
materials

Article

Rapid Preparation of MWCNTs/Epoxy Resin
Nanocomposites by Photoinduced
Frontal Polymerization

Guofeng Hu 1, Wanli Fu 1,2, Yumin Ma 1, Jianping Zhou 1,3,*, Hongbo Liang 1,3, Xinmei Kang 4

and Xiaolin Qi 4

1 School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China;
1801085204012@stu.nchu.edu.cn (G.H.); 70965@nchu.edu.cn (W.F.); maym@hollowlite.com (Y.M.);
lhongbo@nchu.edu.cn (H.L.)

2 State-Owned Assets Management Division, Nanchang Hangkong University, Nanchang 330063, China
3 Jiangxi Provincial Engineering Research Center for Surface Technology of Aeronautical Materials,

Nanchang Hangkong University, Nanchang 330063, China
4 Aviation Key Laboratory of Science and Technology on Life-Support Technology, Xiangyang 441000, China;

kangkang198306@163.com (X.K.); ajian421@126.com (X.Q.)
* Correspondence: zhoujp@nchu.edu.cn

Received: 25 October 2020; Accepted: 15 December 2020; Published: 21 December 2020
����������
�������

Abstract: Due to their excellent mechanical and thermal properties and medium resistance,
epoxy/carbon nanotubes and nanocomposites have been widely used in many fields. However,
the conventional thermosetting process is not only time- and energy-consuming, but also causes the
agglomeration of nanofillers, which leads to unsatisfactory properties of the obtained composites.
In this study, multi-walled carbon nanotubes (MWCNTs)/epoxy nanocomposites were prepared
using UV photoinduced frontal polymerization (PIFP) in a rapid fashion. The addition of MWCNTs
modified by a surface carboxylation reaction was found to enhance the impact strength and heat
resistance of the epoxy matrix effectively. The experimental results indicate that with 0.4 wt % loading
of modified MWCNTs, increases of 462.23% in the impact strength and 57.3 ◦C in the glass transition
temperature Tg were achieved. A high-performance nanocomposite was prepared in only a few
minutes using the PIFP approach. Considering its fast, energy-saving, and environmentally friendly
production, the PIFP approach displays considerable potential in the field of the fast preparation,
repair, and deep curing of nanocomposites and coatings.
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1. Introduction

Owing to their great aspect ratio, excellent mechanical properties, electrical conductivity, and
chemical/thermal stability, carbon nanotubes (CNTs) have been extensively studied by researchers
in the field of materials science [1–5]. However, due to their extremely high surface energy, CNTs
are difficult to evenly disperse during the preparation of CNT-doped composite materials, which has
greatly limited their wide application in the field of composites [6]. Therefore, the surface modification
of CNTs is particularly necessary in the preparation of CNT-doped composites [7–10]. Currently, two
modifying methods have been developed to improve the dispersion of CNTs: noncovalent and covalent
modification. The former mainly includes ball milling, mechanical stirring, and ultrasonication [11–13];
the latter mainly involves the introduction of reactive groups, such as carboxyl, hydroxyl, and amino
groups, onto the surface of CNTs by oxidizing and etching under the action of H2SO4 and HNO3 or
other strong oxidants [14,15].
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Epoxy resin (EP) is one of the most widely used thermosetting resins due to its excellent mechanical
and bonding properties, chemical resistance, and processing simplicity [16–19]. However, its cured
products usually have a high crosslinking density, making them vulnerable to external force impacts.
To overcome the relatively poor impact resistance and environmental stress-cracking resistance of
epoxy condensates, the addition of inorganic nanoparticles, glass fibers, graphene, and CNTs to epoxy
resin has been extensively explored [20–25]. Particularly, using modified CNTs as fillers to prepare
CNTs/epoxy nanocomposites has been reported [26,27]. For example, Akram et al. constructed epoxy
nanocomposites with polyacrylonitrile/multi-walled CNTs and a polyacrylonitrile/carbon nanofiber
aerogels scaffold [28].

