proteins. 
At the mRNA level, the relationship between PLK1 
and CDC20 had the highest correlation coefficient 
of 0.78. BUB1 and TOP2A, as well as BUB1 and 
CDC20, had a lower correlation coefficient of 0.77 
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Figure 2. Identification of DEGs and stemless-associated gene modules in SOC of stage III–IV. (a, b) Volcano plot and heatmap of 
DEGs.Red represents upregulated genes; green represents downregulated genes and black represents genes without significant 
upregulation or downregulation; (c) The GO categories of the DEGs screened between normal ovarian tissue from GTEx and all SOC 
samples from TCGA; (d) Identification of weighted gene co-expression modules in SOC of stage III–IV. Each piece of the leaves on the 
cluster dendrogram matched a certain gene. Genes with similar expression patterns compose a branch; (e) Correlations between 
gene modules and mRNAsi or EREG-mRNAsi in SOC of stage III–IV. The upper row in each cell indicates the correlation coefficient 
quantifying the correlation between a certain gene module and the corresponding mRNAsi or EREG-mRNAsi score. The lower row in 
each cell indicates the p value; (f, g) The scatter plots of the top modules positively correlated and negatively correlated to mRNAsi: 
the green module and the blue module. Each colored circle represents a gene and the circles located in the upper right square 
indicate the key genes in the corresponding module. p < 0.05 indicates statistical significance.
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and 0.76. AURKA and ORC1 had the lowest cor
relation coefficient of 0.58 (Figure 3(e)). These 
results demonstrated that the selected key genes 
composed a strong and dense interaction network.

Expressional validation of key genes in multiple 
datasets

As shown in Figure 4(a,b), the 13 selected key genes 
all had significantly higher expression levels in SOC 
samples of stage III–IV than in normal ovarian 
samples (p < 0.001). To verify the overexpression 
of the key genes in SOC samples, we selected two 
GEO datasets for validation. We first compared the 
expression of the key genes between normal ovarian 
samples and advanced stage, high-grade SOC sam
ples in GSE18520, and confirmed that all the key 
genes were significantly upregulated (p < 0.001) in 
SOC tissue (Figure 5(a)). However, the origin of 
SOC was located in the fallopian tube rather than 
ovarian epithelium [15]. Therefore, we also evalu
ated the differential expression of the selected key 
genes between paired normal oviducts and 
advanced-stage SOC samples in GSE69428. All of 
the 13 key genes were significantly overexpressed in 
SOC tissue compared to normal oviducts (p < 0.001) 
(Figure 5(b)). These results further confirmed that 
the overexpression of the screened key genes in SOC 
tissue from the perspective of in-situ growth and 
tumorigenesis.

To further understand the expression levels of 
the key genes in multiple cancer types, we used 
Oncomine to perform the pan-cancer analyses. 
Except ORC1 was not in the top 10% gene rank 
of DEGs, the other 12 key genes were all ranked in 
the top 10% gene within at least one OC dataset 
(Figure 5(c)). The results strongly indicated that 
these key genes might be consistent oncogenes or 
even consistent stemness biomarkers widely over
expressed in multiple cancer types.

The prognostic value and drug response 
indication of the key genes

First, we explored the OS prognostic role of the 
key genes by Kaplan-Meire plotter. The results 
revealed that AURKA, MYBL2, ORC1, and PLK1 
were associated with the OS of advanced-stage 
SOC patients with statistical significance. Higher 

expression level of AURKA, MYBL2, and ORC1 
could predict shorter OS while the higher expres
sion level of PLK1 could predict a longer OS 
(Figure 6, Table 1).

