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Abstract: Ferrets were experimentally inoculated with SARS-CoV-2 (severe acute respiratory syn-
drome (SARS)-related coronavirus 2) to assess infection dynamics and host response. During the
resulting subclinical infection, viral RNA was monitored between 2 and 21 days post-inoculation
(dpi), and reached a peak in the upper respiratory cavity between 4 and 6 dpi. Viral genomic se-
quence analysis in samples from three animals identified the Y453F nucleotide substitution relative
to the inoculum. Viral RNA was also detected in environmental samples, specifically in swabs of
ferret fur. Microscopy analysis revealed viral protein and RNA in upper respiratory tract tissues,
notably in cells of the respiratory and olfactory mucosae of the nasal turbinates, including olfactory
neuronal cells. Antibody responses to the spike and nucleoprotein were detected from 21 dpi, but
virus-neutralizing activity was low. A second intranasal inoculation (re-exposure) of two ferrets after
a 17-day interval did not produce re-initiation of viral RNA shedding, but did amplify the humoral
response in one animal. Therefore, ferrets can be experimentally infected with SARS-CoV-2 to model
human asymptomatic infection.

Keywords: SARS-CoV-2; ferret; Y453F; olfactory neuronal cells

1. Introduction

In December 2019, clinical cases of pneumonia of unknown aetiology were first re-
ported in Wuhan, Hubei province in Central China. Metagenomic sequencing revealed
the causative agent to be a novel, severe acute respiratory syndrome (SARS)-related coro-
navirus, designated SARS-CoV-2 [1]. One year later, the number of reported cases of
human infection continues to grow globally [2], showing the high transmissibility of this
human pandemic coronavirus of zoonotic origin. The majority of cases (80%) are asymp-
tomatic or have mild disease [3], presenting a challenge for monitoring virus infection and
transmissibility and for determining appropriate public health policy.

Viruses 2021, 13, 113. https://doi.org/10.3390/v13010113 https://www.mdpi.com/journal/viruses

https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0001-7680-5110
https://orcid.org/0000-0002-7448-8200
https://orcid.org/0000-0002-3514-3066
https://orcid.org/0000-0002-9673-3684
https://orcid.org/0000-0002-9078-6734
https://orcid.org/0000-0001-9207-6659
https://doi.org/10.3390/v13010113
https://doi.org/10.3390/v13010113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/v13010113
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/1999-4915/13/1/113?type=check_update&version=3


Viruses 2021, 13, 113 2 of 14

Coronaviruses have been identified in diverse mammalian species, with two zoonotic
strains being of substantial public health concern this century; SARS-CoV in 2002 and
Middle Eastern respiratory syndrome coronavirus (MERS) in 2012 [4]. SARS-CoV-2 is the
most recent coronavirus to have emerged and, based on sequence identity, is likely to have
originated from bats, although the possible involvement of an intermediate host species is
currently unknown [5]. Similar to SARS-CoV, the infection of susceptible cells relies on the
binding of the SARS-CoV-2 spike protein to angiotensin converting enzyme type 2 (ACE2)
receptors and is activated by the enzyme TMPRSS2 [6]. During replication, the viral spike
(S) envelope glycoprotein and the nucleoprotein (NP) are highly transcribed [7]. Through
experimental infection studies, SARS-CoV-2 has been shown to infect non-human primates,
cats, ferrets, bats, hamsters and tree shrews but does not productively infect pigs, dogs or
poultry [8–19]. Sporadic infections of domestic cats and dogs, as well as large captive felids
and farmed mink [20–24] have been reported and are thought to be reverse-zoonoses.

Understanding the pathogenesis of SARS-CoV-2 in an animal model for human
disease [25] is important to gain insight into disease dynamics and for the development of
therapeutic interventions. The ferret has been conventionally used in animal models for
respiratory pathogen infections, including influenza and previously with SARS-CoV [26].
Recent reports of several ferret studies [8,9,11,17,27] and this study provide further insight
into virus–host interactions in this animal model.