Frontal polymerization (FP) is a new type of polymerization that can transform monomers into
polymers quickly through an exothermic reaction [29,30]. Compared to the traditional polymerization
reaction, FP exhibits various advantages: it has a high reaction rate and a short reaction time; it consumes
a low amount of energy; and it is environmentally friendly [31]. Frontal polymerization is classified
into thermal frontal polymerization (TFP), photo frontal polymerization (PFP), and isothermal frontal
polymerization (IFP) [32,33]. There are now many studies on TFP and PFP [30,34–38]. For instance,
Sangermano et al. successfully prepared a glass-fiber-reinforced epoxy resin composite through the
PFP approach. Zhu et al. successfully cured tripropylene glycol diacrylate (TPGDA) through a
UV-triggered frontal polymerization [39].

In this study, nanocomposites of epoxy and multi-walled carbon nanotubes (MWCNTs) were
rapidly prepared via photoinduced frontal polymerization. The MWCNTs were first subjected to
surface medication through a carboxylation reaction. The influence of adding the modified MWNCTs
to the frontal polymerization process and the properties of the obtained nanocomposites were then
further investigated in detail.

2. Materials and Methods

2.1. Materials

The epoxy resin used in this study was 3,4-epoxycyclo-hexyl formate 3′,4′-epoxycyclohexyl
methyl ester (EP-211), purchased from Tianjin Synthetic Material Research Institute Co., Ltd., Tianjin,
China. The carbon nanotubes used were multi-walled carbon nanotubes (diameter < 8 nm, purity >

98%), purchased from Chengdu Organic Chemicals Co., Ltd., Chinese Academy of Science, Chengdu,
China. P-aminobenzoic acid (PABA, C7H7NO2) (McLean Biochemistry Co., Ltd., Shanghai, China)
was used to modify the surface of the MWCNTs. Isopentyl nitrite (C5H11NO2, McLean Biochemistry
Co., Ltd., Shanghai, China) was used as the catalyst for the carboxylation modification reaction.
The boron trifluoride-amine complex (Beijing Huineng Rubber Chemical Co., Ltd., Beijing, China)
was used as the thermal initiator (TI), and a mixture of hexafluoroantimonate sulfonium onium salts
(Changzhou Qiangli Electronic Materials Co., Ltd., Changzhou, China) was used as the photoinitiator
(PI). N,N-dimethylformamide (DMF) was purchased from Xilong Science Co., Ltd., Shantou, China.
All materials were used as received without further purification.

2.2. Surface Carboxylation Modification of MWCNTs

To enhance the compatibility of the MWCNTs with the epoxy matrix, a carboxylation reaction
was conducted. Firstly, MWCNTs were dispersed in distilled water at room temperature for 1 h using
an ultrasonic disperser. Then, a certain proportion of isopentyl nitrite and various amounts of PABA
((MWCNTs)/(PABA) = 1:1, 1:5, 1:10, 1:15 wt/wt) were added to the flask, which was equipped with
a condenser and a drying tube. The mixture was stirred at 80 ◦C for 18 h. Afterward, the resulting
substances were washed with DMF five times and collected by filtration. Carboxylic-functionalized
MWCNTs (MWCNTs-COOH) were finally obtained by drying in a vacuum oven at 50 ◦C for 24 h.
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2.3. Preparation of MWCNTs/Epoxy Resin Nanocomposites Via UV-Light-Induced FP

The scheme of the experimental device is shown in Figure S1 in the Supplementary Materials.
An optical-cable-directed UV-point light source (Shenzhen Blue Spectrum Rich Ltd., Shenzhen, China)
was used to trigger the frontal polymerization, with its optical cable placed over the left end of a glass
tank measuring 15 cm × 1.5 cm × 1.7 cm. Additionally, a K-type thermocouple connected to a digital
recorder was used to monitor the temperature profile of the polymerization reaction.

The procedure was similar to that presented in [34], with slight modifications. During each
experiment, the glass tank was first preheated in an oven set at 55 ◦C. Various amounts of modified
MWCNTs (0.2–1 wt %), PI, and epoxy resin were added to a 50 mL round-bottom flask and mixed with
a sonicator for 10 min. The flask was then transferred to a constant-temperature oil bath. The mixture
in the flask was stirred at 55 ◦C with a magnetic stirrer, and a vacuum pump was used to degas the
mixture until bubbles were no longer observed in the flask. Afterwards, a 2 wt % TI was added to the
flask, and the mixture was continuously stirred for another 10 min. Finally, the mixture was quickly
poured into the preheated glass tank, and the UV point source was immediately powered on at a setting
of 10 W/cm2 to start the frontal polymerization process. Once the polymerization front formed (usually
in dozens of seconds), the UV light was turned off, and the front continued to propagate horizontally
to the right until all the monomers were transformed into cured products, and the MWCNTs/epoxy
nanocomposites were obtained. During the reaction process, a THTZ408R-type infrared thermal
imager (Tenghui Temperature Control Instrument Factor Ltd., Ningbo, China) was used to record the
temperature profile and the moving feature of the polymerization front as a function of time.