To explore potential indicators of platinum- 
based chemotheraputic response among the stem
ness-associated key genes, we conducted OS and 
PFS analyses on the key genes among stage III–IV 
patients of SOC receiving platinum or the combi
nation of platinum and taxol. Among the 13 key 
genes, the expression level of only 4 genes 
(AURKA, CCNA2, MYBL2, and ORC1) signifi
cantly affected the OS of platinum-treated 
advanced-stage SOC patients (Figure S2). The 
higher expression level of AURKA, MYBL2, and 
ORC1 could predict shorter OS while the higher 
expression level of CCNA2 could predict longer 
OS. The median OS difference of AURKA, 
MYBL2, and ORC1 between both the low and 
high expression groups was longer than 6 months, 
indicating the three genes were significant prog
nostic biomarkers of advanced-stage SOC. The 
expression level of 11 key genes (AURKA, 
BIRC5, CCNA2, CCNB2, CDC20, CDK1, ORC1, 
PLK1, RRM2, TOP2A, and TTK) were signifi
cantly associated with PFS (Figure 7). Among the 
prognostic genes of PFS, except for ORC1, the 
higher expression level of additional 10 genes 
could predict longer PFS (Table 2).

We further explored potential response indica
tors of chemotherapy containing both platinum 
and taxol by OS and PFS analyses. The expression 
level of CCNA2, CDK1, ORC1, TOP2A, and TTK 
were significantly associated with the OS of 
advanced-stage SOC patients administered both 
platinum and taxol. The higher expression level 
of all 5 genes could predict shorter OS (Figure 
S3, Table 1). The higher expression level of 7 PFS- 
associated genes, BIRC5, CCNB2, CDC20, 
MYBL2, PLK1, TOP2A, and TTK, could predict 
longer PFS (Figure 8, Table 2).

The differential expression of key genes between 
platinum-resistant and sensitive SOC samples

As shown above, the 13 selected key genes were 
closely associated with platinum sensitivity. Thus, 
we selected two GEO datasets to illuminate 
whether the key genes played roles in the 
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modulation of platinum response. The analysis on 
GSE131978 revealed that BIRC5, BUB1, CDC20, 
CDK1, and ORC1 had statistically significant dif
ferential expression between platinum-resistant 
and sensitive samples of stage III–IV SOC 
(Figure 9(a)). And the expression level of the 5 
genes was upregulated in platinum-sensitive sam
ples compared to platinum-resistant samples. In 
the analysis on GSE51373, we found that BUB1, 

CDC20, PLK1, and TOP2A had differential 
expression between chemotherapy (contains plati
num) resistant and sensitive samples of advanced- 
stage SOC (Figure 9(b)). Consistent with the 
results of GSE131978, the 4 genes were also down
regulated in chemotherapy-resistant samples com
pared to the chemotherapy-sensitive ones. BUB1 
and CDC20 were the two overlapped DEGs of the 
two datasets. With PFS prognostic value, CDC20 

Figure 3. The GO and KEGG analyses and PPI network of the selected key genes. (a, b) The top GO categories and KEGG results of 42 
selected key genes; (c) The protein–protein interaction network of 13 selected key genes according to the KEGG pathway enrichment 
results; (d) The number of edges of each key gene in the PPI network; (e) Correlation coefficient between paired key genes at the 
transcriptional level.
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was eventually considered a feasible indicator of 
platinum-based chemotherapeutic response.

Discussion

SOC is a main histological subtype of OC with 
a poor prognosis. Debulking surgery combined 
with platinum-based chemotherapy is the primary 
therapy of SOC [25]. Although platinum-based 
therapy continued to be the first-line option of 
advanced-stage SOC, platinum is not the best 
approach for partial patients with limited platinum 
sensitivity (a platinum-treatment free interval of 
6–12 months) [26]. Nowadays, poly (ADP-ribose) 
polymerase (PARP) inhibitors have provided great 
therapeutic benefits to OC patients. Platinum 

sensitivity is also a prospective biomarker for pre
dicting the response to PARP inhibitors (PARPi) 
thus instrucing drug introduction of OC patients 
[27]. CSCs are a subpopulation of cancer cells 
closely correlated to survival time and therapeutic 
resistance of OC patients [28,29]. As the stemness 
of CSCs is an important cause of chemoresistance 
[30,31], investigating reliable drug response indi
cators, especially the indicators of platinum 
response among stemness-associated genes is fea
sible and essential. However, such platinum 
response indicators are still poorly understood. 
Although several studies have reported the use of 
biological information from different levels to 
obtain drug response indicators for OC [32]. Esra 
Gov recognized novel prognostic biomarkers in 

