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Enhancing synaptic plasticity and
cellular resilience to develop novel,

improved treatments for mood disorders
Jorge A. Quiroz, MD; Husseini K. Manji, MD, FRCPC

heretofore received the greatest attention in neurobio-
logical studies of major depressive disorder (MDD) are
the monoaminergic neurotransmitter systems, which are
extensively distributed throughout the network of limbic,
striatal, and prefrontal cortical neuronal circuits thought
to support the behavioral and visceral manifestations of
mood disorders.'” The treatment of depression was rev-
olutionized about a half-century ago with the introduc-
tion of two classes of agents that were discovered—
entirely by serendipity—to be effective antidepressants:
the tricyclic antidepressants (monoamine reuptake

espite the devastating impact that mood disor-

ders have on the lives of millions worldwide, there is still
a dearth of knowledge concerning their underlying eti-
ology and pathophysiology. The brain systems that have

inhibitors) and the monoamine oxidase inhibitors. The
discovery of the acute protein target of the antidepres-
sant medication led to the development of numerous

There is mounting evidence that recurrent mood disorders—once considered “good prognosis diseases”—are, in fact,
often very severe and life-threatening illnesses. Furthermore, although mood disorders have traditionally been con-
ceptualized as neurochemical disorders, there is now evidence from a variety of sources demonstrating regional reduc-
tions in central nervous system (CNS) volume, as well as reductions in the numbers and/or sizes of glia and neurons in dis-
crete brain areas. Although the precise cellular mechanisms underlying these morphometric changes remain to be
fully elucidated, the data suggest that mood disorders are associated with impairments of synaptic plasticity and cellu-
lar resilience. In this context, it is noteworthy that there is increasing preclinical evidence that antidepressants requlate
the function of the glutamatergic system. Moreover, although clearly preliminary, the available clinical data suggest that
attenuation of N-methyl-p-aspartate (NMDA) function has antidepressant effects. Recent preclinical and clinical studies
have shown that signaling pathways involved in regulating cell survival and cell death are long-term targets for the
actions of antidepressant agents. Antidepressants and mood stabilizers indirectly requlate a number of factors involved
in cell survival pathways, including cyclic adenosine monophosphate (CAMP) response element binding protein (CREB),
brain-derived neurotrophic factor (BDNF), the antiapoptotic protein bcl-2, and mitogen-activated protein (MAP) kinases,
and may thus bring about some of their delayed long-term beneficial effects via underappreciated neurotrophic effects.
There is much promise for the future development of treatments that more directly target molecules in critical CNS sig-
naling pathways regulating synaptic plasticity and cellular resilience. These will represent improved long-term treatments

for mood disorders.

Dialogues Clin Neurosci. 2002;4:73-92.

Keywords: antiapoptotic protein bcl-2, brain-derived neurotrophic factor (BDNF);
cell atrophy; cyclic adenosine monophosphate (CAMP);, CAMP response element
binding protein (CREB); mood stabilizers; N-acetylaspartate (NAA); neuroplastici-
ty; N-methyl-p-aspartate (NMDA); phosphodiesterase (PDE)

Author affiliations: Laboratory of Molecular Pathophysiology, National Insti-
tute of Mental Health, Bethesda, Md, USA

73

Address for correspondence: Husseini K. Manji, MD, FRCPC, Laboratory of
Molecular Pathophysiology, National Institute of Mental Health, 49 Convent
Drive, Building 49 Room B1EE16, Bethesda, MD 20892-4405, USA

(e-mail: ManjiH@intra.nimh.nih.gov)



Clinical research

Selected abbreviations and acronyms

AMPA a-amino-3-hydroxy-5-methyl-4-isoxazole pro-

pionic acid

BDNF brain-derived neurotrophic factor
cAMP cyclic adenosine monophosphate
CREB cAMP response element binding protein
FC frontal cortex

HPA hypothalamic-pituitary-adrenal

LTP long-term potentiation

MAP mitogen-activated protein

MDD major depressive disorder

NAA N-acetylaspartate

NGF nerve growth factor

NMDA N-methyl-D-aspartate

PDE4 phosphodiesterase

PFC prefrontal cortex

SSRI serotonin-selective reuptake inhibitor
VPA valproic acid

second-generation medications (eg, serotonin-selective
reuptake inhibitors [SSRIs] and norepinephrine-selec-
tive reuptake inhibitors), which are widely used today.
Thus, clinical studies over the past 40 years have
attempted to uncover the specific defects in these neu-
rotransmitter systems in mood disorders by utilizing a
variety of biochemical and neuroendocrine strategies.
Indeed, assessments of cerebrospinal fluid (CSF) chem-
istry, neuroendocrine responses to pharmacological chal-
lenge, and neuroreceptor and transporter binding have,
in fact, demonstrated a number of abnormalities of the
serotonergic, noradrenergic, and other neurotransmitter
and neuropeptide systems in MDD.

While such investigations have been heuristic over the
years, they have been of limited value in elucidating the
unique neurobiology of mood disorders. Furthermore,
while most antidepressants exert their initial biochemical
effects by increasing the intrasynaptic concentrations of
serotonin and/or norepinephrine, their clinical antide-
pressant effects are only observed after chronic admin-
istration (days to weeks), suggesting that a cascade of
downstream effects are ultimately responsible for their
therapeutic effects. These observations have led to the
appreciation that, while dysfunction within the
monoaminergic neurotransmitter systems is likely to play
important roles in mediating some facets of the patho-
physiology of mood disorders, these disorders likely rep-
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resent the downstream effects of other more primary
abnormalities.

