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BACKGROUND: The development of a successful immunotherapy is hampered by an ineffective T-cell repertoire against tumour
antigens and the inability of the patient’s immune system to overcome tolerance-inducing mechanisms. Here, we test the specific
recognition and lytical potential of allo-restricted CD8þ T cells against Ewing tumour (ET) associated antigens Enhancer of Zeste,
Drosophila Homolog 2 (EZH2), and Chondromodulin-I (CHM1) identified through previous microarray analysis.
METHODS: Following repetitive CHM1319 (VIMPCSWWV) and EZH2666 (YMCSFLFNL) peptide-driven stimulations with
HLA-A*0201þ dendritic cells (DC), allo-restricted HLA-A*0201� CD8þ T cells were stained with HLA-A*0201/peptide
multimers, sorted and expanded by limiting dilution.
RESULTS: Expanded T cells specifically recognised peptide-pulsed target cells or antigen-transfected cells in the context of
HLA-A*0201 and killed HLA-A*0201þ ET lines expressing the antigen while HLA-A*0201– ET lines were not affected. Furthermore,
adoptively transferred T cells caused significant ET growth delay in Rag2�/�gC

�/� mice. Within this context, we identified the
CHM1319 peptide as a new candidate target antigen for ET immunotherapy.
CONCLUSION: These results clearly identify the ET-derived antigens, EZH2666 and CHM1319, as suitable targets for protective
allo-restricted human CD8þ T-cell responses against non-immunogenic ET and may benefit new therapeutic strategies in ET patients
treated with allogeneic stem cell transplantation.
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T-cell based tumour immunology suffers from a principal
dilemma: tumour-derived peptides are frequently self-antigens
associated with MHC class I molecules. Moreover, T cells with
high affinity for such antigens undergo negative selection and
peripheral tolerance mechanisms diminish their number
or eliminate self-peptide specific cytotoxic T cells. Nevertheless,
as the T-cell repertoire has not been educated to ignore self
antigens presented by foreign MHC molecules, allo-restricted
T cells may represent a comprehensive repository for tumour-
specific T cells (Felix and Allen, 2007).

Allogeneic stem cell transplantation (SCT) is an established
treatment for leukaemia where donor T cells induce a graft-vs-
leukaemia response that can eradicate residual malignant cells
(Kolb et al, 1995), and is now being explored as a treatment for a
variety of other haematologic and non-haematologic malignancies
(Childs et al, 2000). For malignant peripheral neuroectodermal
tumours (Ewing tumour, ET), patients with vast bone affection
and poor prognosis, allogeneic SCT represents a therapy option
(Burdach et al, 2000, 2009). Koscielniak et al (2005) and Lucas et al
(2008) reported tumour regression in ET patients with advanced
disease immediately after allogeneic SCT. This possible graft-vs-ET

effect, however, may be associated with a pronounced toxicity
potential of a graft-vs-host response in this therapeutic approach.

During the past years, methods emerged to identify, isolate, and
expand tumour peptide-specific allo-restricted T cells ex vivo
(Moris et al, 2001; Dutoit et al, 2002; Mutis et al, 2002; Amrolia
et al, 2003; Whitelegg et al, 2005; Schuster et al, 2007), anticipating
their potential use for adoptive immunotherapy (Rosenberg et al,
2008) for example, to replace common donor lymphocyte infusion
(DLI) with tumour-specific allo-restricted T cells. We describe
here, an HLA-A*0201-multimer approach using peptides derived
from genes identified to be overexpressed in ET by microarray
analysis (Staege et al, 2004). These peptide/MHC multimers
enabled the selection of allo-restricted tumour-antigen specific
T cells from an allo-reactive T-cell pool. Such T cells were peptide-
specific and cytotoxic against ET cells with the appropriate
HLA-expression and significantly delayed tumour growth after
adoptive transfer in a xenograft mouse model.