Figure 4. The differential expression of the selected key genes in the green module. (a) The heatmap showed the expression level of 
selected key genes among 88 normal ovarian samples and 352 SOC samples of stage III–IV. Samples were divided into two groups, 
normal (N), and tumor (T). Red indicated a high expression level and green indicates a low expression level; (b) The average 
expression level of the selected key genes visualized by boxplots. Blue indicated the normal group and red indicates the tumor 
group. ‘***’ indicates p < 0.001.
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Figure 5. The expressional validation of selected key genes in different databases. (a, b) Expression level of the key genes in the 
GSE18520 and GSE69428 datasets of the GEO database. ‘**’ indicates p < 0.01. ‘***’ indicates p < 0.001; (c) The mRNA expression of 
key genes in multiple cancer types in Oncomine database. The number in the cells represents the number of analyzed datasets in 
which the expression level of genes meets the thresholds shown below the graph. Red indicates a higher expression level of the 
certain gene in tumor tissues than the normal tissues. Blue indicates the opposite expression pattern. The color depth of each cell 
indicates the gene rank. The deeper the color depth, the higher the gene rank.
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Figure 6. The OS curves of the key genes with significant prognostic value analyzed on 1023 SOC patients of stage III+IV by Kaplan- 
miere plotter.

Table 1. The significant impact of the key genes on the overall survival time of the advanced-stage, SOC patients as well as patients 
treated with different strategy of chemotherapy.

Groups (patients) Median OS (months)

Gene expression Low High Low High Difference

Stage III–IV, SOC 
AURKA 
MYBL2 
ORC1 
PLK1 
Platinum-based 
AURKA 
CCNA2 
MYBL2 
ORC1 
Platinum+taxol 
CCNA2 
CDK1 
ORC1 
TOP2A 
TTK

678 
425 
533 
677  

610 
306 
390 
485  

352 
157 
364 
236 
425

345 
598 
490 
346  

326 
630 
546 
451  

220 
415 
208 
336 
147

45.13 
48.00 
45.73 
40.00  

45.77 
40.54 
48.27 
46.13  

45.63 
50.00 
45.47 
48.37 
45.63

36.73 
38.57 
37.03 
43.93  

38.77 
44.13 
39.77 
37.93  

40.00 
41.60 
38.57 
41.00 
38.47

8.40 
9.43 
8.70 

–3.93  

7.00 
–3.59 
8.50 
8.20  

5.63 
8.40 
6.90 
7.37 
7.16
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ovarian cancer by biological information [33]. In 
the study, we identified platinum-based che
motheraputic response indicator among stemness- 
associated key genes using a multi-step bioinfor
matics approach based on transcriptome 
sequencing.

Malta et al. had reported that a higher value of 
stemness indices was associated with greater 
tumor dedifferentiation, which was reflected by 
a higher histopathological grade [7]. Our results 
on the correlation between mRNAsi/corrected 
mRNAs and histopathological grades were very 

Figure 7. The PFS curves of the key genes with significant prognostic value analyzed on 907 SOC patients of stage III+IV treated with 
chemotherapy containing platin.
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consistent with the concept proposed by Malta 
et al. In the PFS curves of mRNAsi/corrected 
mRNAsi, we observed a tendency without statisti
cal significance that within approximately 4 years. 
This was different from our understanding that 
greater stemness of cancer cells would eventually 
lead to a shorter PFS [34]. The results might be 
explained by three possible causes. First, the 
absence of statistical significance might be caused 
by quite a small sample size included in the ana
lysis. Second, the mRNAsi score was computed 
according to the transcriptomic characteristics of 
pluripotent stem cells and their differentiated pro
geny. Perhaps only a small part of genes involved 
in mRNAsi have a significant effect on the PFS of 
advanced-stage SOC patients. Thus, the analysis of 
the correlation between mRNAsi score and survi
val time could be influenced by a lot of confound
ing factors. Third, the overexpression of some 
stemness-associated genes involved in mRNAsi 
led to longer PFS of advanced-stage SOC patients. 
The third potential cause needed to be validated in 
the subsequent analyses.