In addition to the growing appreciation that investiga-
tions into the pathophysiology of mood disorders have
been excessively focused on monoaminergic systems, it
is increasingly being recognized that progress in devel-
oping truly novel and improved antidepressant medica-
tions has consequently also been limited. The SSRIs, for
example, have a better side-effect profile for many
patients, and are easier for physicians to prescribe. How-
ever, these newer medications have essentially the same
mechanism of action as the tricyclic antidepressants and,
as a result, the efficacy of the newer agents and the
range of depressed patients they treat are no better than
the older medications. Moreover, today’s treatments
remain suboptimal for many patients afflicted with
depressive syndromes.

A recognition of the lack of significant advances in our
ability to develop novel, improved therapeutic agents for
these devastating illnesses has led to the investigation of
the putative roles of intracellular signaling cascades in
the pathophysiology and treatment of mood disorders.
Multicomponent, cellular signaling pathways interact at
various levels, thereby forming complex signaling net-
works, which allow neurons to receive, process, and
respond to information, and to modulate the signal gen-
erated by multiple different neurotransmitter and neu-
ropeptide systems.* This is noteworthy since mood dis-
orders undoubtedly arise from a complex interaction of
multiple susceptibility (and likely protective) genes and
environmental factors, and the phenotypic expression of
these diseases includes not only episodic and often pro-
found mood disturbance, but also a constellation of cog-
nitive, motoric, autonomic, endocrine, and sleep/wake
abnormalities. Thus, intracellular signaling cascades are
critically involved in regulating complex psychological
and cognitive processes, as well as diverse neurovegeta-
tive functions, such as appetite and wakefulness. Conse-
quently, recent evidence that impairments of neuroplas-
ticity and cellular resilience underlie the pathophysiology
of MDD, and that antidepressants and mood stabilizers
exert major effects on the signaling pathways that regu-
late neuroplasticity and cell survival, has generated con-
siderable excitement among the clinical neuroscience
community, and is reshaping views about the neurobio-
logical underpinnings of these disorders.
“Neuroplasticity” subsumes diverse processes of vital
importance by which the brain perceives, adapts to, and
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responds to a variety of internal and external stimuli.
The manifestations of neuroplasticity in the adult cen-
tral nervous system (CNS) have been characterized as
including alterations of dendritic function, synaptic
remodeling, long-term potentiation (LTP), axonal sprout-
ing, neurite extension, synaptogenesis, and even neuro-
genesis (see Mesulam, 1999, for an excellent overview’).
Although the potential relevance of neuroplastic events
to the pathophysiology of psychiatric disorders has been
articulated for some time,” recent morphometric studies
of the brain (both in vivo and postmortem) are beginning
to lead to a fuller appreciation of the magnitude and
nature of the neuroplastic events involved in the patho-
physiology of mood disorders.” In this perspectives
paper, we review these data and discuss their implica-
tions not only for changing existing conceptualizations
regarding the pathophysiology of MDD, but also for the
strategic development of improved therapeutic agents.

Evidence for impairments of structural
plasticity and cellular resilience
in mood disorders

Positron emission tomography (PET) imaging studies
have revealed multiple abnormalities of regional cere-
bral blood flow (CBF) and glucose metabolism in limbic
and prefrontal cortex (PFC) structures in mood disor-
ders. These abnormalities implicate limbic-thalamic-cor-
tical and limbic-cortical-striatal-pallidal-thalamic circuits,
involving the amygdala, orbital, and medial PFC, and
anatomically related parts of the striatum and thalamus
in the pathophysiology of mood disorders. Interestingly,
recent morphometric magnetic resonance imaging
(MRI) and postmortem investigations have also demon-
strated abnormalities of brain structure that persist inde-
pendently of mood state and may contribute to the cor-
responding abnormalities of metabolic activity (discussed
in references 2 and 10). Thus, structural imaging studies
have demonstrated reduced gray matter volumes in areas
of the orbital and medial PFC, ventral striatum, and hip-
pocampus, and enlargement of the third ventricle in
mood-disordered samples relative to healthy control
samples (Table I)."” Complementary postmortem neu-
ropathological studies have shown abnormal reductions
in cortex volume, glial cell counts, and/or neuron size in
the subgenual PFC, orbital cortex, dorsal anterolateral
PFC, and amygdala (Table II).*** It is not currently
known whether these deficits constitute developmental
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abnormalities that may confer vulnerability to abnormal
mood episodes, compensatory changes to other patho-
genic processes, or the sequelae of recurrent affective
episodes per se. Understanding these issues will partly
depend upon experiments that delineate the onset of
such abnormalities within the illness course and deter-
mine whether they antedate depressive episodes in indi-
viduals at high familial risk for mood disorders. Never-
theless, the marked reduction in glial cells in these
regions has been particularly intriguing in view of the
growing appreciation that glia play critical roles in regu-
lating synaptic glutamate concentrations and CNS energy
homeostasis, and in releasing trophic factors that partic-
ipate in the development and maintenance of synaptic
networks formed by neuronal and glial processes.®* 5
Abnormalities in glial function could thus prove integral
to the impairments of structural plasticity and overall
pathophysiology of mood disorders.

Stress and glucocorticoids modulate neural
plasticity: implications for mood disorders

In developing hypotheses regarding the pathogenesis of
these histopathological changes in MDD, the alterations
in cellular morphology resulting from various stressors
have been the focus of considerable recent research.
Thus, although MDD undoubtedly has a strong genetic
basis, considerable evidence has shown that severe stres-
sors are associated with a substantial increase in risk for
the onset of mood disorders in susceptible individuals. In
rodents, certain stressors are capable of producing den-
dritic atrophy, death, or endangerment (priming the sub-
strate so that it is more vulnerable to other pathophysio-
logical insults) of hippocampal CA3 pyramidal
neurons.”” The extent to which such stress-induced neu-
ronal changes also occur in other brain regions remains
unclear. Activation of the hypothalamic-pituitary-adrenal
(HPA) axis appears to play a critical role in mediating
these effects, since stress-induced neuronal atrophy is
prevented by adrenalectomy, and duplicated by expo-
sure to high concentrations of glucocorticoids (reviewed
in references 89 to 91). These observations are notewor-
thy with respect to the pathophysiology of mood disor-
ders, since a significant percentage of patients with MDD
display some form of HPA axis activation, and the sub-
types of depression most frequently associated with HPA
axis activation are those most likely to be associated with
hippocampal volume reductions.” A significant percent-
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.l, Volume/cortical thickness
e Cortical thickness rostral oribital FC, MDD
* Volume of subgenual PFC in familial MDD and BD