MATERIALS AND METHODS

Cell lines

MHHES1, SK-ES1, SK-N-MC, TC71 (ET cell lines), CHP126,
MHHNB11, SH-SY5Y, SIMA (neuroblastoma cells), and NALM6,
697, cALL2 (paediatric human B-cell precursor leukaemic lines)
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were obtained from the German Collection of Microorganisms
and Cell Cultures (DSMZ; Braunschweig, Germany). The HLA-
A*0201þ melanoma cell line SK-MEL29 was provided by L Old
(Memorial Sloan-Kettering Cancer Institute, New York, NY, USA).
A673 (ET cells) and Cos-7 (Simian SV40-transformed fibroblasts)
were obtained from ATCC (LGC Standards GmbH, Wesel,
Germany), the TAP-defective HLA*A0201þ T2 cell line (LCL
somatic cell hybrid) was from P Cresswell (Yale University School
of Medicine, New Haven, CT, USA). The HLA-A*0201 – erythroid
leukaemia cell line K562 was a gift from A Knuth and E Jäger
(Krankenhaus Nordwest, Frankfurt, Germany). HLA-A*0201 –

SBSR-AKS ET cells were described previously (Richter et al,
2009). All cell lines are routinely tested for purity (e.g.,
translocation product, surface antigen or HLA-phenotype) and
mycoplasma contamination. Lymphoblastoid cell lines (LCL) were
generated by EBV transformation of peripheral blood B cells from
HLA-A*0201þ healthy donors by use of a mini-EBV plasmid
(Moosmann et al, 2002). The supernatant was provided by Josef
Mautner and Andreas Moosmann, Helmholtz-Zentrum München.
Tumour cell lines including K562 cells were cultured in RPMI
1640 or DMEM (only Cos-7 and SK-Mel29; Life Technologies,
Paisley, Scotland) supplemented with 10% foetal calf serum (FCS,
Biochrom, Berlin, Germany), 100 U ml�1 penicillin, 100 mg ml�1

streptomycin, and 2 mM glutamine (all from Life Technologies).
RPMI 1640 medium for LCL and T2 cells was supplemented with
10% human AB serum, 2 mM L-glutamine, 1 mM Na-pyruvate, non-
essential amino acids, and 50 mg ml�1 gentamycine (all from Life
Technologies).

Isolation of PBMC

Peripheral blood mononuclear cells (PBMCs) were isolated from
human peripheral blood samples of healthy donors (obtained with
IRB approval and informed consent from the DRK-Blutspende-
dienst Baden-Württemberg-Hessen in Ulm, Germany) by centri-
fugation over Ficoll-Paque (GE Healthcare, Freiburg, Germany)
according to the supplier’s recommendations.

Generation of dendritic cells (DCs)

CD14þ cells were isolated from PBMCs with anti-human CD14
magnetic particles (BD Biosciences, Heidelberg, Germany) accord-
ing to the manufacturer’s instructions. Purity of cells was
confirmed by flow cytometry on a FACS Calibur (BD Biosciences).

CD14þ monocytes were cultured in X-Vivo15 (Biowhittaker/
Cambrex Bio Science Verviers, Apen, Germany)/1% AB serum
(Biowhittaker/Cambrex) with 1000 IU ml�1 IL-4 (R&D Systems,
Wiesbaden, Germany) and 800 IU ml�1 GM-CSF (Leukine sargra-
mostim, Bayer Health Care, Leverkusen, Germany) at a concentra-
tion of 3� 105 ml�1 with 25 –30 ml per 75 cm2 cell culture flask
(TPP, Trasadingen, Switzerland) at 37 1C and 5% CO2. On day 3,
cytokines were replaced. On day 6 of culture, DC maturation was
induced by adding a cytokine cocktail consisting of 10 ng ml�1

TNFa, 10 ng ml�1 IL-1b, 1000 IU ml�1 IL-6 (R&D Systems), and
1 mg ml�1 PGE2 (Cayman Europe, Tallin, Estonia). On culture day 8
and 9, cells displayed a mature phenotype as evidenced by flow
cytometry. DCs were considered mature when positive for CD86,
CD83, and HLA-DR.