WGCNA is a tool to analyze the gene expression 
pattern in multiple samples. It can classify those 
genes with similar expression patterns into clusters 
and further analyze the correlations between differ
ent gene clusters and certain characteristics [11]. In 
the WGCNA procedure, we chose the green 

module most positively correlated to mRNAsi to 
investigate stemness-associated biomarkers which 
possibly governed the stemness of SOC. The func
tional annotation of the selected key genes in the 
green module revealed that the genes were most 
enriched to the biological process of mitotic nuclear 
division, which was consistent with the top GO 
category of DEGs between OC and normal samples. 
This confirmed the uncontrolled cell proliferation 
was a core characteristic of OC cells as well as the 
ovarian cancer stem cells (OVSCSs) [35]. Previous 
studies reported that the pathway ‘Cell cycle’ 
[23,24], ‘Cellular senescence’ [19,20], ‘p53 signaling 
pathway’ [21,22], and ‘Platinum drug resistance’ 
were closely associated with platinum response. 
A recent review had summarized that an insuffi
cient dose of platinum might lead to a cytostatic 
response, named dormancy, rather than cytotoxic 
response, through inducing cell cycle arrest and 
cellular senescence [36]. Therefore, investigating 
platinum-response indicators among the key 
genes enriched to the platinum-response associated 
pathways could be reliable.

AURKA, MYBL2, ORC1, and PLK1 were sig
nificantly correlated with the OS of advanced-stage 
SOC patients in our results. AURKA targeting 
inhibits self-renewal capacity and restores sensitiv
ity to DTX-based chemotherapy in breast cancer 
[37]. PLK1 was also reported to promote 

Table 2. The significant impact of the key genes on the PFS time of advanced-stage, SOC patients treated with different strategy of 
chemotherapy.

Groups (patients) Median PFS (months)

Gene expression Low High Low High Difference

Platinum-based 
AURKA 
BIRC5 
CCNA2 
CCNB2 
CDC20 
CDK1 
ORC1 
PLK1 
RRM2 
TOP2A 
TTK 
Platinum+taxol 
BIRC5 
CCNB2 
CDC20 
MYBL2 
PLK1 
TOP2A 
TTK

226 
639 
294 
290 
348 
651 
678 
475 
649 
560 
269  

358 
191 
249 
140 
292 
378 
341

681 
268 
613 
617 
559 
256 
229 
432 
258 
347 
638  

204 
371 
313 
422 
270 
184 
221

14.00 
15.00 
15.00 
14.83 
14.37 
15.00 
17.00 
15.00 
15.00 
15.00 
14.37  

15.00 
14.37 
14.00 
14.27 
15.00 
15.00 
14.03

16.63 
19.00 
16.53 
16.93 
16.85 
18.30 
14.00 
17.00 
18.23 
18.30  

17.00 
17.50 
16.13 
16.37 
16.00 
16.23 
16.83 
18.00

−2.63 
–4.00 
-1.53 
–2.10 
-2.48 
–3.30 
3.00 

–2.00 
-3.23 
–3.30  

-2.63 
–2.50 
-1.76 
–2.37 
-1.73 
–1.23 
-1.83 
–3.97

3766 X. SUN ET AL.



Epithelial-Mesenchymal Transition (EMT), 
a biological process that was closely associated 
with cell stemness, in gastric carcinoma cells [38]. 
These reports confirmed that AURKA and PLK1 
were potential modulators of the stemness of SOC. 
However, MYBL2 and ORC1 hadn’t been reported 
whether associated with cancer stemness. Among 
the 11 key genes associated with platinum 
response investigated by the PFS analyses, higher 
expression of all these genes but ORC1 could pre
dict longer PFS of advanced-stage SOC. It was very 
interesting that higher expression of AURKA, 
TOP2A, and TTK could predict longer PFS but 
shorter OS of patients receiving platinum and 

taxol. This indicated that these genes could pro
mote tumor progression as oncogenes while 
prolonging PFS as a drug sensitivity biomarker. 
However, the underlying mechanism of how the 
genes impacted OS and PFS in a reverse pattern 
still needed to be further illuminated. Among the 
PFS-associated genes, AURKA [22,39], CDK1 
[40], and RRM2 [12] had been validated correlat
ing to the platinum response by experimental 
methods. These reports partially verified that iden
tifying platinum-response indicators among stem
ness-associated genes according to mRNAsi was 
reliable and worthwhile. However, the function of 
the genes on maintaining stemness and 

Figure 8. The PFS curves of the key genes with significant prognostic value analyzed on 562 SOC patients of stage III+IV treated with 
chemotherapy containing both platin and taxol.
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modulating the platinum response of ovarian can
cer cells still needs to be verified by experimental 
methods.