2.4. Characterization and Measurements

The chemical structure of the modified MWCNTs and the nanocomposite products was
characterized using a VERTEX70-type Fourier transform infrared spectroscopy (FT-IR, BRUKER
Co., Ltd., Woodlands, Germany) and a Kratos AXIS X-ray photoelectron spectroscopy (XPS, KRATOS
Co., Ltd., Kyoto, Japan). FT-IR measurements were carried out under ATR (Attenuated Total Reflection)
mode with a 700–4000 cm−1 scanning range, accumulating 16 scans for each spectrum at 25 ◦C. X-ray
photoelectron spectroscopy (XPS) measurements were carried out on an Escalab 250 Xi spectrometer
(Thermo Scientific, Waltham, MA, USA). A monochromatic Al-Kα radiation source (1486.74 eV)
and a PHOIBOS 150 hemispherical electron analyzer (SPECS, Berlin, Germany) were used with the
spectrometer. An X-ray power of 25 W, a take-off angle of 45◦, and a pass energy of 20 eV were used to
capture 10 scans for each sample.

The viscosity measurement was performed at 25 ◦C in a Rotary viscometer (NDJ-79, Shanghai
Changji Geological Instrument Co., Ltd., Shanghai, China) with a diameter die of 0.5 mm.

The fracture surfaces of the nanocomposite specimens after impact test were observed using an
FEI Quanta250 scanning electron microscopy (SEM, FEI Co., Ltd., Brno, Czech) with an operating
voltage of 15 kV. To increase the conductivity, the sample was sprayed with gold.

Thermogravimetric analysis (TGA) was performed on a Diamond TG/DTA (Perkin Elmer, Waltham,
MA, USA) thermogravimetric analysis analyzer with a temperature range of 20–800 ◦C. The heating
rate was 10 ◦C /min and the flow rate of nitrogen was 20 mL/min. The difference between the residual
mass after degradation of modified carbon nanotubes and that of original carbon nanotubes was
regarded as the grafting amount of PABA.

Dynamic thermal mechanical (DMA) tests were performed using a TA Q800 dynamic mechanical
thermal analyzer (TA Instruments, New Castle, DE, USA) with a temperature range of 25–250 ◦C
and a frequency of 1 Hz. The heating rate was 5 K/min and the flow rate of nitrogen was 30 mL/min.
The dimension of the samples used for the testing was 35 mm × 12 mm × 3.5 mm.

The impact properties of the nanocomposite specimens were measured using an RG-30 impact
testing machine (Zhonghang Times Instrument Equipment Co., Ltd., Beijing, China) in accordance
with ASTM D256-10. Each sample was tested three times, and the results were averaged.
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3. Results

3.1. Structural Characterization

To enhance the dispersion and compatibility of MWCNTs in epoxy oligomers and cured products,
the functionalization of MWCNTs was carried out by grafting carboxyl groups onto their surfaces.
Functionalization of the initial sidewall of MWCNTs proceeded via the reaction between P-aminobenzoic
acid (PABA) and the carbon nanotube surface in the presence of an oxidizing agent. As shown in
Scheme 1, isoamyl nitrite first reacts with PABA to form diazonium salt of PABA. Diazonium benzoate
is very unstable, and easily decomposes at a slightly higher temperature and produces a cation in its
para position. The cation reacts with the double bond on the surface of the MWCNTs to graft benzoic
acid group onto their surfaces.
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Figure 1. FT-IR spectra of MWCNTs before and after modification. 
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The chemical structure of MWCNTs after being modified by PABA via carboxylation reaction was
characterized by FT-IR and XPS measurements.