Isolation of CD8þ T cells

Untouched CD8þ T cells were purified from human HLA-A*0201 –

PBMCs by negative isolation technique using a cocktail of biotin-
conjugated non-CD8 monoclonal antibodies and anti-biotin micro
beads followed by depletion of magnetically labelled cells on LS
columns (all from Miltenyi Biotec, Bergisch Gladbach, Germany).
Purity of isolated CD8þ T cells was confirmed by flow cytometry.

In vitro priming

Mature DCs were resuspended in T-cell medium (AIM-V
supplemented with 5% human AB serum, 2 mM L-glutamine,
and 50mg ml�1 gentamycine) and pulsed with selected peptides at
a concentration of 30–50 mM in the presence of 20 mg ml�1 b2M
(Sigma, Taufkirchen, Germany) for 4 h at 37 1C and 5% CO2

washed and were then irradiated at 35 Gy, and used for T-cell
priming immediately or stored in liquid nitrogen for subsequent
experiments. CD8þ T cells from an HLA-A*0201� donor were
stimulated with allogeneic HLA-A*0201þ DCs in 200ml of T-cell
medium in a stimulator to responder rate of 1 : 20 (5� 103 DCs per
well : 105 CD8þ T cells per well). For priming, T cells and DCs were
co-cultured with 10 ng ml�1 rhIL-12 and 1000 U ml�1 rhIL-6 and
after 1 week were restimulated with the same number of loaded
DCs in the presence of 5 ng ml�1 rhIL-7 and 100 U ml�1 rhIL-2.

Multimer-staining and cell sorting

Two weeks after the beginning of in vitro priming all activated
T cells were pooled and stained with a specific peptide/
HLA-A*0201-Pentamer-PE (Proimmune, Oxford, UK) and coun-
terstained with an anti-human CD8-FITC mAb (BD Biosciences)
for cell sorting. Isotype IgG mAb and irrelevant peptide/
HLA-A*0201-Pentamer-PE served as a control. Cell sorting was
executed on a FACS Aria (BD Biosciences).

Vb analysis of T-cell receptor repertoire

To determine the status of clonality of T-cell clones, the IOTest
Beta Mark Kit (Beckman Coulter, Brea, CA, USA) was used. This
kit is designed for flow cytometric determination of the T-cell
receptor (TCR) Vb repertoire of human T lymphocytes and allows
testing for 24 different Vb specificities that cover about 70% of the
normal human TCR Vb repertoire.

Limiting dilution

After purifying peptide-specific T cells through peptide/
HLA-A*0201-multimer-mediated cell sorting, isolated T cells were
expanded using limiting dilution. Expansion was conducted in
round-bottom 96-well plates in 200 ml T-cell medium supplemen-
ted with anti-CD3 (30 ng ml�1), rhIL-2 (50 IU ml�1), rhIL-15
(2 ng ml�1), irradiated LCL; 1� 105 per well and irradiated PBMCs
pooled from three different healthy donors (5� 104 per well) as
feeder cells as previously described (Parker et al, 1994). Cytokines
and 100 ml medium/well were replaced after 1 week. Expanded
T cells were further characterized in ELISpot assays.

ELISpot-assay

The 96-well mixed cellulose ester plates (MultiScreen-HA Filter
Plate, 0.45 mm, Millipore, Eschborn, Germany) were coated over-
night at 4 1C with 50 ml per well of capture antibody solution
(all Mabtech, Hamburg, Germany, Supplementary Table SII) in
PBS. Plates were then washed four times with PBS and
subsequently blocked with 150 ml per well of TCM for 1 h at
37 1C. When peptide-loaded T2 cells were used, they were pre-
incubated with 30– 50mM peptide for at least 2 h at 37 1C. When ET
cells were used, they were pre-incubated with 100 U ml�1 IFN-g
48 h before use in the assay. After blocking, the T cells to be
investigated were either adjusted at a concentration of 2� 106