Results of this study revealed that BUB1 and 
CDC20 had significantly higher expression levels 
in platinum-sensitive samples than that of plati
num-resistant in both two GEO datasets. 
Accumulating evidence indicates that there is 
a strong link between abnormal upregulation of 
CDC20 and various types of tumors [41–43]. 
CDC20 knockdown was shown to sensitize cancer 
cells to chemotherapy and radiation therapy [44,45]. 
CDC20 overexpression facilitates the docetaxel 
resistance of the advanced castration-resistant pros
tate cancer cell lines [46]. Moreover, results from 
recent TCGA and pathological studies have demon
strated a pivotal oncogenic role for CDC20 in tumor 
progression as well as drug resistance [47]. BUB1 is 
an independent prognostic indicator for ovarian 

cancer and was found depleted in paclitaxel resis
tant human ovarian cancer cells [48,49]. BUB1 was 
not included in the results of PFS significance ana
lysis in this study. With significant prognostic value, 
CDC20 was considered a potential response indica
tor to platinum-based chemotherapy. There are also 
some limitations of this research. First, compared 
with tumor tissue samples, the sample size of nor
mal tissue in the GTEx database is small. Although 
multiple prognostic markers of OC have been iden
tified based on the GTEx database [50–52], we need 
to further expand the sample size from our center in 
the future. Second, the generation of chemoresis
tance was a complex process involving networks of 
genes and pathways. A single gene would not be 
precise enough to predict drug response. 
Investigating drug response indicators by multiple 
methods, constructing a drug-response prediction 
model with multiple genes, and validating the 

Figure 9. The differential expressional validation of the selected key genes between platinum resistant and platinum sensitive 
samples of advanced-stage SOC. (a) Differential expression of the key genes in the GSE131978 dataset. (b) Differential expression of 
the key genes in the GSE51373 dataset. ‘*’ indicates p < 0.05. ‘**’ indicates p < 0.01.
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effectiveness of the drug response indicators by 
experimental methods would be carried out in our 
next task.

Conclusion

In conclusion, we investigated platinum-response 
indicators among stemness-associated key genes in 
advanced-stage SOC according to mRNAsi in this 
study. By evaluating the prognostic value and expres
sional validation, CDC20 was identified as a stemness 
biomarker and platinum-response indicator in 
advanced-stage SOC. This conclusion would provide 
clues to guide clinical drug use and still needs to be 
further validated by experimental methods.

Highlights

(1) Serous ovarian cancer of higher histopatho
logical grades had greater stemness indices

(2) Forty-four genes positively correlated to 
stemness characteristics advanced-stage SOC

(3) Thirteen genes involved in platinum response 
were identified in multiple databases

(4) CDC20 was identified as a platinum-based 
chemotherapy indicator in SOC

Author’s contributions

Zhiqing Liang conceived and designed the project. Qingyu Liu 
acquired and pro-processed the data. Xinwei Sun, Jie Huang, 
and Ge Diao conducted the data analysis. Xinwei Sun prepared 
the initial manuscript. Zhiqing Liang revised the manuscript 
and had the primary responsibility for the final content. All 
authors had read and approved the final manuscript.

Disclosure statement

The authors declare that they have no competing interests.

Funding

This work was supported by the National Key Technology 
R&D Program of China (No.2019YFC1005202 and 
2019YFC1005204) and the Clinical Innovation Foundation 
of Southwest Hospital of China (No. SWH2016ZDCX1013).

References

[1] Amante S, Santos F, Cunha TM. Low-grade serous 
epithelial ovarian cancer: a comprehensive review and 
update for radiologists. Insights Imaging. 2021;12:60.