Figure 1 shows the FT-IR spectra of MWCNTs before and after the surface modification. Two new
peaks appeared in the PABA-modified MWCNTs curve: the peak at 1700 cm−1 corresponded to
carbonyl groups (C=O), and the peak at 1400 cm−1 corresponded to carboxyl groups (–COO) [25].
The presence of these two peaks indicated that PABA had been grafted successfully onto the surface of
the MWCNTs.
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Figure 1. FT-IR spectra of MWCNTs before and after modification.

XPS analysis is an efficient method to evaluate the chemical bonds grafted onto CNTs [40].
Figures 2 and 3 show the XPS spectra of prime and PABA-modified MWCNTs. The inset graph in
Figure 2 shows the deconvolution of the C1s spectrum of prime MWCNTs, in which the main peak
at 284.6 ± 0.2 eV was assigned to the graphitic C–C bond and the 284.1 ± 0.2 eV was assigned to the
C=C bond. In contrast, the C1s spectrum of the modified MWCNTs shown in the inset of Figure 3
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demonstrates the existence of an –O–C=O bond (corresponding to the peak at 288.8 ± 0.2 eV) and a
C–O bond (corresponding to the peak at 286.5 ± 0.2 eV), which also indicated the successful grafting of
PABA onto the surface of MWCNTs.
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case. The corresponding surface grafting rate of PABA was calculated to be 10.6%. Furthermore, the 
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Figure 4 shows the TGA curves of prime and modified MWCNTs. The PABA-modified MWCNTs
underwent a three-step degradation. The first degradation occurred below 200 ◦C, which could mainly
be due to the evaporation of adsorbed and bounded water. The second degradation occurred in the
temperature range of 200–260 ◦C, which could be attributed to the degradation of PABA, which was
suggested by the degradation curve of pure PABA (as shown in Figure S2). The third degradation
step, in the temperature range of 260–800 ◦C, was mainly due to the thermal decomposition of the
C–C bonds of MWCNTs. Using the thermogram of the PABA-modified MWCNTs, the optimum ratio
of MWCNTs/PABA that could be used in the modification reaction was determined to be 1:5, as the
residual mass of the modified MWCNTs was the minimum in this case. The corresponding surface
grafting rate of PABA was calculated to be 10.6%. Furthermore, the grafting rate was found to decrease
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when the ratio of MWCNTs/PABA exceeded 1:5, implying that an excess of PABA input is not favorable
for the surface carboxylation reaction between MWCNTs and PABA molecules.Materials 2020, 13, x 6 of 14 
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3.2. Preparation of PABA-Modified MWCNTs/Epoxy Resin Nanocomposites Via Photoinduced
Frontal Polymerization

To prepare the MWCNTs/epoxy nanocomposite using the PIFP method, 221-type alicyclic epoxy
resin with a high heat-release ability was used as the resin matrix, mixed triarylhexafluoroantimonium
salt was used as cationic photoinitiator, and boron trifluoride-amine complex was used as the TI.
During the process, two types of reaction occurred successively. First a photolysis reaction occurred,
during which an active strong acid was generated through the decomposition of photoinitiators under
UV irradiation, and the epoxy groups in surface resin began a cationic ring-opening polymerization
under the action of the strong acid. Second, a thermal curing of the epoxy resin occurred, during which
the thermal initiator (boron trifluoride amine complex) decomposed rapidly due to the heat released in
the first stage. The epoxy oligomers reacted with the BF3-amine to form an oxonium cation, and the
ring-opening polymerization occurred in a chain mode according to the cationic reaction process, until
the whole resin cured completely. The mechanism is shown in Scheme 2.
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Front velocity (Vf) and maximum temperature (Tmax) are two key parameters to be considered
during a frontal polymerization reaction [41–43]. Suitable values of Vf and Tmax must be achieved in
order to realize a stable FP reaction.