cells ml�1 in TCM and 50 ml of serial dilutions (Granzyme B) or
50 ml containing 1000 T cells (IFN-g) were plated into the wells and
incubated for 30 min at 37 1C. The target cells were washed,
resuspended in TCM and 50 ml per well allocated per well
containing 20 000 cells. For HLA-A*0201 blocking of A673, the
HLA class I (W6/32) specific antibody (Abcam, Cambridge, UK)
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was added to the wells at a concentration of 10 mg ml�1. Peripheral
blood mononuclear cells (PBMCs) isolated from an HLA-A*0201þ

healthy donor were either stimulated with 3 mg ml�1 OKT3 for 48 h
or left untreated. Before application to the assay, cells were
irradiated with 30 Gy and washed thrice with PBS. The plates
were then incubated for 20 h at 37 1C. Subsequently, the plates were
washed six times with PBS/0.05% Tween 20 (Sigma). Then wells
were incubated for 2 h at 37 1C with 200 ml of biotinylated
secondary antibody (all Mabtech, Supplementary Table S2)
diluted in PBS/0.5% BSA. The plates were washed six times with
PBS/0.05% Tween 20. A volume of 200 ml per well of Streptavidin-
HRP (Mabtech) diluted 1/1000 was added and plates were
incubated for 1 h at RT. After three washes with PBS/0.05% Tween
20 followed by three final washes with PBS, 100ml of 3-Amino-9-
ethyl-carbazole solution (Sigma) was added and incubated for
4–8 min. Colour-development was stopped by washing under
running tap water. Spots in dried plates were counted on an AID-
ELIRIFL04 ELISpot reader (Autoimmun Diagnostika, Strassberg,
Germany).

Tumour challenge and adoptive T-cell transfer in
Rag2�/�cC

�/�mice

Immunodeficient Rag2�/�gC
�/� mice on a BALB/c background

were obtained from the Central Institute for Experimental Animals
(Kawasaki, Japan). Mice were bred and maintained in our animal
facility under pathogen-free conditions in accordance with the
institutional guidelines and approval by local authorities. Each
mouse was challenged by s.c. intra-inguinal injection of 2� 106

A673 ET cells and monitored for tumour growth. Three days after
tumour challenge, each mouse received either 2� 106 EZH2-15
(n¼ 7) or 2� 106 CHM1-6 (n¼ 6) T cells intravenously or were left
untreated (control group, n¼ 8). At 17 days after tumour
challenge, mice were killed and analysed for tumour weight.

RESULTS

Histone methyltransferase EZH2 and chondromodulin-I
are strongly upregulated in Ewing tumours

The EWS-FLI1 fusion protein, which is pathognomonic in 85%
of ET, represents an ideal immunological target in search of
immunogenic peptides for T-cell based therapy. However, we were
not able to validate any peptide from this fusion region as a good
binder to, for example, HLA-A*0201 (Meyer-Wentrup et al, 2005).
Therefore, we reinforced our endeavours to identify cytotoxic
T-cell epitopes of other antigens that are specifically expressed in
ET. In a previous microarray analysis, we recognised the histone
(lysine) methyl-transferase Enhancer of Zeste, Drosophila,
Homolog 2 (EZH2) and Chondromodulin-I (CHM1) as strongly
upregulated genes in ET (Staege et al, 2004) and demonstrated that
EZH2 has a critical role in ET pathology by determining the
oncogenicity and stem cell phenotype of this tumour (Richter et al,
2009). As shown in Figure 1A, CHM1 expression was not observed
in any normal tissue analyzed, whereas EZH2 is expressed
ubiquitously at low levels, with elevated levels in bone marrow,
rectum, testis, and thymus. In addition, real-time RT–PCR
demonstrated that other childhood malignancies including com-
mon acute lymphoblastic leukaemia (cALL) and neuroblastoma
showed a significantly lower or no expression of CHM1 and EZH2,
respectively (Figure 1B).

