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Background
Unsupervised clustering is ubiquitously used for the interpretation of ‘omics datasets 
[1–7]. Clustering is a particularly central challenge in the analysis of single-cell measure-
ment data (e.g. single cell RNA-seq) due to its high dimensionality [8–10]. Clustering 
is also increasingly being used for disease subtype classification and risk stratification 
[11–19]. It is therefore essential that optimal clustering results are easily and robustly 
obtainable, without user-selected hyperparameters introducing bias and impeding rapid 
analysis.

Clustering is inherently under-defined [20–22]. The definition of “cluster” differs 
from problem to problem and the desired goal of the analysis [14], and therefore it is 
not possible to make a single algorithm or metric that can universally identify the “best” 
clusters [23]. Researchers therefore often compare results from multiple algorithms 
and hyperparameters [7, 24–28]. Typically, the effect of hyperparameter choice on the 
quality of clustering results cannot be described with a convex function, meaning that 
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hyperparameters should be chosen through exhaustive grid search [29], a slow and cum-
bersome process. Software packages for automatic hyperparameter tuning and model 
selection for regression and classification exist, notably auto-sklearn from AutoML [30], 
and some groups have made excellent tools for distributing a single clustering calcula-
tion for huge datasets [31, 32], but to the best of our knowledge, there is no package for 
comparing several clustering algorithms and hyperparameters.

Here we present hypercluster, a python package and SnakeMake pipeline for rigorous, 
reproducible and parallelized clustering calculation and evaluation. This package allows 
users to compare multiple hyperparameters and algorithms, then easily visualize evalu-
ation metrics for each result [33]. The SnakeMake pipeline allows parallelization, greatly 
reducing wall-clock time for users [34]. Hypercluster provides researchers with a flex-
ible, parallelized, distributed and user-friendly method for clustering algorithm selection 
and hyper-parameter tuning.

Implementation
Requirements

The hypercluster package uses scikit-learn [35], python-igraph [36], leidenalg [37] and 
louvain-igraph [38] to assign cluster labels and uses scikit-learn and custom metrics to 
compare clustering algorithms and hyperparameters to find optimal clusters for any 
given input data (Fig. 1). Hypercluster requires python3, pandas [39], numpy [40], scipy 
[41], matplotlib [42], seaborn [43], scikit-learn [35], python-igraph [36], leidenalg [37], 
louvain-igraph [38] and SnakeMake [34].

General workflow and examples

Hypercluster can be run independently of SnakeMake, as a standalone python package. 
Input and output structure, as well as example workflows on a breast cancer RNA-seq 
data set [43] and scRNA-seq [45] can be found at https ://githu b.com/ruggl eslab /hyper 
clust er/tree/maste r/examp les. Briefly, the workflow starts with instantiating an Auto-
Clusterer (for a single algorithm) or MultiAutoClusterer (for multiple algorithms) object 
with default or user-defined hyperparameters (Fig. 1a). To run through hyperparameters 
for a dataset, users simply provide a pandas DataFrame to the “fit’’ method on either 
object (Fig. 1b). Users evaluate the labeling results with a variety of metrics by running 
the “evaluate” method (Fig.  1c). Clustering labels and evaluations are then aggregated 
into convenient tables (Fig.  1d), which can be visualized with built in functions (e.g. 
Additional file 1: Fig. S1, Additional file 2: Fig. S2).

Configuring the SnakeMake pipeline

The SnakeMake pipeline allows users to parallelize clustering calculations on mul-
tiple threads on a single computer, multiple compute nodes on a high performance 
cluster or in a cloud cluster [34]. The pipeline is configured through a config.yml 
file (Table  1), which contains user-specified input and output directories and files 
(Table 1, lines 1–3, 5–7) and the hyperparameter search space (Fig. 1a, Table 1, line 
18). This file contains predefined defaults for the search space that allow the pipeline 
to be used “out of the box.” Further, users can specify whether to use exhaustive grid 
search or random search; if random search is selected, probability weights for each 

https://github.com/ruggleslab/hypercluster/tree/master/examples
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hyperparameter can be chosen (Table  1, line 9). The pipeline then schedules each 
clustering calculation and evaluation as a separate job (Fig.  1b). Users can specify 
which evaluation metrics to apply (Fig. 1c, Table 1, line 10) and add keyword argu-
ments to tune several steps in the process (Table 1, lines 4, 8–9, 11–16). Clustering 
and evaluation results are then aggregated into final tables (Fig. 1d). Users can refer-
ence the documentation and examples for more information.

Fig. 1 Hypercluster workflow schematic. a Clustering algorithms and their respective hyperparameters 
are user-specified. Hypercluster then uses those combinations to create exhaustive configurations, and if 
selected a random subset is chosen. b Snakemake is then used to distribute each clustering calculation 
into different jobs. c Each set of clustering labels is then evaluated in a separate job by a user-specified list 
of metrics. d All clustering results and evaluation results are aggregated into tables. Best labels can also be 
chosen by a user-specified metric.
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As input, users provide a data table with samples to be clustered as rows and features 
as columns. Users can then simply run “snakemake -s hypercluster.smk -configfile con-
fig.yml” in the command line, with any additional SnakeMake flags appropriate for their 
system. Applying the same configuration to new files or testing new algorithms on old 
data simply requires editing the inputs in the config.yml file and rerunning the Snake-
Make command.