e Laminar cortical thickness in layers Ill, V, and VI in subgenual anterior cingulate cortex in BD
* Volumes of NAcc (left), basal ganglia (bilateral) in MDD and BD

e Parahippocampal cortex size in suicide

J, Neurons

e Pyramidal neuronal density, layers Il and V in dorsolateral PFC in BD

* Nonpyramidal neuronal density in layer Il (-27%) in anterior cingulate cortex in BD
* Neuronal density and size in layer II/lll in rostral oribital FC in MDD

* Neuronal size in layer VI (-23%) in anterior cingulate cortex in MDD

e Neuronal density in layer lll, V, and VI in subgenual anterior cingulate cortex in BD
e Layer-specific interneurons in anterior cingulate cortex in BD and MDD

* Nonpyramidal neuron density in the CA2 region in BD

J Glia

* Density/size of glia in dorsolateral PFC and caudal oribital FC, in MDD and BD; layer-specific
e Glial (but not neuron) number in subgenual PFC in familial MDD (-24%) and BD (-41%)

* Glial cell density in layer VI (-22%) in anterior cingulate cortex in MDD

e Glial cell counts, glial density, and glia-to-neuron ratios in amygdala

Table Il

Postmortem morphometric brain studies in mood disorders demonstrating cellular atrophy and/or loss.27##

NAcc, nucleus accumbens; FC, frontal cortex; BD, bipolar disorder; MDD, major depressive disorder; PFC, prefrontal cortex.
Modified and reproduced from reference 10: Manji HK, Duman RS. Impairments of neuroplasticity and cellular resilience in severe mood disorder: implications
for the development of novel therapeutics. Psychopharmacol Bull. 2001;35:5-49. Copyright © MedWorks Media LLC.

age of patients with Cushing’s disease, in which pituitary
gland adenomas result in cortisol hypersecretion, are also
known to manifest prominent depressive symptoms, as
well as hippocampal atrophy. Furthermore, some patients
with Cushing’s disease show a reduction in hippocam-
pal volume that correlates inversely with plasma cortisol
concentrations; following corrective surgical treatment,
enlargement of hippocampal volume is observed in pro-
portion to the treatment-associated decrement in uri-
nary free cortisol concentrations.””

In addition to directly causing neuronal atrophy, stress and
glucocorticoids also appear to reduce cellular resilience,
thereby making certain neurons more vulnerable to other
insults, such as ischemia, hypoglycemia, and excitatory
amino acid toxicity.” Thus, recurrent stress (and presumably
recurrent MDD episodes, which are often associated with
hypercortisolemia) may lower the threshold for cellular
death/atrophy in response to a variety of physiological (eg,
aging) and pathological events. Such processes may con-
ceivably also play a role in the relationship between mood
disorders and cerebrovascular events, considering that indi-
viduals who develop their first depressive episode in late

80

life have an increased likelihood of showing MRI evidence
of cerebrovascular disease.”***

The precise mechanisms by which glucocorticoids exert
these deleterious effects on the hippocampus remain to be
fully elucidated, but likely involve the inhibition of glu-
cose transport (thereby diminishing capability of energy
production, leading to a cellular failure to handle increas-
ing “loads”), and the facilitation of glutamatergic signal-
ing.” The latter observation is noteworthy since, as we dis-
cuss below, there is increasing evidence for an association
between alterations of brain glutamatergic neurotrans-
mission and the pathophysiology of mood disorders.

The role of the glutamatergic system
in the pathophysiology and treatment
of mood disorders

Although somewhat overlooked due to a monoaminergic
preoccupation, there has been evidence for a possible
role of the glutamatergic system in mood disorders since
the 1950s, when D-cycloserine, a partial agonist at the
N-methyl-D-aspartate (NMDA) receptor glycine site
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(used as a part of multidrug antituberculosis treatment)
was reported to have mood-elevating effects.” The ben-
eficial effects of D-cycloserine at doses of 500 mg/day
occurred in a high proportion of the patient studies with
respect to depressed mood, insomnia, and reduced
appetite (as discussed in reference 100). Although
D-cycloserine clearly exerts multiple pharmacologic
effects at the doses employed to treat tuberculosis, it has
mild acute, dose-related euphoric and amnesic effects in
humans that resemble the effects of subperceptual doses
of noncompetitive NMDA antagonists."” Thus, it has
been suggested that the antidepressant effects of
D-cycloserine may reflect consequences of its capacity
to reduce NMDA receptor function.'™

Since these early serendipitous clinical observations, a
growing body of preclinical and clinical research sug-
gests that the NMDA class of glutamate receptors may
be involved in the pathophysiology of MDD and the
mechanism of action of antidepressants (7able I11)."'*
NMDA receptor antagonists such as dizocilpine and
AP-7 (2-amino-7-phosphonoheptanoic acid), and an a-
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
(AMPA) receptor potentiator, the biarylpropylsulfon-
amide LY392098, have demonstrated antidepressant
effects in animal models of depression (including the
application of inescapable stressors, forced-swim, and tail
suspension—induced immobility tests), in learned-help-
lessness models of depression, and in animals exposed
to a chronic mild stress procedure (reviewed in references
100 and 121). In some of these studies, NMDA receptor
antagonists had dose-related effects that were compara-
ble in magnitude, but more rapid, than imipramine.
Moreover, chronic administration of “conventional” anti-
depressants has been shown to affect NMDA receptor
function™"'> and NMDA receptor-binding profiles, and
to regionally alter expression of mRNA that encode mul-
tiple NMDA receptor subunits.'®2"1%12

