
Hypercluster: a flexible tool for parallelized
unsupervised clustering optimization
Lili Blumenberg1,2 and Kelly V. Ruggles1,2*

Background
Unsupervised clustering is ubiquitously used for the interpretation of ‘omics datasets
[1–7]. Clustering is a particularly central challenge in the analysis of single-cell measure-
ment data (e.g. single cell RNA-seq) due to its high dimensionality [8–10]. Clustering
is also increasingly being used for disease subtype classification and risk stratification
[11–19]. It is therefore essential that optimal clustering results are easily and robustly
obtainable, without user-selected hyperparameters introducing bias and impeding rapid
analysis.

Clustering is inherently under-defined [20–22]. The definition of “cluster” differs
from problem to problem and the desired goal of the analysis [14], and therefore it is
not possible to make a single algorithm or metric that can universally identify the “best”
clusters [23]. Researchers therefore often compare results from multiple algorithms
and hyperparameters [7, 24–28]. Typically, the effect of hyperparameter choice on the
quality of clustering results cannot be described with a convex function, meaning that

Abstract

Background: Unsupervised clustering is a common and exceptionally useful tool for
large biological datasets. However, clustering requires upfront algorithm and hyper-
parameter selection, which can introduce bias into the final clustering labels. It is
therefore advisable to obtain a range of clustering results from multiple models and
hyperparameters, which can be cumbersome and slow.

Results: We present hypercluster, a python package and SnakeMake pipeline for flex-
ible and parallelized clustering evaluation and selection. Users can efficiently evaluate a
huge range of clustering results from multiple models and hyperparameters to identify
an optimal model.

Conclusions: Hypercluster improves ease of use, robustness and reproducibility for
unsupervised clustering application for high throughput biology. Hypercluster is avail-
able on pip and bioconda; installation, documentation and example workflows can be
found at: https ://githu b.com/ruggl eslab /hyper clust er.

Keywords: Machine learning, Unsupervised clustering, Hyperparameter optimization,
Scikit-learn, Python, SnakeMake

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/
licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/zero/1.0/) applies
to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Blumenberg and Ruggles
BMC Bioinformatics (2020) 21:428
https://doi.org/10.1186/s12859-020-03774-1

*Correspondence:
kelly.ruggles@nyulangone.
org
1 Institute of Systems
Genetics, New York
University Grossman School
of Medicine, New York, NY
10016, USA
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-0152-0863
https://github.com/ruggleslab/hypercluster
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03774-1&domain=pdf

Page 2 of 7Blumenberg and Ruggles BMC Bioinformatics (2020) 21:428

hyperparameters should be chosen through exhaustive grid search [29], a slow and cum-
bersome process. Software packages for automatic hyperparameter tuning and model
selection for regression and classification exist, notably auto-sklearn from AutoML [30],
and some groups have made excellent tools for distributing a single clustering calcula-
tion for huge datasets [31, 32], but to the best of our knowledge, there is no package for
comparing several clustering algorithms and hyperparameters.

Here we present hypercluster, a python package and SnakeMake pipeline for rigorous,
reproducible and parallelized clustering calculation and evaluation. This package allows
users to compare multiple hyperparameters and algorithms, then easily visualize evalu-
ation metrics for each result [33]. The SnakeMake pipeline allows parallelization, greatly
reducing wall-clock time for users [34]. Hypercluster provides researchers with a flex-
ible, parallelized, distributed and user-friendly method for clustering algorithm selection
and hyper-parameter tuning.

Implementation
Requirements

The hypercluster package uses scikit-learn [35], python-igraph [36], leidenalg [37] and
louvain-igraph [38] to assign cluster labels and uses scikit-learn and custom metrics to
compare clustering algorithms and hyperparameters to find optimal clusters for any
given input data (Fig. 1). Hypercluster requires python3, pandas [39], numpy [40], scipy
[41], matplotlib [42], seaborn [43], scikit-learn [35], python-igraph [36], leidenalg [37],
louvain-igraph [38] and SnakeMake [34].

General workflow and examples

Hypercluster can be run independently of SnakeMake, as a standalone python package.
Input and output structure, as well as example workflows on a breast cancer RNA-seq
data set [43] and scRNA-seq [45] can be found at https ://githu b.com/ruggl eslab /hyper
clust er/tree/maste r/examp les. Briefly, the workflow starts with instantiating an Auto-
Clusterer (for a single algorithm) or MultiAutoClusterer (for multiple algorithms) object
with default or user-defined hyperparameters (Fig. 1a). To run through hyperparameters
for a dataset, users simply provide a pandas DataFrame to the “fit’’ method on either
object (Fig. 1b). Users evaluate the labeling results with a variety of metrics by running
the “evaluate” method (Fig. 1c). Clustering labels and evaluations are then aggregated
into convenient tables (Fig. 1d), which can be visualized with built in functions (e.g.
Additional file 1: Fig. S1, Additional file 2: Fig. S2).