2. Materials and Methods
2.1. Cells and Viruses

Vero E6 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) sup-
plemented with 10% heat-inactivated fetal calf serum (FCS), HEPES, sodium bicarbonate,
100 units/mL penicillin and 1000 µg/mL streptomycin (Gibco, Dartford, UK). The SARS-
CoV-2 inoculum of strain SARS-CoV-2/human/Australia/VIC01/2020 (GISAID accession
number EPI_ISL_406844) was propagated in Vero/hSLAM cells (ECACC 04091501) and
supplied by Public Health England [27]. The phylogenetically identical isolate SARS-CoV-
2/human/Italy/LAZ-INMI1-isl/2020 (GISAID accession number EPI_ISL_410545) was
provided by the Italian Institute for Infectious Diseases (INMI) through the European Virus
Archive GLOBAL (EVA-GLOBAL), propagated in Vero E6 cells and used for downstream
serological analysis. Virus titration and isolation from clinical samples was based on cyto-
pathic effect in Vero E6 cells at 5 dpi. The tissue culture 50% infectious dose (TCID50) was
calculated according to the method of Spearman–Karber [28–30].

2.2. In Vivo Study

The ferret in vivo study was conducted in accordance with UK Home Office regula-
tions under the Animal (Scientific Procedures) Act 1986 (ASPA) with study PP3405816/1/001
approved on 30 April, 2020 by the Animal Welfare and Ethical Review Body (AWERB) of
the Animal and Plant Health Agency and was reported according to the ARRIVE guide-
lines [31]. Twelve female ferrets approximately 5 months of age were housed in two groups
of six. General anaesthesia was performed for inoculation and sample collection, with 4.5%
isoflurane (Zoetis, Leatherhead, UK) chamber induction followed by a single subcutaneous
injection of medetomidine (0.04 mg/kg, Vetoquinol, Towcester, UK) and butorphanol
(0.1 mg/kg, MSD Animal Health, Milton Keynes, UK). Reversal of medetomidine sedation
was achieved with a subcutaneous injection of atipamezole hydrochloride (0.4 mg/kg, Ve-
toquinol). Ferrets were inoculated by intranasal (IN) instillation with 1.2 × 106 TCID50/mL
of SARS-CoV-2/Australia/VIC01/2020 [32] delivered in 0.5 mL per nostril. At 21 days
post-inoculation (dpi), two ferrets were re-challenged IN with 2.0 × 106 TCID50/mL of the
same inoculum. Clinical monitoring and sampling were done as described (Table 1).
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Table 1. Study plan and sample schedule. Sampling undertaken on specific days post inoculation (dpi) a is indicated.

Dpi a Inoculation Weight Temperature Nasal
Wash

Throat
Swab

Rectal
Swab Blood Environmental/Fur Necropsy

–8 x x

–7 x

–6 x

–5 x

−4 x x

–3 x x

–2 x x

–1 x x x

0 X (n = 12) x x x x x

1 x x

2 x x x x x x

3 x x 2 ferrets

4 x x x x x x x

5 x x 2 ferrets

6 x x x x x x

7 x x 2 ferrets

8 x x x x x x x

9 x x

10 x x x x x x

11 x x

12 x x

13 x x

14 x x x x x x x 2 ferrets

15 x x

16 x x

17 Re-challenged (n = 2) x x x x x x

18 1 x x

19 2 x x x x x

20 3 x x

21 4 x x x x x x x 2 ferrets

5

6

7 x x x x x x x Re-challenged 2
ferrets

Weight, temperature (subcutaneous Biothermal Identichip®, Destron Fearing, Dallas,
TX, USA) and clinical signs were monitored daily. Clinical samples of nasal washes in
Dulbecco’s PBS (DPBS, Gibco) as well as oro-pharyngeal (throat) and rectal swabs (MWE,
Corsham, UK) were obtained prior to infection and on 2, 4, 6, 8, 10, 14, 19 and 21 dpi.
At the same time, environmental samples of food, water and swabs (Copan Diagnostics,
Murrieta, CA, USA) of the metal cage surface and ferret fur coat, along the dorsal midline
were collected. Samples were stored at 4 ◦C until processing and archived at –80 ◦C. Blood
samples (clotted and EDTA anticoagulated) were taken from the jugular vein or cranial
vena cava prior to infection and on 4, 8, 14 and 21 dpi. Necropsies of two ferrets were
performed on each of 3, 5, 7, 14 and 21 dpi as well as, for two ferrets, 7 days after re-
challenge (24 dpi). Bronchoalveolar lavage (BAL) was performed on the left lung lobe after
euthanasia. A comprehensive panel of respiratory, gastrointestinal and lymphoid tissues
were taken for virological and pathological analyses. Tissue samples for virological analysis
were stored at –80 ◦C in L-15 Leibovitz medium containing 1% (v/v) FCS, 100 units/mL
penicillin and 1000 µg/mL streptomycin (all Gibco). Samples for pathological examination
were fixed in 10% neutral buffered formalin at room temperature.
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2.3. Viral RNA Isolation and Real-Time RT-qPCR