Selection of HLA-A*0201-restricted peptides derived
from ET antigens

HLA-A*0201 epitope binding analyses and presumed proteasomal
cleavage prediction were performed by use of SYFPEITHI
(Rammensee et al, 1999), BIMAS (Parker et al, 1994), and NetCTL

(Larsen et al, 2005) algorithms (see Supplementary Information).
Selected peptides and their scores are shown in Supplementary
Table SI. Synthesised peptides were validated for binding to HLA-
A*0201 onto T2 cells. Peptide dependent increase of HLA-A*0201
expression measured by flow cytometry is shown (Supplementary
Figure 1). Specific binding was correlated to influenza matrix
peptide (GILGFVFTL) binding. Peptide CHM1319 and previously
published peptide EZH2666 (Steele et al, 2006) demonstrated strong
HLA-A*0201 binding whereas peptide CHM138 revealed no
binding at all in this assay. Peptides CHM1319 and EZH2666 were
chosen for subsequent in vitro priming of T cells.

Selection of peptide- and ET-specific T cells

Although autologous HLA-A*0201 restricted CD8þ T cells
specific for either EZH2666 or CHM1319 peptide were easily
identified, they were in no case able to recognise HLA-A*0201þ

ET cells (Supplementary Figure 2). Therefore, we focused our
attention on the establishment of peptide-specific allo-restricted T
cells. For this purpose, in vitro generated, mature HLA-A*0201þ

DC were pulsed with either CHM1319 or EZH2666, which were then
used to stimulate purified HLA-A*0201� CD8þ T cells twice in a
7-day interval (see Materials and Methods). Subsequently,
to separate allo-reactive CTL from allo-restricted CTL, peptide/
HLA-A*0201þ multimers were used to label allo-restricted CD8þ

T cells (Borg et al, 2005). The CTL peptide/HLA-A*0201þ

multimer staining was highly specific and usually stained
only between 0.1–0.4% cells of the stimulated T-cell population.
Peptide-multimer-positive T cells were sorted by FACS. Figure 2A
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Figure 1 Antigen-specific expression profile (gray). (A) Expression
profile of EZH2 and CHM1 in Ewing tumours (ET, red) in comparison to
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tissue samples were analyzed using EOS-Hu01 microarrays (Staege et al,
2004). (B) Expression of EZH2 and CHM1 was evaluated by real-time
RT–PCR in different paediatric tumour cell lines. Error bars represent s.d.
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provides an example of these marginal T-cell populations that were
positive for both peptide/HLA-A*0201-multimer and CD8, here
specifically stained with the CHM1319/multimer. Subsequently,
sorted T cells were expanded using limiting dilution and tested for
specificity in ELISpot assays.

In a first screen, the expanded T-cell lines were tested for
specific IFN-g release against individual peptides: T2 cells were
either pulsed with CHM1319 or EZH2666, or the influenza-derived
peptide (GILGFVFTL) as a control. For example, of the T cells
initially specifically selected with the CHM1319/HLA-A*0201-
multimer, 96 cell g release against CHM1 lines were grown and
tested for specific IFN-319 peptide. The results of seven lines are
shown in Figure 2B, left. One line that passed this screen (CHM1-6)
was further expanded and retested on T2 cells (Supplementary
Figure 3, left) as well as Cos-7 cells, which were double-transfected
with an HLA-A*0201 expression plasmid and a CHM1 cDNA
encoding vector, confirming specific recognition and peptide
presentation (P¼ 0.01, two-tailed t-test; Figure 2C, left). Further-
more, subsequent analysis demonstrated correct HLA-A*0201-
restricted recognition of ET cell lines (P¼ 0.007, two-tailed t-test;
Figure 2C, right). A similar screen for T cells specific for EZH2666

peptide identified three lines EZH2-11, -15, and -24 with peptide-
specific recognition on T2 cells (Figure 2B, right). One line that
was further expanded and repeatedly tested (Supplementary Figure
3, right), revealed specific recognition of processed EZH2666

peptide on double-transfected Cos-7 cells (P¼ 0.008, two-tailed
t-test; Figure 2C, left) and HLA-A*0201 specific identification

of ET lines (P¼ 0.002, two-tailed t-test; Figure 2C, right). In flow
cytometry, these two lines CHM1-6 (specific for CHM1319) and
EZH2-15 (specific for EZH2666) were only positive for Vb 13.2
(CHM1-6) or Vb 13.1 (EZH2-15) (data not shown). Both lines
stained positive with their respective peptide/HLA-A*0201-multi-
mer (Figure 2D) and were CD27low, CD28 – , CD45RAlow, CD56þ ,
CD62L – , IL7R – , CCR5 – , and CCR7 – (data not shown).