[2] Sommerkamp P, Cabezas-Wallscheid N, Trumpp A. 
Alternative polyadenylation in stem cell self-renewal 
and differentiation. Trends Mol Med. 2021. 
DOI:10.1016/j.molmed.2021.04.006

[3] Saygin C, Matei D, Majeti R, et al. Targeting cancer 
stemness in the clinic: from hype to hope. Cell Stem 
Cell. 2019;24:25–40.

[4] Tyagi K, Mandal S, Roy A. Recent advancements in 
therapeutic targeting of the Warburg effect in refrac
tory ovarian cancer: a promise towards disease 
remission. Biochim Biophys Acta Rev Cancer. 
2021;1876:188563.

[5] Roy L, Cowden Dahl KD. Can stemness and chemore
sistance be therapeutically targeted via signaling path
ways in ovarian cancer? Cancers (Basel). 2018;10:241.

[6] Hajjo R, Sabbah DA, Bardaweel SK, et al. Identification 
of tumor-specific MRI biomarkers using machine 
learning (ML). Diagnostics (Basel). 2021;11. 
DOI:10.3390/diagnostics11050742

[7] Malta TM, Sokolov A, Gentles AJ, et al. Machine 
learning identifies stemness features associated with 
oncogenic dedifferentiation. Cell. 2018;173: 338–354

[8] Aran D, Sirota M, Butte AJ. Systematic pan-cancer 
analysis of tumour purity. Nat Commun. 2015;6:8971.

[9] Ritchie ME, Phipson B, Wu D, et al. limma powers 
differential expression analyses for RNA-sequencing 
and microarray studies. Nucleic Acids Res. 2015;43: 
e47.

[10] Bai KH, He SY, Shu LL, et al. Identification of cancer 
stem cell characteristics in liver hepatocellular carci
noma by WGCNA analysis of transcriptome stemness 
index. Cancer Med. 2020;9:4290–4298.

[11] Pei J, Wang Y, Li Y. Identification of key genes con
trolling breast cancer stem cell characteristics via stem
ness indices analysis. J Transl Med. 2020;18:74.

[12] Wang Q, Liu X, Chen C, et al. A predictive signature 
for oxaliplatin and 5-fluorouracil based chemotherapy 
in locally advanced gastric cancer. Transl Oncol. 
2021;14:100901.

[13] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: 
protein-protein association networks with increased 
coverage, supporting functional discovery in 
genome-wide experimental datasets. Nucleic Acids 
Res. 2019;47:D607–D13.

[14] Mok SC, Bonome T, Vathipadiekal V, et al. A gene 
signature predictive for outcome in advanced ovarian 
cancer identifies a survival factor: 
microfibril-associated glycoprotein 2. Cancer Cell. 
2009;16:521–532.

[15] Yamamoto Y, Ning G, Howitt BE, et al. In vitro and 
in vivo correlates of physiological and neoplastic 

BIOENGINEERED 3769

https://doi.org/10.1016/j.molmed.2021.04.006
https://doi.org/10.3390/diagnostics11050742


human Fallopian tube stem cells. J Pathol. 
2016;238:519–530.

[16] Tassi RA, Gambino A, Ardighieri L, et al. FXYD5 
(Dysadherin) upregulation predicts shorter survival 
and reveals platinum resistance in high-grade serous 
ovarian cancer patients. Br J Cancer. 2019;121:584–592.

[17] Koti M, Gooding RJ, Nuin P, et al. Identification of the 
IGF1/PI3K/NF κB/ERK gene signalling networks asso
ciated with chemotherapy resistance and treatment 
response in high-grade serous epithelial ovarian cancer. 
BMC Cancer. 2013;13:549.

[18] Papadaki MA, Stoupis G, Theodoropoulos PA, et al. 
Circulating tumor cells with stemness and epithelial-to- 
mesenchymal transition features are chemoresistant and 
predictive of poor outcome in metastatic breast cancer. 
Mol Cancer Ther. 2019;18:437–447.

[19] Hao X, Zhao B, Zhou W, et al. Sensitization of ovarian 
tumor to immune checkpoint blockade by boosting 
senescence-associated secretory phenotype. iScience. 
2021;24:102016.