Extending hypercluster

Currently, hypercluster can perform any clustering algorithm and calculate any evalu-
ation available in scikit-learn [35, 46], as well as non-negative matrix factorization 
(NMF) [47], Louvain [38] and Leiden [37] clustering. Additional clustering classes and 
evaluation metric functions can be added by users in the additional_clusterer.py and 

Table 1 Parameters in SnakeMake configuration file

config.yml parameter Explanation Example

1 input_data_folder Path to folder in which input data 
can be found

/input_data

2 input_data_files List of prefixes of data files [’input_data1’, ’input_data2’]

3 gold_standard_file File name of gold_standard_file, 
must be in input_data_folder

{’input_data’: ’gold_standard_file.txt’}

4 read_csv_kwargs pandas.read_csv keyword argu-
ments for input data

{’test_input’: {’index_col’:[0]}}

5 output_folder Path to folder into which results 
should be written

/results

6 intermediates_folder Name of subfolder to put interme-
diate results

clustering_intermediates

7 clustering_results Name of subfolder to put aggre-
gated results

clustering

8 clusterer_kwargs Additional arguments to pass to 
clusterers

KMeans: {’random_state’:8}}

9 generate_parameters_addtl_
kwargs

Additonal keyword arguments for 
the hypercluster.AutoClusterer 
class

{‘KMeans’: {’random_search’: true)

10 evaluations Names of evaluation metrics to use [’silhouette_score’, ’number_clus-
tered’]

11 eval_kwargs Additional kwargs per evaluation 
metric function

{’silhouette_score’: {’random_state’: 
8}}

12 metric_to_choose_best Which metric to maximize to 
choose the labels

silhouette_score

13 metric_to_compare_labels Which metric to use to compare 
label results to each other

adjusted_rand_score

14 compare_samples Whether to made a table and figure 
with counts of how often each 
two samples are in the same 
cluster

"true"

15 output_kwargs pandas.to_csv and pandas.read_csv 
keyword arguments for output 
tables

{’evaluations’: {’index_col’:[0]}, ’labels’: 
{’index_col’:[0]}}

16 heatmap_kwargs Arguments for seaborn.heatmap for 
pairwise visualizations

{’vmin’:-2, ’vmax’:2}

17 optimization_parameters Which algorithms and correspond-
ing hyperparameters to try

{’KMeans’: {’n_clusters’: [5, 6, 7] }}
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additional_metrics.py files, respectively, if written to accommodate the same input, out-
puts and methods (see additional_clusterers.py and additional_metrics.py for examples).

Outputs

For each set of labels, hypercluster generates a file with sample labels and a file contain-
ing evaluations of those labels. It also outputs aggregated tables of all labels and evalua-
tions. Hypercluster can also generate several helpful visualizations, including a heatmap 
showing the evaluation metrics for each set of hyperparameters (Fig. 1c) and a table and 
heatmap of pairwise comparisons of labeling similarities with a user-specified metric 
(Additional file 1: Fig. S1). This visualization is particularly useful for finding labels that 
are robust to differences in hyperparameters. It can also optionally output a table and 
heatmap showing how often each pair of samples were assigned the same cluster (Addi-
tional file 2: Fig. S2). Other useful custom visualizations that are simple for users to cre-
ate due to the aggregated clustering results are available in our examples (https ://githu 
b.com/ruggl eslab /hyper clust er/tree/dev/examp les).

Conclusions
Hypercluster allows comprehensive evaluation of multiple hyperparameters and clus-
tering algorithms simultaneously, reducing the allure of biased or arbitrary parameter 
selection. It also aids computational biologists who are testing and benchmarking new 
clustering algorithms, evaluation metrics and pre- or post-processing steps [10]. Future 
iterations of hypercluster could include further cutting-edge clustering techniques, 
including those designed for larger data sets [31, 32] or account for multiple types of 
data [48]. Hypercluster streamlines comparative unsupervised clustering, allowing the 
prioritization of both convenience and rigor.

Availability and requirements

Project Name: Hypercluster.
Project homepage: https ://githu b.com/ruggl eslab /hyper clust er/.
Operating system: Platform independent.
Programming Language: Python.
Other requirements: Hypercluster runs with the following versions or higher: python 
3.7, pandas 0.24.2, numpy 1.16.4, scipy 1.2.1, matplotlib 3.1.0, seaborn 0.9.0, scikit-
learn 0.22.0, hdbscan 0.8.24, snakemake 5.8.2, python-igraph 0.7.1, leidenalg 0.7.0, 
louvain 0.6.1
License: MIT license, open for use by academic and non-academic users.
Any restrictions to use by non-academics: Not applicable.

https://github.com/ruggleslab/hypercluster/tree/dev/examples
https://github.com/ruggleslab/hypercluster/tree/dev/examples
https://github.com/ruggleslab/hypercluster/
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Supplementary information
Supplementary information accompanies this paper at https ://doi.org/10.1186/s1285 9-020-03774 -1.

Additional file 1. Figure S1: Pairwise label comparisons. Automatically generated heatmap showing pairwise com-
parison of labeling automatically generated using hypercluster of breast cancer samples. Colors represent adjusted 
rand index between labels.

Additional file 1. Figure S2: Pairwise sample comparisons. Automatically generated pairwise comparison of breast 
cancer samples. Color indicates the number of times two samples were assigned the same cluster.
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