Recently, Berman et al'” reported the first placebo-con-
trolled, double-blind trial assessing the treatment effects
of a single dose of an NMDA receptor antagonist, keta-
mine, in 7 patients with depression. The ketamine infu-
sion produced mild psychosis and euphoria that dissi-
pated within 120 min. In contrast, the antidepressant
effects of ketamine infusion emerged over the first 180
min and persisted over 72 h. Within this intriguing study,
some patients reported antidepressant effects lasting as
long as a week."™'"” Similarly, several case reports and
open studies have reported the efficacy of lamotrigine

31

(which among other effects, robustly reduces glutamate
release) in bipolar depression. A randomized, placebo-
controlled, 7-week study comparing two doses of lamot-
rigine with placebo in 195 patients with moderate-to-
severe bipolar depression has now been completed.
Lamotrigine was superior to placebo after 3 weeks as
assessed by changes on the Montgomery-Asberg Depres-
sion Rating Scale (MADRS)."™

Overall, the data suggest that regionally selective abnor-
mally enhanced glutamatergic functioning—either pri-
mary or secondary to enhanced glucocorticoid release—
may contribute to the impairment of neuroplasticity and
cellular resilience observed in mood disorders. More
importantly for the present discussion, although quite pre-
liminary, the existing data suggest that medications that
attenuate glutamatergic functioning (and perhaps more
specifically, NMDA throughput) may possess antidepres-
sant effects."™*" Ongoing studies investigating the puta-
tive antidepressant effects of riluzole (which reduces glu-
tamate release) and memantine (an NMDA antagonist)
may ultimately lead to the development of novel antide-
pressant strategies targeting the glutamatergic system.

The role of the neurotrophic signaling
cascades in the pathophysiology and
treatment of mood disorders

The reduction in neuroplasticity and cellular resilience
may also reflect the propensity for various stressors (and
potentially mood disorders) to decrease the expression of
neurotrophic factors.”*'*'*” Neurotrophins are a family
of regulatory factors that mediate the differentiation and
survival of neurons, as well as the modulation of synaptic
transmission and synaptic plasticity. Neurotrophins can
be secreted constitutively or transiently, and often in an
activity-dependent manner.'” Recent observations sup-
port a model wherein neurotrophins are secreted from
the dendrite and act in a retrograde manner at presy-
naptic terminals, where they act to induce long-lasting
modifications. Within the neurotrophin family, brain-
derived neurotrophic factor (BDNF) is a potent physio-
logical survival factor, which has also been implicated in
a variety of pathophysiological conditions, such as
Parkinson’s disease, Alzheimer’s disease, and diabetic
peripheral neuropathy.”” BDNF and other neurotrophic
factors are necessary for the survival and function of neu-
rons,” implying that a sustained reduction of these fac-
tors could affect neuronal viability. Although endoge-
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Reference

Measurement

Finding

Clinical studies

Mathis et al, 1988™

Plasma levels of gIn and other aa

Higher gin level in 59 depressed patients (49 MDD, 20 BP)
than controls

Holemans et al, 1993

Binding of [*H]dizocilpine sites

No changes in binding in 22 depressed, medication-free suicide
victims, in cortex, hippocampus, thalamus, or basal ganglia.
Negative correlation between age and NMDA receptor binding
in FC of suicide victims

Altamura et al, 1993

Plasma and platelet levels of glu

Increased plasma and decreased platelet level in medication-
free depressed patients (4 MDD, 11 BP) versus controls

Altamura et al, 1995’

Plasma levels of gly, glu

Lower in 25 medication-free MDD patients than controls

Nowak et al, 1995'*

High-affinity glycine displaceable
[*HICGP39653 binding to glu receptors

Reduced binding in suicide victims (50% of them depressed) vs
controls, in FC. No difference in [*H]dizocilpine binding

Mauri et al, 1998

Plasma and platelet levels of glu, asp,
and other aa

Higher glu plasma level and asp platelet level in 29 MDD patients
than controls, not altered by fluvoxamine

Maes et al, 1998'

Plasma levels of asp and other aa

No differences between patients and control. Lower asp level in
MDD patients who were nonresponders to antidepressant
treatment for 5 weeks. Treatment reduced levels of asp and glu,
and increased gin

Calabrese et al, 1999

Antidepressant response to lamotrigine
(double-blind, placebo-controlled study)

Significant antidepressant efficacy in 195 depressed BPI patients

Berman et al, 2000'®

Antidepressant response to ketamine
(double-blind, placebo-controlled study)

Improvement of symptoms in depressed patients (8 MDD, 1 BP)
lasted longer (3 days) than euphoric effects (hours)

Castillo et al, 1999

glu/gln ratio measured by MRS

Elevated in frontal lobe and basal ganglia in BP medication-free
children vs controls in FC, temporal cortex, and basal ganglia

Auer et al, 2000

Levels of glu measured by MRS

Decreased in anterior cingulate cortex of depressed patients (1 BP,
18 MDD) vs controls (7 patients were medication-free and 12
on antidepressants)

Levine et al, 2000'™

CSF gln levels

Elevated in medication-free depressed patients vs control
(2 BP, 16 MDD) and correlated with CSF Mg level

Berk et al, 2001

Platelet intracellular calcium
response to glu stimulation

Greater in 15 MDD medication-free patients than controls

Meador-Woodruff
et al, 2001

NMDA mRNA subunit levels
in striatum

Postmortem brain analysis. Only NR2D (a subunit of the
NMDA receptor) mRNA is higher in BP (15) vs MDD (15).
Only gluR1 (a subunit of the AMPA receptor) mRNA is
lower in BP vs controls (15). [PHJAMPA binding was
higher in BP than MDD