Swabs and tissue samples were suspended in L-15 Leibovitz medium containing
1% (v/v) FCS, 100 units/mL penicillin and 1000 µg/mL streptomycin (all Gibco). To-
tal RNA was extracted from all samples using a QIAmp Viral RNA Biorobot Kit (Qia-
gen, Manchester, UK). Viral RNA was detected using the SARS-CoV-2 E gene real-time
RT-qPCR [33]. The reported primer and probes sequences used were E_Sarbeco_F 5′-
ACAGGTACGTTAATAGTTAATAGCGT-3′, E_Sarbeco_R 5′-ATATTGCAGCAGTACGCAC
ACA-3′ and E_Sarbeco_P1 5′-FAM-ACACTAGCCATCCTTACTGCGCTTCG-BBQ (Euro-
gentec, Seraing, Belgium). Viral RNA quantity is expressed as relative equivalent units
(REU) of RNA using a standard 10-fold dilution series of RNA purified from the same batch
of virus, of known TCID50 titre, used for the inoculation. A virus stock diluted in standard
tissue culture medium was used to minimize potential confounding effects caused by the
sample matrix, should it contain substances inhibitory to either PCR or virus titration. Viral
genome copies were quantified using a tenfold dilution series of an Ultramer DNA oligonu-
cleotide equivalent to 120 bp of the SARS-CoV-2 E-gene (nCoV-E-Sarbeco control plasmid)
with sequence 5′-GAGACAGGTACGTTAATAGTTAATAGCGTACTTCTTTTTCTTGCTTT
CGTGGTATTCTTGCTAGTTACACTAGCCATCCTTACTGCGCTTCGATTGTGTGCGTAC
TGCTGCAATATTGTT. There was direct correlation between REU and genome copy stan-
dard lines (Supplemental Figure S1) and a lower limit of quantification (LLoQ) was set
at 0.4 REU/mL. Although REU and genome copy number correlate with the amount
of viral RNA present and not infectivity, it may be inferred from the linear relationship
with the dilution series that these measures are proportional to the amount of infectious
virus present.

2.4. Whole Genome Sequencing

Viral RNA was extracted manually using the QIAamp Viral RNA Mini Kit (Qiagen)
from clinical samples according to the manufacturer’s instructions but without carrier RNA
and eluted in 25 µL nuclease-free water. For clinical samples, viral RNA was then used to
generate double-stranded cDNA using sequence-independent single-primer amplification
(SISPA) [34] and purified using AMPure beads (Beckman Coulter, Brea, CA, USA). Viral
first-strand cDNA synthesis was performed using SuperScript IV (Invitrogen, Carlsbad,
USA) and second-strand synthesis using the NEBNext Ultra II nondirectional RNA second-
strand synthesis module (New England Biolabs, Ipswich, MA, USA). Library preparation
was performed using the Nextera DNA Library Prep Kit (Illumina, Cambridge, MA,
USA) and sequenced using the NextSeq System (Illumina). All kits were used as per the
manufacturer’s instructions. Paired-end Illumina reads were assembled using a custom
reference-guided alignment script (https://github.com/AMPByrne/WGS/blob/master/
RefGuidedAlignment.sh) using the inoculum reference sequence. Sequence outputs were
aligned using MAFFT version 7.427 [35], visualized using MEGA-X [36] and sequence
variants determined using flutile (https://github.com/flu-crew/flutile).