Allo-restricted T cells mediate Ewing tumour-specific
cytotoxicity

To test for ET specific cell-mediated cytotoxicity of allo-restricted
T-cell lines, we investigated their ability for antigen-specific
granzyme B release in the ELISpot assay (Shafer-Weaver et al,
2003; Anderson et al, 2007). Both T-cell lines demonstrated a
specific granzyme B release only when tested in the appro-
priate antigen/HLA-A*0201-restriction combination, while
HLA-A*0201 – ET cells recognition (SBSR-AKS cells) and possible
NK-cell activity, as tested on K562 cells, was not higher than
background level of pure T cells (overall Po0.05 until effector to
target ratio reached 1.25, Welch two sample t-test; Figures 3A
and B). Retesting at a fixed effector to target ratio of 10 : 1 only
identified a significant granzyme B release when these T-cell lines
recognised HLA-A*0201þ ET cells (all Po0.05; two-tailed t-test;
Figure 3C). HLA-restricted recognition was reversed after blocking
with an HLA-A*0201 blocking antibody. Furthermore, HLA-
A*0201þ PBMC or OKT3 activated, HLA-A*0201þ T cells where
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only minimally detected by these allo-restricted T cells, supporting
HLA-A*0201-restricted antigen-specific cytotoxicity of our
selected T-cell lines (all Po0.05, two-tailed t-test; Figure 4).
General feasibility of this approach was further demonstrated by
our ability to identify and sufficiently expand several of such T-cell
lines derived of five independent donors tested (Table 1).

ET-specific T cells delay tumour growth in Rag2�/�cC
�/�

mice after adoptive transfer

To analyse whether such allo-restricted cytotoxic T cells can
inhibit tumour growth in vivo, we challenged Rag2�/�gC

�/� mice
s.c. intra-inguinally with EWS-FLI1þ HLA-A*0201þ A673 ET
cells, followed by i.v. injection of EZH2 (n¼ 7) or CHM1 (n¼ 6)
specific T cells 3 days later (see Materials and Methods). Control
mice (n¼ 8) did not receive T-cell treatment. Median tumour
weights of mice receiving T cells were significantly lower compared
with control mice (P¼ 0.015 for EZH2- and 0.039 for CHM1 study
group, respectively, compared with controls, Welch two sample
t-test; Figure 5). None of the treated mice showed any signs of
GvHD upon analysis.

DISCUSSION

Ewing tumour are highly malignant tumours of neuroectodermal
or endothelial origin (Schmidt et al, 1985; Staege et al, 2004) and
are molecularly defined by ews/ets translocations. In all, 85% of ET
are characterized by a specific EWS-FLI1 translocation fusing the
gene coding for the ribosomal binding protein EWS to the gene
coding for the transcription factor FLI1. The resulting chimeric
transcription factor has been implicated in tumour genesis and is
tumour-specific (Kovar, 1998; de Alava and Gerald, 2000).
However, despite an MHC class II restricted peptide derived from
the fusion region of EWS-FLI1 that is able to initiate a CD4þ T-cell
response (Meyer-Wentrup et al, 2005), no immunogenic
ET-specific MHC class I binding peptide derived from this fusion
region has been identified yet. To further determine possible
ET-specific immunogenic peptides, we utilised high-density DNA
microarrays for the identification of ET-specific gene expression
profiles in comparison with 133 normal tissues of diverse origin
(normal body atlas, NBA) and identified 37 genes that were highly
upregulated or specifically expressed in ET (Staege et al, 2004).
Of these, CHM1 and EZH2 revealed specific or at least strong
overexpression in ET.