Configuring the SnakeMake pipeline

The SnakeMake pipeline allows users to parallelize clustering calculations on mul-
tiple threads on a single computer, multiple compute nodes on a high performance
cluster or in a cloud cluster [34]. The pipeline is configured through a config.yml
file (Table 1), which contains user-specified input and output directories and files
(Table 1, lines 1–3, 5–7) and the hyperparameter search space (Fig. 1a, Table 1, line
18). This file contains predefined defaults for the search space that allow the pipeline
to be used “out of the box.” Further, users can specify whether to use exhaustive grid
search or random search; if random search is selected, probability weights for each

https://github.com/ruggleslab/hypercluster/tree/master/examples
https://github.com/ruggleslab/hypercluster/tree/master/examples

Page 3 of 7Blumenberg and Ruggles BMC Bioinformatics (2020) 21:428

hyperparameter can be chosen (Table 1, line 9). The pipeline then schedules each
clustering calculation and evaluation as a separate job (Fig. 1b). Users can specify
which evaluation metrics to apply (Fig. 1c, Table 1, line 10) and add keyword argu-
ments to tune several steps in the process (Table 1, lines 4, 8–9, 11–16). Clustering
and evaluation results are then aggregated into final tables (Fig. 1d). Users can refer-
ence the documentation and examples for more information.

Fig. 1 Hypercluster workflow schematic. a Clustering algorithms and their respective hyperparameters
are user-specified. Hypercluster then uses those combinations to create exhaustive configurations, and if
selected a random subset is chosen. b Snakemake is then used to distribute each clustering calculation
into different jobs. c Each set of clustering labels is then evaluated in a separate job by a user-specified list
of metrics. d All clustering results and evaluation results are aggregated into tables. Best labels can also be
chosen by a user-specified metric.

Page 4 of 7Blumenberg and Ruggles BMC Bioinformatics (2020) 21:428

As input, users provide a data table with samples to be clustered as rows and features
as columns. Users can then simply run “snakemake -s hypercluster.smk -configfile con-
fig.yml” in the command line, with any additional SnakeMake flags appropriate for their
system. Applying the same configuration to new files or testing new algorithms on old
data simply requires editing the inputs in the config.yml file and rerunning the Snake-
Make command.

Extending hypercluster

Currently, hypercluster can perform any clustering algorithm and calculate any evalu-
ation available in scikit-learn [35, 46], as well as non-negative matrix factorization
(NMF) [47], Louvain [38] and Leiden [37] clustering. Additional clustering classes and
evaluation metric functions can be added by users in the additional_clusterer.py and

Table 1 Parameters in SnakeMake configuration file

config.yml parameter Explanation Example

1 input_data_folder Path to folder in which input data
can be found

/input_data

2 input_data_files List of prefixes of data files [’input_data1’, ’input_data2’]

3 gold_standard_file File name of gold_standard_file,
must be in input_data_folder

{’input_data’: ’gold_standard_file.txt’}

4 read_csv_kwargs pandas.read_csv keyword argu-
ments for input data

{’test_input’: {’index_col’:[0]}}

5 output_folder Path to folder into which results
should be written

/results

6 intermediates_folder Name of subfolder to put interme-
diate results

clustering_intermediates

7 clustering_results Name of subfolder to put aggre-
gated results

clustering

8 clusterer_kwargs Additional arguments to pass to
clusterers

KMeans: {’random_state’:8}}

9 generate_parameters_addtl_
kwargs

Additonal keyword arguments for
the hypercluster.AutoClusterer
class

{‘KMeans’: {’random_search’: true)

10 evaluations Names of evaluation metrics to use [’silhouette_score’, ’number_clus-
tered’]

11 eval_kwargs Additional kwargs per evaluation
metric function

{’silhouette_score’: {’random_state’:
8}}

12 metric_to_choose_best Which metric to maximize to
choose the labels

silhouette_score

13 metric_to_compare_labels Which metric to use to compare
label results to each other

adjusted_rand_score

14 compare_samples Whether to made a table and figure
with counts of how often each
two samples are in the same
cluster

"true"