2.5. Serology

SARS-CoV-2 antibody levels were evaluated in heat-inactivated serum samples. An-
tibody titres to His-tag recombinant viral proteins spike subunit 1 (S1) (REC31828-100)
and nucleoprotein (NP) (REC31812-100) (gifts from The Native Antigen Company, Oxford,
UK) were determined by direct ELISA. Antigen-coated ELISA plate wells (Nunc Maxisorp,
Thermo Scientific, Rockford, IL, USA), or control wells with no antigen, were blocked
with 20% soya milk in PBS and washed with PBS/0.1% Tween-20 before adding serum
samples diluted in 20% soya milk/PBS/0.05% Tween-20 (S1 1:400, NP 1:50). Plates were
then incubated with Protein–AG–HRP (catalogue no. 32490, Thermo Scientific, diluted
1:20,000 in 5% soya milk/PBS/0.05% Tween-20). Antibody binding was detected with
TMB (catalogue no. T0440, Sigma-Aldrich, St Louis, MO, USA), and the reaction was then
stopped with 0.5 M H2SO4 and evaluated at OD 450 nm. NP ELISA data were analysed
by subtracting the no-antigen control well from the NP antigen well for each sample,

https://github.com/AMPByrne/WGS/blob/master/RefGuidedAlignment.sh
https://github.com/AMPByrne/WGS/blob/master/RefGuidedAlignment.sh
https://github.com/flu-crew/flutile
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to account for the higher nonspecific binding in the NP ELISA as a result of the higher
concentrations of serum used.

To determine virus-neutralizing antibody titre, doubling dilutions of serum were mixed
with an equal volume of 100 TCID50 units of SARS-CoV-2/human/Italy/LAZ-INMI1-
isl/2020 and incubated at 37 ◦C for one hour. Following incubation, 50 µL of each dilution
was transferred per well into 96-well plates containing 90% confluent Vero E6 monolayers.
Following a second 1 h incubation at 37 ◦C and 5% CO2, plates were overlaid with DMEM
(Gibco) without serum (WOS) and incubated for five days. The cells were examined for
cytopathic effect (CPE) using an inverted light microscope, and the neutralising antibody
titre was calculated according to the method of Spearman–Karber [28–30] and expressed as
50% inhibitory concentration (IC50).

2.6. Histopathology, Immunohistochemistry and In Situ Hybridisation

Formalin-fixed tissues were processed for routine histopathology ([37]). Four-
micrometre-thick sections were dewaxed and rehydrated through xylene and graded alco-
hol for immunohistochemistry (IHC) or in situ hybridisation (ISH). For IHC, tissue sections
were quenched for endogenous peroxidase with 3% methanol/hydrogen peroxide, blocked
with goat serum and epitope unmasking was accomplished using pH 9 retrieval buffer
(Dako, Glostrup, Denmark) or Protease XXIV (Sigma-Aldrich). This was followed by incu-
bation with rabbit monoclonal anti-S or rabbit polyclonal anti-NP antibody (Sinobiological,
Beijing, China) and anti-rabbit ENVISIONTM polymer (Dako). The signal was developed
using 3,3-diaminobenzidine (DAB) (Sigma-Aldrich), and tissues were counterstained in
Mayer’s haematoxylin (Leica, Milton Keynes, United Kingdom. Sections were washed
with Tris-buffered saline between incubations.

ISH used twenty pairs of double Z RNA probes targeting the S gene (V-nCoV2019-5,
catalogue no. 848569, ACD, California, USA) with the RNAScope® 2.5 HD Brown Detection
Kit (ACD) as per the manufacturer’s instructions. Tissues were dewaxed and hydrated
through xylene and alcohol, respectively, and treated with RNAscope® hydrogen peroxide
with heat-mediated retrieval used the Target Retrieval Solution and Protease Plus (all ACD).
Tissue sections were then hybridised with RNA probes, followed by amplification with
Hybridise Amp (ACD), and the signal was then developed with DAB and counter-stained
with Mayer’s haematoxylin (Leica). Sections were washed with 1× wash buffer (ACD)
between incubations. De-hydrated sections were then mounted with glass coverslips
using dibutyl phthalate xylene or Cytoseal (ACD). Formalin-fixed, paraffin-embedded
SARS-CoV-2/human/Italy/LAZ-INMI1-isl/2020-infected cell pellet sections were used as
a positive control. Separate serial sections of tissue were stained with haematoxylin and
eosin for histopathological evaluation.

2.7. Statistical Analysis

Graph and statistical analysis was performed with Graphpad Prism 7. ELISA statistical
analysis used a Wilcoxon matched pairs, 2-tailed test.