Chondromodulin-I is a glycoprotein that is normally expressed
mainly in immature cartilage, stimulating proteoglycan and DNA
synthesis, proliferation and differentiation of chondrocytes. It
inhibits angiogenesis in vitro and in vivo (Hiraki et al, 1997, 1999).
The overexpression of such a molecule in a malignant tumour is
surprising, but may be associated with the reduced microvessel
density in ET and the observation that an increased aggressiveness
of hypoxic tumour cells may correlate with increased metastasis
and inferior prognosis (Dunst et al, 2001). Chondromodulin-I was
previously not known to be tumour-associated.

Enhancer of Zeste, Drosophila Homolog 2 is part of the
polycomb repressor complex 2 (PRC2) and within this complex
it silences target genes by methylating lysine 27 on histone
3 (H3K27). Enhancer of Zeste, Drosophila Homolog 2 is already
active at gastrulation (Sparmann and van Lohuizen, 2006). We
found EWS-FLI1 to be bound to the EZH2 promoter in vivo,
inducing EZH2 expression in ET and mesenchymal stem cells.
Downregulation of EZH2 by RNA interference suppressed
ET tumour development and metastasis in immunodeficient
Rag2�/�gC

�/� mice. Enhancer of Zeste, Drosophila Homolog
2 maintained an undifferentiated stemness phenotype in ET
(Richter et al, 2009), implicating that EZH2 might have a central
role in ET pathology (Burdach et al, 2009). Enhancer of Zeste,
Drosophila Homolog 2 upregulation is known to be associated
with poor prognosis in prostate cancer (Varambally et al, 2002). As
polycomb group proteins are known to be vitally involved in
transcriptional control and carcinogenesis in several human
tumours (Simon and Lange, 2008), EZH2 may be less susceptible
to the development of immune escape variants. Peptide EZH2666

Table 1 CHM1 and EZH2-specific T-cell line data from five different donors

Donor
no. Peptide

Sorted
cells

Tested
lines

Best specified
T-cell lines

T2+rel/irr peptide
mean of IFNc

A673/SBSR-AKS mean
of IFNc or GB spots

Expansion factor
after 14 days

1 CHM1-319 1560 96 2a 19.6 and 145 30.7 (IFNg) 80–100
2 EZH2-666 5418 96 4a 1.8, 57.8, 490 and 15 10.1 (IFNg) 100–140
3 CHM1-319 590 48 1 5 4.9 (GB) 17
4 CHM1-319 706 9 2 1.6 and 2.3 3.6 and 6.8 (IFNg) 22–24
5 CHM1-319 2160 48 1 61.5 11.1 (IFNg) 50–80

Abbreviations: IFNg¼ interferon-g; irr¼ irrelevant; GB¼ granzyme B; rel¼ relevant. aOnly one cell line was further tested for A673 and SBSR-AKS discrimination. CD8+ T Cells
(6� 106 to 1� 108) from five different HLA-A*0201� healthy donors were stained and screened for the presence of CHM1319 or EZH2666 peptide-specific CD8+ T cells after
priming with peptide-loaded HLA-A*0201+ dendritic cells. Expanded T-cell lines were tested for specificity in IFNg (and granzyme B for donor no. 3) ELISpot assays using T2 cells
pulsed with either relevant or irrelevant peptides and A673 and SBSR-AKS Ewing tumour cell lines as targets with an ratio of 1000 T cells/20 000 target cells (or 200 000 T cells/
20 000 target cells in granzyme B assays). Numbers, specificity data and expansion rates are given.
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was already validated as a target for cancer immunotherapy (Steele
et al, 2006).

Mixed results have been observed with autologous SCT for
patients with high risk or recurrent ET. Whereas some studies
reported improved disease free survival over historical controls
(Burdach et al, 1991, 2003; Paulussen et al, 1998; Burdach, 2004),
others observed no long-term benefit compared with conventional
therapies (Cotterill et al, 2000; Meyers et al, 2001). These findings
emphasise the need for alternative approaches. In ET patients with
vast bone affection and poor prognosis, allogeneic SCT is a therapy
option (Burdach et al, 2000; Koscielniak et al, 2005; Lucas et al,
2008). However, the desired GvT effect is intrinsically tied to an
often-pronounced GvHD, mediated by allo-reactive T cells.
To specifically direct such T cells against the tumour, it is
necessary to identify the allo-restricted tumour-specific T cells
within an allogeneic T-cell population (Dutoit et al, 2002; Mutis
et al, 2002; Amrolia et al, 2003; Whitelegg et al, 2005; Schuster
et al, 2007).