15 output_kwargs pandas.to_csv and pandas.read_csv
keyword arguments for output
tables

{’evaluations’: {’index_col’:[0]}, ’labels’:
{’index_col’:[0]}}

16 heatmap_kwargs Arguments for seaborn.heatmap for
pairwise visualizations

{’vmin’:-2, ’vmax’:2}

17 optimization_parameters Which algorithms and correspond-
ing hyperparameters to try

{’KMeans’: {’n_clusters’: [5, 6, 7] }}

Page 5 of 7Blumenberg and Ruggles BMC Bioinformatics (2020) 21:428

additional_metrics.py files, respectively, if written to accommodate the same input, out-
puts and methods (see additional_clusterers.py and additional_metrics.py for examples).

Outputs

For each set of labels, hypercluster generates a file with sample labels and a file contain-
ing evaluations of those labels. It also outputs aggregated tables of all labels and evalua-
tions. Hypercluster can also generate several helpful visualizations, including a heatmap
showing the evaluation metrics for each set of hyperparameters (Fig. 1c) and a table and
heatmap of pairwise comparisons of labeling similarities with a user-specified metric
(Additional file 1: Fig. S1). This visualization is particularly useful for finding labels that
are robust to differences in hyperparameters. It can also optionally output a table and
heatmap showing how often each pair of samples were assigned the same cluster (Addi-
tional file 2: Fig. S2). Other useful custom visualizations that are simple for users to cre-
ate due to the aggregated clustering results are available in our examples (https ://githu
b.com/ruggl eslab /hyper clust er/tree/dev/examp les).

Conclusions
Hypercluster allows comprehensive evaluation of multiple hyperparameters and clus-
tering algorithms simultaneously, reducing the allure of biased or arbitrary parameter
selection. It also aids computational biologists who are testing and benchmarking new
clustering algorithms, evaluation metrics and pre- or post-processing steps [10]. Future
iterations of hypercluster could include further cutting-edge clustering techniques,
including those designed for larger data sets [31, 32] or account for multiple types of
data [48]. Hypercluster streamlines comparative unsupervised clustering, allowing the
prioritization of both convenience and rigor.

Availability and requirements

Project Name: Hypercluster.
Project homepage: https ://githu b.com/ruggl eslab /hyper clust er/.
Operating system: Platform independent.
Programming Language: Python.
Other requirements: Hypercluster runs with the following versions or higher: python
3.7, pandas 0.24.2, numpy 1.16.4, scipy 1.2.1, matplotlib 3.1.0, seaborn 0.9.0, scikit-
learn 0.22.0, hdbscan 0.8.24, snakemake 5.8.2, python-igraph 0.7.1, leidenalg 0.7.0,
louvain 0.6.1
License: MIT license, open for use by academic and non-academic users.
Any restrictions to use by non-academics: Not applicable.

https://github.com/ruggleslab/hypercluster/tree/dev/examples
https://github.com/ruggleslab/hypercluster/tree/dev/examples
https://github.com/ruggleslab/hypercluster/

Page 6 of 7Blumenberg and Ruggles BMC Bioinformatics (2020) 21:428

Supplementary information
Supplementary information accompanies this paper at https ://doi.org/10.1186/s1285 9-020-03774 -1.

Additional file 1. Figure S1: Pairwise label comparisons. Automatically generated heatmap showing pairwise com-
parison of labeling automatically generated using hypercluster of breast cancer samples. Colors represent adjusted
rand index between labels.

Additional file 1. Figure S2: Pairwise sample comparisons. Automatically generated pairwise comparison of breast
cancer samples. Color indicates the number of times two samples were assigned the same cluster.

Abbreviations
NMF: Non-negative matrix factorization; scRNA-Seq: Single cell RNA-seq; TCGA : The Cancer Genome Atlas.

Acknowledgements
We thank the members of Ruggles and Fenyö labs for their helpful discussions and input. We would like to thank MacIn-
tosh Cornwell for his advice with the SnakeMake pipeline. We would also like to thank Joseph Copper Devlin for his help
and advice with implementing Louvain and Leiden clustering.

Authors’ contributions
LB and KVR conceived of the ideas and wrote the manuscript. LB developed the method and wrote the code. KVR super-
vised the project. All authors read and approved the final manuscript.

Funding
This work has been supported by the National Cancer Institute (NCI) through CPTAC award U24 CA210972 (PI: David
Fenyo) which funded the development of our workflow for the purpose of cancer proteogenomic discovery. Dr. Fenyo
oversees the broader CPTAC pancancer projects that highlighted the need for this tool.