3. Results

Daily monitoring of clinical parameters, including weight, temperature and respira-
tory signs, showed that ferrets exhibited mild or no clinical signs for the duration of the
study. No weight loss was recorded outside of the normal range (5%), and temperatures
remained within the normal range (maximum +1.2 ◦C relative to baseline body tempera-
ture), except in the case of two different ferrets that showed temperatures of +1.5 ◦C for
single days (Supplemental Figure S2). Longitudinal samples (Table 1) were monitored for
virological and immunological parameters. Viral RNA in clinical samples was quantified by
real-time RT-qPCR targeting a SARS-CoV-2 E gene amplicon [33] and expressed as relative
equivalent units (REU) correlated to infectious viral titre in a standard stock propagated
in tissue culture. REU also correlated with viral genome copies (Supplemental Figure S1).
Shedding of viral RNA, quantified in nasal washes, varied substantially between individual
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ferrets and reached a peak between 4 and 6 dpi, declined by 10 dpi and was below the
LLoQ of the assay by 14 dpi (Figure 1A).
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High levels of nasal shedding (~2.5–3 log10 REU/mL) were detected in four of the
twelve ferrets (33%), while for two ferrets (17%), the shedding over time remained near
LLoQ for the assay. Viral RNA detected in throat swabs showed the same trend as the
nasal wash samples, but amounts were approximately 10-fold lower (Figure 1B). Viral
RNA was also detected in rectal swabs at low levels approaching the assay LLoQ in two
of the remaining ten (20%) ferrets at 6 dpi (data not shown). One of the two ferrets that
were re-challenged showed some evidence of productive re-infection as viral shedding was
detected above the LLoQ, on a single day, although this shedding was considerably lower
than that observed following the initial infection. Infectious virus was successfully isolated
from selected nasal wash samples with high levels of viral RNA (Figure 1A and Table 2).

Whole genome sequencing (WGS) analysis of viral RNA in upper respiratory tract
samples from three animals identified four nonsynonymous nucleotide substitutions rel-
ative to the inoculum. The amino acid changes in the ORF1ab-encoded protein, A1670E
and F1925C, were both found in samples from two of three animals, whilst the L3606F
polymorphism was identified in all three animals. A single polymorphism, Y453F, was
identified in the spike protein in samples from all three animals.

Viral RNA was quantified by real-time RT-qPCR in all tissues from animals necropsied
at 3, 5 and 7 dpi (Figure 1C) and in selected tissues from all other ferrets necropsied on
14, 21 and 24 dpi (data not shown). Viral RNA was most abundant in tissues of the upper
respiratory tract (respiratory turbinates) or oro-pharynx (soft palate, tonsil, tongue and
larynx) and primarily at 7 dpi. This was immediately after the peak nasal shedding of
viral RNA at 4–6 dpi (Figure 1A,B). Lower levels of viral RNA were also detected in the
gastrointestinal tract (oesophagus and stomach), although this could have been due to
ingestion of viral particles. No viral RNA was detected in the spleen, liver, heart, trachea,
cranial lung lobes or serum from any animal (data not shown). However, low levels of
viral RNA were detected in BAL fluid from the lung of one ferret on 5 dpi. The significance
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of viral RNA detection in two brain samples is unclear. Infectious virus was successfully
isolated from selected tissue samples (Figure 1C and Table 2) but was not titrated because of
practical difficulties in comparing results between different and complex sample matrixes.

Table 2. Virus isolation (VI) from selected samples.

Sample
(Ferret ID, dpi, sample) VI-Positive (+) or VI-Negative (−)

Nasal Washes

19243 4 dpi Nasal Wash −
19517 4 dpi Nasal Wash −
99873 4 dpi Nasal Wash +
19659 4 dpi Nasal Wash −
19675 4 dpi Nasal Wash +
00396 4 dpi Nasal Wash −
00479 4 dpi Nasal Wash −
18784 4 dpi Nasal Wash −
18988 4 dpi Nasal Wash −
19413 4 dpi Nasal Wash −
19517 6 dpi Nasal Wash −
99873 6 dpi Nasal Wash −
19659 6 dpi Nasal Wash +
19675 6 dpi Nasal Wash +
00479 6 dpi Nasal Wash −
18784 6 dpi Nasal Wash −
18988 6 dpi Nasal Wash −
19413 6 dpi Nasal Wash −
19517 7 dpi Nasal Wash +
00479 7 dpi Nasal Wash −

Tissues

19517 7 dpi Soft Palate −
19517 7 dpi Respiratory Turbinate +

19517 7 dpi Larynx +
19517 7 dpi Stomach −

19517 7 dpi Oesophagus +
00396 5 dpi Respiratory Turbinate +
00002 3 dpi Respiratory Turbinate −

00002 3 dpi Oesophagus ND *
19243 5 dpi Brain ND *

* Not determined (contaminated or toxic to cells).