A recent retrospective study based on data drawn from the
EBMT-, PRST-, APBMT-, and MetaEICESS-registries revealed that
there is no improvement of survival of ET patients receiving
reduced intensity conditioning compared with high-dose
conditioning before allogeneic stem cell transplantation with
HLA-matched grafts, implicating absence of a clinically relevant
graft vs ET effect (Thiel et al, 2011). Reduced intensity condition-
ing regimen followed by haploidentical stem cell transplantation is
subject to various ongoing prospective trials and may increasingly
replace HLA-matched approaches. Thus, HLA-A*0201þ ET
patients may profit from a treatment based on adoptive transfer
from ET-specific T cells of an HLA-A*0201� donor after
haploidentical stem cell transplantation.

We isolated allo-restricted T cells by MHC multimer-staining
and cell sorting. Using this technique, we have succeeded in
establishing T-cell lines directed against several HLA-A*0201-
restricted peptides derived from ET-specific antigens. Reliable
in silico prediction algorithms are helpful tools to identify a CTL
epitope (Larsen et al, 2005). Still, in silico high scoring epitope
candidates have to be confirmed for binding to HLA-A*0201.
We not only verified the already published EZH2666 peptide as a
binding peptide on T2 cells (Steele et al, 2006), but identified
CHM319 as a new good binding peptide (Supplementary Figure 1).
As CHM1319 had been a previously undescribed peptide, it could
have been possible that it represented an artificial epitope.
Therefore, the simian cell line Cos-7 was co-transfected with
vectors containing the human HLA-A*0201 gene and the gene
of interest. Again, not only the EZH2666 peptide-specific T cells
recognised such double-transfected Cos-7 cells, but also the
CHM319 peptide-specific T cells specifically released IFN�g when
contacting Cos-7 co-transfected cells, indicating processivity of
these peptide epitopes. Even though EZH2 is expressed at a low
level on a variety of tissues compared with CHM1, it may
nevertheless constitute an appropriate target for T-cell therapy
after successful engraftment, because of its particularly high
expression in ET. The risk of GvHD caused by EZH2666-specific T
cells is likely to be lower than the risk associated with infusion of

blunt donor lymphocytes. Nevertheless, CHM1 represents a more
appropriate target and further ET-specific targets remain to be
identified and tested.

The T cells isolated here not only specifically recognised peptide-
pulsed or antigen-transfected cells in the context of HLA-A*0201, but
also released granzyme B when recognising HLA-A*0201þ ET
expressing the antigen, while other HLA-A*0201þ tumour lines and
HLA-A*0201 negative ET were not affected. Furthermore, efficacy of
allo-restricted EZH2666 and/or CHM1319 specific T cells were
confirmed in a xenograft mouse model, where ET growth was
significantly delayed after adoptive transfer of such T cells compared
with controls and GvHD was absent.

Although we could demonstrate the general feasibility of our
approach, with which we were able to generate allo-restricted
ET-specific T cells in sufficient numbers of every donor tested,
long-term persistence of our T cells in vivo has not been analyzed,
but may be further investigated in a humanised mouse model
(Traggiai et al, 2004). Future approaches generating ET-specific T
cells against EZH2666 and/or CHM1319 with a central memory (CM)
phenotype (Berger et al, 2008) in addition may yield improved
anti-tumour efficacy. Furthermore, TCR identification, cloning
and transfection into donor CM CD8þ T cells before adoptive
transfer may constitute an appropriate tool to simplify the
generation procedure to obtain ET-specific T cells.

However, the generation of highly specific and efficacious
allo-restricted T cells here already yet opens the avenue for new
therapeutic strategies in allogeneic stem cell and effector-cell
transplantation in the treatment of ET patients.
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