Availability of data and materials
Source code, as well as example vignettes, is available at https ://githu b.com/ruggl eslab /hyper clust er.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA. 2 Depart-
ment of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.

Received: 19 April 2020 Accepted: 22 September 2020

References
 1. Xu D, Tian Y. A comprehensive survey of clustering algorithms. Ann Data Sci. 2015;2(2):165–93.
 2. Nugent R, Meila M. An overview of clustering applied to molecular biology. Methods Mol Biol. 2010;620:369–404.
 3. Jain AK, Murty MN, Flynn PJ. Data clustering. ACM Comput Surv. 1999;31(3):264–32323.
 4. Xu R, Wunsch DC 2nd. Clustering algorithms in biomedical research: a review. IEEE Rev Biomed Eng. 2010;3:120–54.
 5. Andreopoulos B, An A, Wang X, Schroeder M. A roadmap of clustering algorithms: finding a match for a biomedical

application. Brief Bioinform. 2009;10(3):297–314.
 6. Handl J, Knowles J, Kell DB. Computational cluster validation in post-genomic data analysis. Bioinformatics.

2005;21(15):3201–12.
 7. Ronan T, Qi Z, Naegle KM. Avoiding common pitfalls when clustering biological data. Sci Signal. 2016;9(432):re6.
 8. Kiselev VY, Andrews TS, Hemberg M. Publisher Correction: Challenges in unsupervised clustering of single-cell RNA-

seq data. Nat Rev Genet. 2019;20(5):310.
 9. Sun S, Zhu J, Ma Y, Zhou X. Accuracy, robustness and scalability of dimensionality reduction methods for single-cell

RNA-seq analysis. Genome Biol. 2019. https ://doi.org/10.1186/s1305 9-019-1898-6.
 10. Liu X, Song W, Wong BY, Zhang T, Yu S, Lin GN, et al. A comparison framework and guideline of clustering methods

for mass cytometry data. Genome Biol. 2019;20(1):297.
 11. Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based

on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7.
 12. Ohnstad HO, Borgen E, Falk RS, Lien TG, Aaserud M, Sveli MAT, et al. Prognostic value of PAM50 and risk of recurrence

score in patients with early-stage breast cancer with long-term follow-up. Breast Cancer Res. 2017;19(1):120.
 13. Ali HR, Rueda OM, Chin S-F, Curtis C, Dunning MJ, Aparicio SA, et al. Genome-driven integrated classification of

breast cancer validated in over 7,500 samples. Genome Biol. 2014;15(8):431.

https://doi.org/10.1186/s12859-020-03774-1
https://github.com/ruggleslab/hypercluster
https://doi.org/10.1186/s13059-019-1898-6

Page 7 of 7Blumenberg and Ruggles BMC Bioinformatics (2020) 21:428

 14. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours.
Nature. 2000;406(6797):747–52.

 15. Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central
nervous system tumours. Nature. 2018;555(7697):469–74.

 16. Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D, et al. New brain tumor entities emerge from
molecular classification of CNS-PNETs. Cell. 2016;164(5):1060–72.

 17. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-origin patterns dominate the molecular clas-
sification of 10,000 tumors from 33 types of cancer. Cell. 2018;173(2):291–304.e6.

 18. Aure MR, Vitelli V, Jernström S, Kumar S, Krohn M, Due EU, et al. Integrative clustering reveals a novel split in the lumi-
nal A subtype of breast cancer with impact on outcome. Breast Cancer Res. 2017;19(1):44.

 19. Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture
of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52.

 20. Jain AK, Dubes RC. Algorithms clustering data. Old Tappan: Prentice Hall; 1988.
 21. Estivill-Castro V. Why so many clustering algorithms. SIGKDD Explor. 2002;4(1):65–75.
 22. Everitt BS, Landau S, Leese M. Cluster analysis. 4th ed. London: Hodder Arnold; 2001. p. 256.
 23. Von Luxburg U, Williamson RC, Guyon I. Clustering: science or art? Proceedings of ICML Workshop [Internet]. 2012;

https ://www.jmlr.org/proce eding s/paper s/v27/luxbu rg12a /luxbu rg12a .pdf.
 24. Dhaeseleer P. How does gene expression clustering work? Nat Biotechnol. 2005;23(12):1499–501.
 25. Naegle KM, Welsch RE, Yaffe MB, White FM, Lauffenburger DA. MCAM: multiple clustering analysis methodology for

deriving hypotheses and insights from high-throughput proteomic datasets. PLoS Comput Biol. 2011;7(7):e1002119.
 26. Wiwie C, Baumbach J, Röttger R. Comparing the performance of biomedical clustering methods. Nat Methods.