Lesions were not detected on gross necropsy examination, and there was no significant
increase in lung weight (not shown). Although viral RNA and antigen were not detected
in the lungs by histological methods, the lungs appeared to be variably congested with
occasional bronchiolitis. Systematic examination of tissues by histopathology revealed no
marked changes. In the nasal turbinates, mucosal epithelial cells appeared to be uniform in
shape and cilia were present, with rare presence of intra-epithelial neutrophils and apop-
totic bodies. Moderate periportal lymphoplasmacytic hepatitis was observed in the liver of
all ferrets, but metagenomic analysis did not reveal the presence any coronavirus sequences.

Immunohistochemical (IHC) detection of viral S or NP antigen distribution in tissues
revealed presence of viral antigens only within the respiratory and olfactory epithelium of
the nasal cavity. At the cellular level, S antigens were localized to the apical aspect of the
respiratory and olfactory epithelium (Figure 2a,d). In contrast, NP labelling was ubiquitous
throughout the cytoplasm of epithelial cells (Figure 2b,e). In the olfactory epithelium
(Figure 2e), the immunopositive cells had morphology suggestive of olfactory neuronal
cells, in which chromogens outlined the dendrite, cell body and axon, sustentacular cells
and also the neuronal tract within the lamina propria of the olfactory epithelium. Further
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evaluation using S gene ISH (RNAScope®) also confirmed this observation (Figure 2c,f). No
viral RNA (Figure 1C) or viral antigen (IHC, not shown) were detected in the olfactory bulb.
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Figure 2. Detection of severe acute respiratory syndrome (SARS)-related coronavirus (SARS-CoV-2)
in the respiratory and olfactory mucosa of infected ferrets by immunohistochemistry (IHC) and
in situ hybridisation (ISH). IHC labelling detected spike antigen (a,d) in the apical cytoplasm of
epithelial cells (black arrow), whereas nucleoprotein labelling (b,e) was ubiquitous throughout
the cytoplasm. In the olfactory mucosa (e), nucleoprotein was present in various cell populations
identified by morphology, including sustentacular cells (green arrowhead), olfactory neuronal cells
(black arrowhead) and olfactory nerve fibres (red arrowhead). S gene ISH also revealed the presence
of viral RNA in both the respiratory (c) and olfactory mucosa (f), and in the latter case, labelling
was again identified in the sustentacular cells (green arrowhead) and olfactory neuronal cells (black
arrowhead). Images taken with 400× objective.

Presence of viral RNA in the environment was evaluated by analysing samples taken
from food and water as well as swabs of metal cage surfaces and the fur of ferrets swabbed
along the dorsal midline, a common mutual grooming location (Figure 3A). Viral RNA
was not detected in food, water or swabs of the cage surfaces but was detectable in fur
swab samples taken at 4 and 6 dpi, corresponding to the time of peak virus shedding
(Figure 3B). This observation mainly applied to one group, which included three animals
(3/6, 50%) with high levels of nasal shedding. However, no infectious virus could be
re-isolated from any of the fur swab samples with low abundance of viral RNA detected
by the more sensitive real-time RT-qPCR approach.

To determine humoral immune responses, spike protein subunit 1 (S1) and NP ELISA
as well as virus neutralization assays were conducted using serum samples collected prior
to infection and on 4, 8, and 14 dpi as well as at the end of the study on 21 or 24 dpi
(7 days following re-challenge). Both S1- and NP-specific antibody levels increased signifi-
cantly (Figure 4A,B) compared with baseline in the four ferrets sampled on 21 and 24 dpi
(p = 0.0156 for both S1 and NP). There was no increase in antibody levels in samples from
7 or 14 dpi. Due to higher nonspecific binding in the NP ELISA, the data were analysed
over a smaller OD range by subtracting the no-antigen control well from the NP antigen
well for each sample. Mean background OD values for the NP ELISA were as follows:
pre-infection: 0.1708 (range 0.1325–0.2035), and post-infection: 0.1884 (range 0.1085–0.2645).
Of the four ferrets with detectable S1 and NP antibody by ELISA, only two of four had low
neutralizing antibody titres (Figure 4C).
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Figure 4. Ferret antibody response. Specific antibody elicited to (A) the spike (S1) glycoprotein or (B) nucleoprotein (NP)
was detected in samples taken from two ferrets on 21 and on 24 dpi. Each data point represents a sample from one of eight
ferrets pre- and post-inoculation. The graphs show the mean OD 450 nm values from two independent ELISA assays (which
did not significantly differ). Neutralizing antibody (C) was detected in samples obtained from single ferrets on 21 and 24 dpi.
The graph shows the log2 box-and-whisker values from two independent virus-neutralizing titre (VNT) determinations.