Relevant preclinical studies

Trullas and Skolnick,
1990

Competitive NMDA antagonist AP-7, noncompetitive antagonist
dizocilpine, and a partial agonist at strychnine-insensitive glycine
receptors ACPC mimicked the effects of clinically effective anti-
depressants in inescapable stress model in rats

Skolnick et al, 1996"¢

Chronic (14 days) antidepressant administration (17 different anti-
depressants, especially imipramine, citalopram, and ECT) cause
adaptive changes in radioligand binding to NMDA (CGP39653,
DCKA, and [*H]dizocilpine) in mice

Nowak et al, 1996'”

Chronic citalopram in mouse lowered 6.2-fold high-affinity gly-
displaceable [*H]CGP39653 binding to glu receptors, reduced
1.5-fold the potency of gly to inhibit [*(HIDCKA binding in cortex.
Also increases asp concentration 110% in cortex and 33% in
hippocampus

Boyer et al, 1998

Chronic administration (16 days) of citalopram in mouse lowered NMDA
e1-subunit mRNA level in FC, CA2 of hippocampus, and amygdala,
whereas imipramine only does so in amydgala. Imipramine low-

ered NMDA &2-subunit mRNA level in cortex, CA1-4 of hip-

pocampus, and amygdala, whereas citalopram only does so in
amygdala. Both drugs reduce transcript levels of T-subunit in cor-

tex, thalamus, striatum, and cerebellum

Bouron and Chatton, 1999'"*

Desipramine enhanced spontaneous vesicular release of glu in
hippocampal neurons dissociated from neonatal rats

Michael-Titus et al, 2000

Imipramine and phenelzine decreased stimulated (K-induced)
glu outflow in rat PFC and not in striatum

Chen et al, 2001™

Ketamine pretreatment attenuated ECS-induced mossy fiber
sprouting in dentate gyrus and BDNF expression in medial PFC
and the dentate gyrus in rats

Li et al, 2001™

AMPA receptor potentiator LY392098 (a biarylpropylsulfonamide)
produced antidepressant-like effect in rats and mice

Table IlI. Evidence for abnormalities in glutamatergic function in mood disorders. aa, amino acid; AMPA, a-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid; asp, aspartate; BDNF, brain-derived neurotrophic factor. BP, bipolar patients; BPI, biploar type | disorder; CSF, cerebrospinal
fluid; DCKA, dichlorokynurenic acid; ECS, electroconvulsive shock; ECT, electroconvulsive therapy; FC, frontal cortex; gln, glutamine; glu,
glutamate; gly, glycine; MDD, major depressive disorder; MRS, magnetic resonance spectroscopy; NMDA, N-methyl-p-aspartate; PFC, pre-

frontal cortex.
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nous neurotrophic factors have traditionally been viewed
as increasing cell survival by providing necessary trophic
support, it is now clear that their survival-promoting
effects are mediated in large part by an inhibition of cell
death cascades."” Increasing evidence suggests that neu-
rotrophic factors inhibit cell death cascades by activating
the mitogen-activated protein (MAP) kinase signaling
pathway and the phosphotidylinositol-3 kinase (PI-
3K)/Akt pathway (Figure 1).™ One important mecha-
nism by which the MAP kinase signaling cascades
inhibits cell death is by increasing the expression of the
antiapoptotic protein bcl-2."""** The neurotrophic fac-
tor/MAP kinase/bcl-2 signaling cascade may thus play a
critical role in cell survival in the CNS, since there is a
very fine balance maintained between the levels and
activities of pro- and antiapoptotic factors; modest
changes in this signaling cascade or in the levels of the
bel-2 family of proteins (potentially due to genetic, or
illness- or insult-related factors) may therefore pro-
foundly affect cellular viability.'*'*

In addition to regulating synaptic efficacy, BDNF
appears to function as a modulator that is required for
the induction, expression, and/or maintenance of LTP.
Thus, genetic deletion of BDNF in mice disrupts normal
induction of LTP, which can be rescued by reintroducing
BDNF either by transfecting hippocampal slices with
BDNF-expressing adenovirus or the exogenous admin-
istration of BDNF."” The information reviewed here
clearly shows that neurotrophin signaling cascades play a
major role in regulating various forms of neuronal and
synaptic plasticity, as well as neuronal survival—all of
which may be impaired in severe recurrent mood disor-
ders. We now turn to a discussion of the evidence that
neurotrophic signaling cascades are long-term targets
for antidepressants and mood stabilizers.

Influence of antidepressant treatment
on cell survival pathways

In an extensive series of studies, Duman and associates
have demonstrated that the cyclic adenosine monophos-
phate (cAMP)-cAMP response element binding protein
(CREB) cascade—an important pathway involved in cell
survival and plasticity—is upregulated by chronic anti-
depressant treatment, in a timeframe that parallels clin-
ical response.”** The results include increased coupling
of the stimulatory G-protein, Gs, to adenylyl cyclase,
increased protein kinase A (PKA) activity in the partic-
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ulate fraction of limbic structures, increased PKA levels
in the nuclear fractions of cerebral cortex, and increased
mRNA expression of the type 1 adenylyl cyclase in the
rat hippocampus.”'*

The same workers have found that chronic administra-
tion of different classes of antidepressants—SSRIs (flu-
oxetine and sertraline), a selective norepinephrine reup-
take inhibitor (desipramine), a dual aminergic reuptake
inhibitor (imipramine)—and chronic electroconvulsive
seizures upregulate the expression of CREB.”"** By con-
trast, the nonantidepressant psychotropic drugs cocaine
and haloperidol, did not influence CREB mRNA expres-
sion indicating the specificity of CREB induction to anti-
depressants. Chronic administration of these antidepres-
sants has also been demonstrated to increase mRNA
and protein levels of the cAMP-specific phosphodi-
esterase PDE4 isozymes, PDE4A and PDE4B, in rat
frontal cortex (FC) and hippocampus.”*"* The upregu-
lation of PDE4 gene expression in response to sustained
activation of the cAMP-CREB cascade likely represents
a compensatory adaptation that would reduce cAMP
levels back to baseline. As we discuss below, inhibition of
specific phosphodiesterases may thus represent a new
strategy for developing novel agents for the treatment of
depression.