2015;12(11):1033–8.
 27. Rodriguez MZ, Comin CH, Casanova D, Bruno OM, Amancio DR, Costa LF, et al. Clustering algorithms: a comparative

approach. PLoS ONE. 2019;14(1):e0210236.
 28. Dubes RC. How many clusters are best? An experiment. Pattern Recognit. 1987;20(6):645–63.
 29. Barber RF, Ha W. Gradient descent with non-convex constraints: local concavity determines convergence. Inf Infer-

ence. 2018;7(4):755–806.
 30. Feurer M, Klein A, Eggensperger K, Springenberg J, Blum M, Hutter F. Efficient and robust automated machine learn-

ing. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R, editors. Advances in neural information processing
systems 28. Red Hook: Curran Associates Inc.; 2015. p. 2962–2970.

 31. Corizzo R, Pio G, Ceci M, Malerba D. DENCAST: distributed density-based clustering for multi-target regression. J Big
Data. 2019. https ://doi.org/10.1186/s4053 7-019-0207-2.

 32. Hu X, Liu L, Qiu N, Yang D, Li M. A MapReduce-based improvement algorithm for DBSCAN. J Algorithm Comput
Technol. 2018;12(1):53–61.

 33. Van Craenendonck T, Blockeel H. Using internal validity measures to compare clustering algorithms. Benelearn 2015
Poster presentations (online). 2015;1–8.

 34. Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2012;28(19):2520–2.
 35. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J

Mach Learn Res. 2011;12:2825–30.
 36. Csardi G, Nepusz T, et al. The igraph software package for complex network research. Int J Complex Syst.

2006;1695(5):1–9.
 37. Traag V. leidenalg [Internet]. Github; [cited 2020 Jan 27]. https ://githu b.com/vtraa g/leide nalg
 38. Traag V. louvain-igraph [Internet]. Github; [cited 2020 Jan 27]. https ://githu b.com/vtraa g/louva in-igrap h
 39. McKinney W, Others. Data structures for statistical computing in python. In: Proceedings of the 9th Python in Sci-

ence Conference. Austin, TX; 2010. p. 51–6.
 40. van der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical computation. Comput

Sci Eng. 2011;13(2):22–30.
 41. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D et al. SciPy 1.0--Fundamental Algorithms

for Scientific Computing in Python [Internet]. arXiv [cs.MS]. 2019. https ://arxiv .org/abs/1907.10121
 42. Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9(3):90–5.
 43. Waskom M, Botvinnik O, O’Kane D, Hobson P, Lukauskas S, Gemperline DC et al. mwaskom/seaborn: v0.8.1 (Septem-

ber 2017) [Internet]. 2017. https ://zenod o.org/recor d/88385 9.
 44. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al. Proteogenomics connects somatic mutations

to signalling in breast cancer. Nature. 2016;534(7605):55–62.
 45. Tikhonova AN, Dolgalev I, Hu H, Sivaraj KK, Hoxha E, Cuesta-Domínguez Á, et al. The bone marrow microenviron-

ment at single-cell resolution. Nature. 2019;569(7755):222–8.
 46. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. 2.3. Clustering—scikit-learn 0.22 documen-

tation [Internet]. 2011 [cited 2019 Dec 23]. https ://sciki t-learn .org/stabl e/modul es/clust ering .html
 47. Chalise P, Fridley BL. Integrative clustering of multi-level ’omic data based on non-negative matrix factorization

algorithm. PLoS ONE. 2017;12(5):e0176278.
 48. Barracchia EP, Pio G, D’Elia D, Ceci M. Prediction of new associations between ncRNAs and diseases exploiting multi-

type hierarchical clustering. BMC Bioinform. 2020;21(1):70.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://www.jmlr.org/proceedings/papers/v27/luxburg12a/luxburg12a.pdf
https://doi.org/10.1186/s40537-019-0207-2
https://github.com/vtraag/leidenalg
https://github.com/vtraag/louvain-igraph
http://arxiv.org/abs/1907.10121
https://zenodo.org/record/883859
https://scikit-learn.org/stable/modules/clustering.html

	Hypercluster: a flexible tool for parallelized unsupervised clustering optimization
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Requirements
	General workflow and examples
	Configuring the SnakeMake pipeline
	Extending hypercluster
	Outputs

	Conclusions
	Availability and requirements
	Acknowledgements
	References