4. Discussion

This study demonstrates that ferrets can be experimentally infected with SARS-CoV-2
via the intranasal route, similar to other reports [8,9,11,17,27], with the overall infection
profile resembling asymptomatic and mild clinical presentation in humans [3]. Ferrets
did not exhibit overt clinical signs in this or other studies [9,17], although mild clinical
signs following infection have also been reported [8,27]. Intranasal challenge of ferrets
with SARS-CoV-2 resulted in productive infection within the nasal turbinate mucosae, as
shown by histology, and the detection of viral RNA in nasal wash and throat swab samples,
indicating localised shedding of virus into the nasal and oral cavity. Presence of infectious
virus was confirmed by virus re-isolation from selected nasal wash and other upper
respiratory tract samples with high abundance of viral RNA. The levels of viral RNA and
ability to detect infectious virus varied between individual ferret samples, as was observed
in other studies [8,9,11,17,27], and may be due to the relative ease of inactivating viral
infectivity while retaining the ability to detect viral RNA in individual samples. Intranasal
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re-challenge of ferrets did not result in a sustained productive infection, as observed in
another study [27] and also reported following infection of rhesus macaques [38]. Low
levels of viral RNA were detected within the gastrointestinal tract, as also shown in other
studies [8,9,11,17,27]. This finding may indicate productive infection of the gut or possibly
resulted from ingestion of viral particles present in the oro-nasal cavity.

Currently, there is limited evidence of lower respiratory tract infection of ferrets with
SARS-CoV-2. In this study, only low levels of viral RNA were detected in the cells isolated
from the bronchoalveolar lavage of one ferret. While viral RNA or antigens were detected in
the lungs in some studies [9,17,27], recovery of low levels of infectious virus has only been
reported in one study [8]. To determine whether the lower respiratory tract of ferrets could
support SARS-CoV-2 infection, Shi and colleagues also performed intratracheal challenge,
but failed to show productive infection in the ferret lung [9]. These findings contrast with
earlier studies of SARS-CoV infection in ferrets, which demonstrated dissemination of
virus in the lungs [26] and associated diffuse alveolar damage resembling human SARS-like
pathology. The ability of SARS-CoV to infect the lower respiratory tract was thought to be
linked to ferret ACE2 distribution in type II pneumocytes and tracheobronchial submucosal
glands [39], despite the low predicted binding affinity for ACE2 [40]. Although SARS-CoV-
2 binds to the same host cell receptor, the differences between SARS-CoV and SARS-CoV-2
infection in ferrets could be caused by other unknown factors.

Immunohistochemical analysis revealed, for the first time, SARS-CoV-2 infection in
cells of the ferret olfactory mucosae and associated neuronal tissue. Similarly, infection of
olfactory neuronal cells in the golden Syrian hamster [10] was recently reported. These
findings may provide insight into a possible origin of anosmia experienced in some cases
of SARS-CoV-2, which is recognized as an important clinical indicator for early detection
of infection [41]. In contrast to other upper respiratory viral infections, anosmia associated
with SARS-CoV-2 infection can occur in the absence of clinical disease in the nasal pas-
sage [42] and usually early in the course of infection or in mildly affected or asymptomatic
patients [43]. Human autopsy results have also revealed virus replication in olfactory
neuronal cells, with low level of invasion across the cribriform plate into the olfactory
bulb within the cranium, in a small number of cases with severe COVID-19 [44], although
the relatedness of these findings to less severe clinical cases is unknown. Therefore, the
significance of low levels of viral RNA detected in the brain tissue of two ferrets in the
present and another study [17] modelling mild or asymptomatic infection is not known, as
virus isolation or detection of antigen by IHC was not successful.