Figure 5 plots the front position as a function of time during the preparation of MWCNTs/epoxy
nanocomposites via photoinduced FP. The experimental data in all four sets conformed to well-fitted
straight lines on the graph, indicating that the polymerization front propagated at a constant velocity,
which is a typical feature of FP [34]. Table 1 lists the corresponding Vf values calculated according
to the line slope. The data suggest a decreasing trend of Vf with the increase in the content of the
fillers. One main reason could be the increase in viscosity of the mixture solution (as shown in Table 2).
The higher the filler content, the greater the viscosity of the mixture system [44]. High viscosity hinders
thermal diffusion, thus reducing the frontal velocity Vf. The effect of conductive particles should
also be considered [45,46]. When CNTs were added to the polymer, nanoparticles absorbed some
amount of the released heat from the material (due to specific heat) and reduced the energy density,
since less resin is available per unit volume. However, at the same time, the thermally conductive
nanoparticles conducted the heat away from the front preheated the resin and accelerated the front
reaction. These two phenomena had opposite effects on the frontal reaction. Since the front velocity of
neat resin (0.81 cm/min) is much lower than that with MWCNTs added, it is thought that the addition
of a small amount of conductive fillers is favorable in the frontal polymerization reaction. Additionally,
the data in Table 1 show that the Vf of the PABA-modified MWCNTs/epoxy resin system was greater
than that of the unmodified MWCNTs/epoxy resin system, although the viscosity of the unmodified
MWCNTs/epoxy system was lower than that of modified MWCNTs/epoxy system. Except for the
enhanced dispersibility and compatibility, the incorporation of carboxyl groups onto the surfaces
of MWCNTs may play a crucial role in the frontal polymerization reaction, due to the change in
exothermicity during the curing process caused by the reaction between the carboxyl groups and
epoxy oligomers.
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Table 1. The Vf of the photoinduced FP of MWCNTs/epoxy resin.

Content of MWCNTs (wt %) 0 0.2 0.4 0.6 0.8 1.0

Vf of Modified MWCNTs/Epoxy (cm/min) 0.81 3.15 3.04 2.72 2.54 1.43
Vf of Unmodified MWCNTs/Epoxy (cm/min) 0.81 2.89 2.63 2.41 2.15 0.98
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Table 2. Viscosity of the MWCNTs/epoxy resin mixture solution.

Content of MWCNTs (wt %) 0 0.2 0.4 0.6 0.8 1.0

Viscosity of Modified MWCNTs/Epoxy (mPa·s) 165 179 185 198 206 224
Viscosity of Unmodified MWCNTs/Epoxy (mPa·s) 165 133 139 146 165 192

Figure 6 shows the temporal distribution of temperature of the photoinduced FP of PABA-modified
MWCNTs/epoxy resin system, and Table 3 shows the maximum temperature determined from the
corresponding profile. The data show that the Tmax value decreased with the increase in the content
of the modified MWCNTs, which agrees well with the trend in frontal velocity, confirming a rule
that a higher frontal reaction temperature Tmax is needed to maintain the fast front reaction rate Vf.
Additionally, Figure S3 shows the Tmax of the system with PABA-modified MWCNTs added is higher
than that of the system with unmodified MWCNTs added, and the time needed to reach the highest
reaction temperature Tmax for the former is less than that needed for the latter, suggesting that the
active groups on the surface of the modified MWCNTs participate in the FP reaction and help release
more heat during the curing process. Therefore, we concluded the epoxy oligomers with modified
MWCNTs added are better for heat conduction due to their enhanced dispersity and compatibility.
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Table 3. Tmax of PABA-modified MWCNTs/epoxy resin mixture.

Content of Modified MWCNTs (wt %) 0% 0.2% 0.4% 0.6% 0.8%

Tmax (◦C) 234.5 227.9 226.6 224.2 211.3

A phenomenon known as propagating angle, which increases with the increase in addition of
fillers, was previously discovered in frontal polymerization reactions [34]. In our study, such a feature
was also observed. In our parallel experiments, a propagating angle of 16◦, 21.35◦, 26.01◦, 37.79◦,
and 54.60◦ was clearly observed when the content of modified MWCNTs was 0, 0.2, 0.4, 0.6, and
0.8 wt %, respectively (Figure 7). The increase in the propagating angle and an increase in the filler
loading was ascribed to the augment of the viscosity of the reaction system, which greatly inhibited
the occurrence of thermal convection and reduced the Vf value. A slow propagating velocity usually
accompanied a large propagating angle, resulting in uniform material properties.
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3.3. Properties of Modified MWCNTs/Epoxy Resin Nanocomposite Prepared by Photoinduced
Frontal Polymerization