[20] Nacarelli T, Fukumoto T, Zundell JA, et al. NAMPT 
inhibition suppresses cancer stem-like cells associated 
with therapy-induced senescence in ovarian cancer. 
Cancer Res. 2020;80:890–900.

[21] Lin S, Li X, Lin M, et al. Meta-analysis of P53 expres
sion and sensitivity to platinum-based chemotherapy 
in patients with non-small cell lung cancer. Medicine 
(Baltimore). 2021;100:e24194.

[22] Pérez-Fidalgo JA, Gambardella V, Pineda B, et al. 
Aurora kinases in ovarian cancer. ESMO Open. 
2020;5:e000718.

[23] Ramarao-Milne P, Kondrashova O, Barry S, et al. 
Histone modifying enzymes in gynaecological cancers. 
Cancers (Basel). 2021;13:816.

[24] Reyes-González JM, Vivas-Mejía PE. c-MYC and 
epithelial ovarian cancer. Front Oncol. 2021;11:601512.

[25] Weberpals JI, Pugh TJ, Marco-Casanova P, et al. 
Tumor genomic, transcriptomic, and immune profiling 
characterizes differential response to first-line platinum 
chemotherapy in high grade serous ovarian cancer. 
Cancer Med. 2021;10:3045–3058.

[26] Lorusso D, González-Martín A, Ray-Coquard I. Managing 
recurrent ovarian cancer in daily clinical practice: case 
studies and evidence review with a focus on the use of 
trabectedin. Future Oncol. 2021;17:9–19.

[27] Alblihy A, Alabdullah ML, Ali R, et al. 
Clinicopathological and functional evaluation reveal 
NBS1 as a predictor of platinum resistance in epithelial 
ovarian cancers. Biomedicines. 2021;9:56.

[28] Muinao T, Deka Boruah HP, Pal M. Diagnostic and 
prognostic biomarkers in ovarian cancer and the 
potential roles of cancer stem cells - an updated 
review. Exp Cell Res. 2018;362:1–10.

[29] Keyvani V, Farshchian M, Esmaeili S-A, et al. Ovarian 
cancer stem cells and targeted therapy. J Ovarian Res. 
2019;12:120.

[30] Steinbichler TB, Dudás J, Skvortsov S, et al. Therapy 
resistance mediated by cancer stem cells. Semin Cancer 
Biol. 2018;53:156–167.

[31] Prasad S, Ramachandran S, Gupta N, et al. Cancer cells 
stemness: a doorstep to targeted therapy. Biochimica Et 
Biophysica Acta Mol Basis Dis. 2020;1866:165424.

[32] Davidson B. Biomarkers of drug resistance in ovarian 
cancer - an update. Expert Rev Mol Diagn. 
2019;19:469–476.

[33] Gov E. Co-expressed functional module-related genes 
in ovarian cancer stem cells represent novel prognostic 
biomarkers in ovarian cancer. Syst Biol Reprod Med. 
2020;66:255–266.

[34] Wang J-H, Huang S-T, Zhang L, et al. Combined 
prognostic value of the cancer stem cell markers 
CD47 and CD133 in esophageal squamous cell 
carcinoma. Cancer Med. 2019;8:1315–1325.

[35] Wesley T, Berzins S, Kannourakis G, et al. The attri
butes of plakins in cancer and disease: perspectives on 
ovarian cancer progression, chemoresistance and 
recurrence. Cell Commun Signal. 2021;19:55.

[36] Murray D, Mirzayans R. Cellular responses to 
platinum-based anticancer drugs and UVC: role of 
p53 and IMPLICATIONS FOR CANCER THERAPy. 
Int J Mol Sci. 2020;21:5766.

[37] Jalalirad M, Haddad TC, Salisbury JL, et al. Aurora-A 
kinase oncogenic signaling mediates TGF-β-induced 
triple-negative breast cancer plasticity and chemoresis
tance. Oncogene. 2021;40:2509–2523.

[38] Cai XP, Chen LD, Song HB, et al. PLK1 promotes 
epithelial-mesenchymal transition and metastasis of 
gastric carcinoma cells. Am J Transl Res. 
2016;8:4172–4183.