One way in which CREB can mediate antidepressant-
induced neural plasticity is by regulating target genes
that are essential for maintaining synaptic function and
cell survival, most notably BDNFE.'*'* Several studies
have shown that chronic administration of different
types of antidepressant increases the expression of
BDNF in limbic brain areas, particularly the hippocam-
pus, and blocks the stress-induced downregulation of
BDNF in the hippocampus.”'** The possibility that
increased expression of BDNF may contribute to the
therapeutic effects of antidepressants is supported by
the rodent behavioral studies in which direct infusion
of BDNF into the rat midbrain showed efficacy in the
learned-helplessness and forced-swim “depression
behavioral models.””'**> Although the human post-
mortem studies are quite limited and subject to numer-
ous methodological confounds, they have revealed
increased BDNF levels in hippocampal regions in sub-
jects treated with antidepressant medications at the time
of death, compared with unmedicated subjects.'”

As discussed above, BDNF is known to play a major
role in regulating structural plasticity. Do antidepres-
sants, via effects on this major growth factor, actually
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factors such as BDNF enhance cell survival by activating two distinct signaling pathways: the phosphotidylinositol-3 (PI-3) kinase pathway, and
the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. One of the major mechanisms by which BDNF
promotes cell survival is by increasing the expression of the major cytoprotective protein, bcl-2. Bcl-2 attenuates cell death via a variety of
mechanisms, including impairing the release of calcium and cytochrome C, and by sequestering proforms of death-driving cysteine proteas-
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expression of BDNF, and its receptor trkB. Lithium and valproic acid (VPA) robustly upregulate the cytoprotective protein bcl-2. Lithium and
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Modified and reproduced from reference 130: Moore GJ, Bebchuk JM, Wilds IB, Chen G, Manji HK. Lithium-induced increase in human brain grey matter.
Lancet. 2000;356:1241-1242. Copyright © 2000, Elsevier Science.

bring about structural changes in the brain? Because
the dendrite is the dynamic compartment of neuronal
cell body processes that forms synapses with other neu-
rons, these changes in its spine density could dramati-
cally alter neurotransmission, synaptic function, and ulti-
mately, neural plasticity.”"*"* In this context, an important
study demonstrated that chronic administration of
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tianeptine (an antidepressant that facilitates serotonin
reuptake) blocked stress-induced dendritic remodeling
of hippocampal CA3 pyramidal neurons.”” However,
precluding the generalizability to all antidepressants is
the observation that chronic fluoxetine and fluvoxamine
treatment (more traditional antidepressants that inhibit
serotonin reuptake) had no influence on dendritic
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remodeling.'"” More recently, the influence of chronic
antidepressant treatment on neurogenesis of hippocam-
pal neurons has been examined.””* Chronic, but not
acute, antidepressant treatment was found to increase
the number of new cells in the dentate gyrus granule
cell layer. Furthermore, these effects were observed with
different classes of antidepressants, but not with several
other psychotropic medications investigated.””*> A very
recent detailed study investigated the effects of tianep-
tine in the chronic psychosocial stress model of depres-
sion in adult male tree shrews."' Animals were subjected
to a 7-day period of psychosocial stress to elicit stress-
induced endocrine and CNS alterations before the onset
of daily oral administration of tianeptine (50 mg/kg).
The psychosocial stress continued throughout the treat-
ment period of 28 days. The proliferation rate of the
granule precursor cells in the dentate gyrus was reduced
(-33%) by stress, effects that were prevented by the
simultaneous administration of tianeptine yielding nor-
mal values. In stressed animals treated with tianeptine,
hippocampal volume increased above the small decrease
produced by stress alone. While these effects of tianep-
tine are intriguing indeed, a detailed study using several
different classes of antidepressants is clearly needed to
determine the precise influence of antidepressants on
dendritic remodeling and synaptic function.

In toto, although some of the evidence is correlational
rather than clearly causal, the evidence indicates that
BDNF is associated with an antidepressant response and
its induction may represent a key strategy for developing
novel antidepressant medication. In this context, a subtle
mechanism to facilitate antidepressant-induced increase
in CREB/BDNF expression/function may be by the use
of cAMP-specific PDE4 inhibitors. Indeed, the possibility
that inhibitors of this enzyme have antidepressant effi-
cacy is supported by older studies with rolipram, a rela-
tively selective inhibitor of PDE4. Rolipram is reported
to have efficacy in clinical trials and in preclinical models
of depression, but it also produces intolerable nausea.’
Molecular cloning studies demonstrate that there are
four separate PDE4 genes, three of which are expressed
in brain (PDE4A, PDE4B, and PDE4D). Current evi-
dence suggests that PDE4A and PDE4B may be rele-
vant targets for development of selective inhibitors.”"
Studies are currently underway in PDE4A, PDE4B, and
PDE4D null mutant mice, as well as with more selective
inhibitors, to further validate these PDE4 isozymes as
targets of antidepressant treatments.”"
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Mood stabilizers regulate
the MAP kinase
signaling cascade