Figure 8 shows the TGA curves of pure epoxy resin and its nanocomposites filled with various
amounts of PABA-modified MWCNTs. The weight-loss rate of epoxy nanocomposites decreased
as the content of modified MWCNTs increased. The condensate of pure epoxy resin substantially
decomposed at ~520 ◦C, while the residual mass of the epoxy nanocomposites continued to increase
when the loading of the modified MWCNTs increased. The residual mass of the three composites was
7.5%, 10.8%, and 12%, respectively, suggesting that the addition of modified MWCNTs enhanced the
retention of the epoxy resin. Since MWCNTs resist heat and conduct temperatures well, the modified
MWCNTs dispersed in the epoxy matrix absorbed and transferred energy to the external environment
quickly once heated, resulting in better heat resistance in the corresponding nanocomposites.
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Figure 9 shows the tanδ–T curves that were recorded in the DMA testing of the epoxy
nanocomposites, and Figure 10 plots the corresponding glass transition temperature determined
from the tanδ ~ T curves. The Tg value increased at first, but then decreased along with the increase
in the MWCNTs content. The Tg of pure epoxy resin was 88.8 ◦C, but the Tg of the nanocomposites
reached a maximum value of 146.1 ◦C when the content of modified MWCNTs reached 0.4 wt %.
Even when the filler loading reached 0.8 wt %, the related Tg (105.1 ◦C) was still higher than for pure
epoxy resin. These results indicate that the addition of modified MWCNTs can effectively enhance the
heat resistance of the epoxy matrix, due to the strengthened interface between the matrix and the filler
after the surface-carboxylation modification reaction.
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The impact properties of the epoxy nanocomposites with various amount of PABA-modified
MWCNTs added were tested (Figure 11). In comparison, the impact properties of the composites
with various amounts of unmodified MWCNTs addition are also presented. The impact strength
of the composites increased at first, and then decreased along with the increase in the loading of
MWCNTs. When the content of the modified MWCNTs was 0.4 wt %, the impact strength jumped to its
highest value (28.39 MPa), an increase of 462.23% compared to that of the pure epoxy resin (3.76 MPa),
and 34.23% higher than that of the composite with 0.4 wt % unmodified MWCNTs added (21.14 MPa).
The results showed that PABA-modified MWCNTs can effectively enhance the impact property of the
epoxy composite better than unmodified MWCNTs. However, when the content of MWCNTs exceeded
0.4 wt %, the impact strength value of the composites began to decrease. This could be ascribed to the
increase in the viscosity of the mixture, which reduced the dispersibility of the fillers [41].
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PABA-modified MWCNTs.

Figure 12 shows an SEM photograph of the impact fracture of the epoxy nanocomposites with
the content of various modified MWCNTs loaded. Smooth and flat features were observed in the
sample of pure epoxy resin condensate, indicating a typical brittle fracture (Figure 12a). With modified
MWCNTs added, the fracture of the nanocomposite samples became rougher, and displayed numerous
scaly structures. This ductile characteristic resulted from the good compatibility, uniform dispersion,
and enhanced interface bonding strength between the matrix and the fillers. When external force
was applied, the carbon nanotubes developed a large number of microcracks. The network structure
formed by the carbon nanotubes in the matrix resin effectively hindered crack propagation and
absorbed the impact energy, thus enhancing the impact strength of the composite material. However,
the agglomeration of fillers tended to occur when adding too many MWCNTs, leading to a drop in
impact strength.
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4. Conclusions

In this study, MWCNTs/epoxy resin nanocomposites were rapidly prepared using UV
photoinduced frontal polymerization. After modification by PABA via carboxylation reaction,
MWCNTs exhibited enhanced dispersibility and compatibility with the epoxy matrix. The addition of
0.4 wt % modified MWCNTs to epoxy oligomers greatly enhanced the toughness and heat resistance
of the obtained nanocomposites, which demonstrated an increase of 462.23% in impact strength
and an increase of 57.3 ◦C in the glass transition temperature Tg compared to pure epoxy resin
condensate. The findings indicate that PIFP is a facile, rapid, and efficient approach for preparation of
high-performance thermosetting nanocomposites, and it exhibits potential in the fields of fast repairing
and deep curing.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/24/5838/s1,
Figure S1: Scheme of the device used for photoinduced frontal polymerization; Figure S2: TGA curves of
pure epoxy resin; Figure S3: The temporal distribution of temperature of the unmodified MWCNTs/epoxy and
PABA-modified MWCNTs/epoxy reaction system with different filler loading.
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