[39] Mignogna C, Staropoli N, Botta C, et al. Aurora Kinase 
A expression predicts platinum-resistance and adverse 
outcome in high-grade serous ovarian carcinoma 
patients. J Ovarian Res. 2016;9:31.

[40] Bansal N, Marchion DC, Bicaku E, et al. BCL2 antago
nist of cell death kinases, phosphatases, and ovarian 
cancer sensitivity to cisplatin. J Gynecol Oncol. 
2012;23:35–42.

[41] Zhang X, Zhang X, Li X, et al. Connection between 
CDC20 expression and hepatocellular carcinoma 
prognosis. Med Sci Monit. 2021;27:e926760.

[42] Luo M, Zeng H, Ma XY, et al. [Identification of hub 
genes for ovarian cancer stem cell properties with 
weighted gene co-expression network analysis]. 
Sichuan Da Xue Xue Bao Yi Xue Ban. 
2021;52:248–258.

[43] Simonetti G, Boga C, Durante J, et al. Synthesis of 
novel tryptamine derivatives and their biological activ
ity as antitumor agents. Molecules. 2021;26:683.

[44] Mao DD, Gujar AD, Mahlokozera T, et al. A 
CDC20-APC/SOX2 signaling axis regulates human 
glioblastoma stem-like cells. Cell Rep. 
2015;11:1809–1821.

3770 X. SUN ET AL.



[45] Liu Y, Duan C, Zhang C. E3 Ubiquitin Ligase in 
Anticancer Drugdsla Resistance: recent Advances and 
Future Potential. Front Pharmacol. 2021;12:645864.

[46] Wu F, Lin Y, Cui P, et al. Cdc20/p55 mediates the 
resistance to docetaxel in castration-resistant prostate 
cancer in a Bim-dependent manner. Cancer 
Chemother Pharmacol. 2018;81:999–1006.

[47] Chi JJ, Li H, Zhou Z, et al. A novel strategy to block 
mitotic progression for targeted therapy. 
EBioMedicine. 2019;49:40–54.

[48] Chong T, Sarac A, Yao CQ, et al. Deregulation of the 
spindle assembly checkpoint is associated with paclitaxel 
resistance in ovarian cancer. J Ovarian Res. 2018;11:27.

[49] Zhu LJ, Pan Y, Chen XY, et al. BUB1 promotes pro
liferation of liver cancer cells by activating SMAD2 
phosphorylation. Oncol Lett. 2020;19:3506–3512.

[50] Xu H, Zou R, Li F, et al. MRPL15 is a novel prognostic 
biomarker and therapeutic target for epithelial ovarian 
cancer. Cancer Med. 2021. DOI:10.1002/cam4.3907.

[51] Liu J, Tan Z, He J, et al. Identification of three mole
cular subtypes based on immune infiltration in ovarian 
cancer and its prognostic value. Biosci Rep. 2020;40. 
DOI:10.1042/BSR20201431.

[52] Hu Y, Zheng M, Wang S, et al. Identification of a five-gene 
signature of the RGS gene family with prognostic value in 
ovarian cancer. Genomics. 2021;113(4):2134–2144.

BIOENGINEERED 3771

https://doi.org/10.1002/cam4.3907
https://doi.org/10.1042/BSR20201431

	Abstract
	Introduction
	Materials and methods
	Data acquisition and pre-processing
	Clinical feature correlation analysis of mRNAsi and corrected mRNAsi
	Differentially expressed genes (DEGs) analysis
	Identification of key genes by WGCNA
	Function annotation and pathway enrichment analysis of key genes
	Data validation
	Prognostic and chemotherapeutic response predict the value of key genes

	Results
	The prognostic roles and clinical characteristics of mRNAsi/corrected mRNAsi in SOC
	DEGs between normal ovarian and SOC tissues
	Identification of mRNAsi-related modules and key genes by WGCNA
	Function annotation and pathway enrichment of the selected key genes
	Correlation between key genes at mRNA and protein level
	Expressional validation of key genes in multiple datasets
	The prognostic value and drug response indication of the key genes
	The differential expression of key genes between platinum-resistant and sensitive SOC samples

	Discussion
	Conclusion
	Highlights
	Author’s contributions
	Disclosure statement
	Funding
	References