As discussed above, several endogenous growth fac-
tors—including nerve growth factor (NGF) and
BDNF—exert many of their neurotrophic effects via
the MAP kinase signaling cascade. In view of the impor-
tant role of MAP kinases in mediating long-term neu-
roplastic events, it is noteworthy that lithium and val-
proic acid (VPA), at therapeutically relevant
concentrations, have recently been demonstrated to
robustly activate the extracellular signal-regulated
kinase (ERK) MAP kinase cascade in rat FC and hip-
pocampus, as well as in human neuroblastoma SH-SYS5Y
cells (Figure 1).***""'*Since the ERK MAP kinases are
known to mediate many of the effects of various neu-
rotrophic factors and to promote neurite outgrowth,"*>'
VPA’s effects on the morphology of human neuroblas-
toma cells have been examined in detail. Human neu-
roblastoma SH-SY5Y cells exposed to VPA (1.0 mM) in
serum-free media for 5 days exhibited prominent growth
cones and dramatic neurite outgrowth. Growth
cone-associated protein-43 (GAP-43) is a protein
expressed at elevated levels during neurite growth dur-
ing development or regeneration, and a >3-fold increase
in GAP-43 levels was observed after 5 days’ VPA expo-
sure.'”'*> Follow-up studies have recently shown that,
similar to the effects observed in neuroblastoma cells in
vitro, chronic lithium or VPA also robustly increases the
levels of activated ERK in areas of brain that have been
implicated in the pathophysiology and treatment of BD:
the FC and hippocampus.'” Interestingly, neurotrophic
factors are now known to promote cell survival by acti-
vating MAP kinases to suppress intrinsic, cellular apop-
totic machinery, not by inducing cell survival pathways
(see above). P14 Thyg a downstream target of the
MAP kinase cascade, ribosomal S-6 kinase (Rsk) phos-
phorylates CREB and this leads to induction of bcl-2
gene expression (Figure 1). Recent studies have there-
fore undertaken to determine if lithium or VPA regu-
lates the expression of bcl-2. Chronic treatment of rats
with “therapeutic” doses of lithium and VPA produced a
doubling of bcl-2 levels in FC, effects that were primar-
ily due to a marked increase in the number of bcl-2
immunoreactive cells in layers II and III of FC.7'%
Interestingly, the importance of neurons in layers II to
IV of the FC in mood disorders has recently been
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emphasized, since primate studies indicate that these
areas are important for providing connections with
other cortical regions, and that they are targets for sub-
cortical input.” Chronic lithium also markedly
increased the number of bcl-2 immunoreactive cells in
the dentate gyrus and striatum'; and detailed
immunohistochemical studies following chronic VPA
treatment are currently underway. Subsequent to these
findings, it has been demonstrated that lithium also
increases bcl-2 levels in C57BL/6 mice,'* in neuroblas-
toma SH-SY5Y cells (human neuronal origin) in
vitro,”" and in rat cerebellar granule cells in vitro."”
The latter study was undertaken as part of investiga-
tions into the molecular and cellular mechanisms
underlying the neuroprotective actions of lithium
against glutamate excitotoxicity (see below). These
investigators found that lithium produced a remark-
able increase in bcl-2 protein and mRNA levels. More-
over, lithium has recently been demonstrated to reduce
the levels of the proapoptotic protein p53 both in cere-
bellar granule cells"” and in neuroblastoma SH-SY5Y
cells.”” Thus, overall, the data clearly show that chronic
lithium robustly increases the levels of the neuropro-
tective protein bcl-2 in areas of rodent FC, hippocam-
pus, and striatum in vivo, and in cultured cells of both
rodent and human neuronal origin in vitro. Further-
more, at least in cultured cell systems, lithium has also
been demonstrated to reduce the levels of the
proapoptotic protein pS3.

Consistent with bcl-2’s known cytoprotective effects,
lithium, at therapeutically relevant concentrations, has
been shown to exert neuroprotective effects in a vari-
ety of preclinical paradigms. Thus, lithium has been
demonstrated to protect against the deleterious effects
of glutamate, NMDA receptor activation, aging,
serum/NGF deprivation, ouabain, thapsigargin (which
mobilizes intracellular methlphenylpyridinium (MPP*),
Ca*), and fp-amyloid in vitro."” More importantly,
lithium’s neurotrophic and cytoprotective effects have
also been demonstrated in rodent brain in vivo. Thus,
lithium treatment has been shown to attenuate the bio-
chemical deficits produced by kainic acid infusion,
ibotenic acid infusion, and forebrain cholinergic sys-
tem lesions,"”"**!** to exert dramatic protective effects
against middle cerebral artery occlusion,”® and to
enhance hippocampal neurogenesis in the adult rodent
hippocampus.'” The potential therapeutic relevance of
these preclinical findings in discussed below.
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Human evidence for the neurotrophic
effects of mood stabilizers

While the body of preclinical data demonstrating neu-
rotrophic and neuroprotective effects of lithium is strik-
ing, considerable caution must clearly be exercised in
extrapolating to the clinical situation with humans. In
view of lithium and VPA’s robust effects on the levels of
the cytoprotective protein bcl-2 in the FC, Drevets and
associates™ reanalyzed older data demonstrating approx-
imately 40% reductions in subgenual PFC volumes in
familial mood disorder subjects. Consistent with neu-
rotrophic/neuroprotective effects of lithium and VPA,
they found that the patients treated with chronic lithium
or VPA exhibited subgenual PFC volumes, which were
significantly higher than the volumes in non-lithium-
treated or VPA-treated patients, and not significantly
different from controls."®

Although the results of the study by Drevets"® suggest
that mood stabilizers may have provided neuroprotec-
tive effects during naturalistic use, considerable caution
is warranted in view of the small sample size and cross-
sectional nature of the study. To investigate the potential
neurotrophic effects of lithium in humans more defini-
tively, a longitudinal clinical study was recently under-
taken using proton magnetic resonance spectroscopy
(MRS) to quantify N-acetylaspartate (NAA, a putative
marker of neuronal viability) levels. It was found that
chronic lithium administration at therapeutic doses
increases NAA concentration in the human brain in
vivo.”” These findings provide intriguing indirect sup-
port for the contention that, similar to the findings
observed in the rodent brain and in human neuronal
cells in culture, chronic lithium increases neuronal via-
bility/function in the human brain. Furthermore, a strik-
ing approximately 0.97 correlation between lithium-
induced NAA increases and regional voxel gray matter
content was observed,'” thereby providing evidence for
colocalization with the region-specific bcl-2 increases
observed in the rodent brain cortices (eg, gray versus
white matter). These results suggest that chronic lithium
may exert not only robust neuroprotective effects (as
has been demonstrated in a variety of preclinical para-
digms), but also neurotrophic effects in humans.