The challenge strain employed in this and another study [27] was isolated from an
Australian case associated with travel to China early in the pandemic [32]. This strain is
comparable to SARS-CoV-2 strains isolated in China [9], South Korea [8] and Germany [11,
17] that were used in other experimental ferret infection studies. Whole genome sequencing
analysis of single samples from the upper respiratory tracts of three ferrets revealed, in all
samples, a L3606F polymorphism in the ORF1ab-encoded protein that has been attributed
to a basal clade of SARS-CoV-2 isolates that emerged in China in January 2020 [45], and
was also identified sporadically in three of five clusters in the Netherlands [23]. Another
single nucleotide polymorphism corresponded to the spike protein Y453F variant that has
emerged in mink in the Netherlands [23], as well as being present in the Cluster 5 variant
of SARS-CoV-2 isolated from mink in Denmark [22] and in isolated human clinical cases.
However, none of the other designated Cluster 5 mutations were identified in the samples
we analysed. The Y453F polymorphism in the S protein has been identified in in vitro
assays as a potential mutant that can escape neutralization by some therapeutic monoclonal
antibodies [46]. Three-dimensional protein structure analysis has also predicted that
this mutation may significantly reduce the binding affinity of neutralizing monoclonal
antibodies [47] and increase the viral affinity for the human ACE2 receptor [48]. Although
the SARS-CoV-2 spike protein from human isolates is predicted to have low affinity for
the mink and ferret ACE2 receptors [40,49], the emergence of the Y453F variant in both
field and experimental infection of mink and ferrets may indicate that this mutation
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promotes a functional interaction between virus spike protein and mink or ferret ACE2
receptors. In our study, the D614G polymorphism that has become globally dominant in
humans was not detected. This polymorphism has been associated with increased virus
entry into host cells [50] and infectivity [51]. In the hamster model, the D614G mutation
significantly accelerated droplet transmission during the initial stages of infection [52],
whilst in ferrets, it provided an advantage for viral replication and transmission but did
not alter pathogenicity [53]. Cross-neutralization assays indicate that this mutation is
not predicted to adversely impact vaccine efficacy [54]. Further work is needed to assess
the impact of spike protein mutations on pathogenesis, host range and transmission of
SARS-CoV-2 as well as on the host immune response.

SARS-CoV-2-infected ferrets were able to mount a humoral immune response such
that virus-specific antibodies could be detected after 21 dpi. Antibody levels directed
against the S1 antigen were higher in comparison with those of the NP antigen, a finding
that could reflect the greater immunogenicity of the viral S envelope protein. A low
neutralizing antibody response was only detected in two of four ferrets. Other studies
reported neutralizing titres ranging from 1:8 to 1:1024 [8,9,17,27]. Similarly, clinical reports
suggest that IgG levels can be significantly lower in asymptomatic relative to symptomatic
patients [55] and the viral neutralizing antibody response in convalescent patients can be
low [56].

The ferret model has also been used to assess SARS-CoV-2 dissemination, and both
the airborne and contact transmission routes have been proposed to play a role. [8,11,17,57].
Although transmission was not evaluated specifically, we demonstrated that viral RNA
could be detected at low levels on the fur of some ferrets but infectious virus could not be
re-isolated. These findings highlight the potential importance of such indirect means of
transmission, as seen in clinical settings [58]. Whilst possible virus transmission via animal
fur may be of limited relevance to humans, is of particular interest given the increasing
number of SARS-CoV-2 cases in farmed mink [20,22].

5. Conclusions

The asymptomatic transmission of SARS-CoV-2 represents a serious challenge for the
control of COVID-19 [59]. Our study has demonstrated that the ferret is a suitable animal
model for asymptomatic or mild SARS-CoV-2 infection in humans and other susceptible
animal species. Despite the subclinical infection in ferrets, the viral shedding profile resem-
bled that of asymptomatic human cases that are efficient in transmitting virus between
individuals. In the future it will be important to evaluate the efficacy of intervention
strategies in reducing the transmission of SARS-CoV-2 by asymptomatic carriers.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-4
915/13/1/113/s1: Figure S1. Real-time RT-qPCR quantification. Figure S2. Clinical data for daily
temperature and weight monitoring.
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