In follow-up studies to the NAA findings, it was hypoth-
esized that, in addition to increasing functional neuro-
chemical markers of neuronal viability, lithium-induced
increases in bcl-2 would also lead to neuropil increases,
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Figure 2. Brain matter is increased following 4 weeks of lithium administration at therapeutic levels in bipolar disorder patients. A slice of brain tissue
volumes using high-resolution three-dimensional magnetic resonance imaging (MRI) (124 images, 1.5-mm thick coronal T, weighted spoiled
gradient (SPGR) images), and validated quantitative brain tissue segmentation methodology to identify and quantify the various components
by volume, including total brain white and gray matter content. Measurements were made at baseline (medication-free, after a minimum 14-
day washout) and then repeated after 4 weeks of lithium at therapeutic doses. Chronic lithium significantly increases total gray matter con-
tent in the human brain of patients with bipolar disorder. No significant changes were observed in white matter volume, or in quantitative

measures of regional cerebral water.

Modified and reproduced from reference 2: Maniji HK, Drevets WC, Charney DS. The cellular neurobiology of depression. Nat Med. 2001;7:541-547. Copyright

© 2001, Nature Publishing Company.

and thus to increased brain gray matter volume in
patients with bipolar disorder. In this clinical research
investigation,' brain tissue volumes were examined
using high-resolution three-dimensional MRI and vali-
dated quantitative brain tissue segmentation methodol-
ogy to identify and quantify the various components by
volume, including total brain white and gray matter con-
tent. Measurements were made at baseline (medication-
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free, after a minimum 14-day washout) and then
repeated after 4 weeks of lithium at therapeutic doses.
This study revealed that chronic lithium significantly
increases total gray matter content in the human brain of
patients with bipolar disorder (Figure 2)."* No significant
changes were observed in brain white matter volume or
in quantitative measures of regional cerebral water con-
tent, thereby providing strong evidence that the observed
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increases in gray matter content are likely due to neu-
rotrophic effects as opposed to any possible cell swelling
and/or osmotic effects associated with lithium treatment.
A finer-grained subregional analysis of this brain imag-
ing data is ongoing, and suggests that lithium produces a
regionally selective increase in gray matter, with promi-
nent effects being observed in hippocampus and cau-
date (unpublished observations).

Concluding remarks: implications for
development of new medications

As discussed, there is a considerable body of evidence
both conceptually and experimentally in support of the
regulation of signaling cascades regulating synaptic
plasticity and cellular resilience in the treatment (and
potentially pathophysiology) of mood disorders. Regu-
lation of signal transduction within critical regions of
the brain affects the intracellular signal generated by
multiple neurotransmitter systems; these effects thus
represent attractive putative mediators of the patho-
physiology of mood disorders and the therapeutic
actions of antidepressants and mood stabilizers.

It is also becoming increasingly clear that, for many
refractory mood disorder patients, new drugs that sim-
ply mimic many “traditional” drugs, which directly or
indirectly alter neurotransmitter levels, and those which
bind to cell surface receptors may be of limited benefit.
This is because such strategies implicitly assume that
the target receptor(s)—and downstream signal media-
tors—are functionally intact, and that altered synaptic
activity will thus be transduced to modify the postsy-
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El aumento de la plasticidad sinaptica y de la resiliencia celular como medio para desarro-
llar originales y mejores terapias para los trastornos del animo

Existe una evidencia creciente de que los trastornos del animo recurrentes — antiguamente considera-
dos “enfermedades de buen prondstico” — constituyen, de hecho, patologias a menudo muy severas y
con riesgo vital. Aun cuando los trastornos del animo han sido tradicionalmente conceptualizados
como trastornos neuroquimicos, actualmente existen evidencias de una variedad de fuentes que
demuestran reducciones de volumen de ciertas regiones del sistema nervioso central (SNC), como tam-
bién disminuciones en el numero ylo tamafo de la glia y de neuronas en pequefas dreas cerebrales.
Aunque los mecanismos celulares precisos a la base de estos cambios morfométricos estan por aclarar-
se totalmente, los datos sugieren que los trastornos del animo estan asociados con deterioros de la plas-
ticidad sindptica y la resiliencia celular. En este contexto cabe destacar que existen evidencias crecien-
tes preclinicas que los antidepresivos requlan la funcion del sistema glutamatérgico. Por otra parte,
aunque claramente preliminares, los datos clinicos disponibles sugieren que la reduccion de la funcion
del N-metil-p-aspartato (NMDA) tiene efectos antidepresivos. Recientes estudios preclinicos y clinicos
han demostrado que las vias de sehales que participan en la requlacion de la supervivencia y de la
muerte celular son blancos a largo plazo para las acciones de los agentes antidepresivos. Los antide-
presivos y los estabilizadores del animo regulan indirectamente un numero de factores que participan
en las vias de sobrevivencia celular, los que incluyen: el elemento de respuesta de adenosina monofos-
fato ciclico (cCAMP) unido a proteina (CREB), el factor neurotrofico, tradicionalmente derivado del cere-
bro (BDNF), la proteina antiapoptdtica bcl-2 y las protein-quinasas activadas por mitégenos (MAP),; de
este modo pueden ejercer algunos de sus efectos benéficos retardados a largo plazo a través de los
efectos neurotrdficos tradicionalmente subestimados. Existen muchas promesas para el futuro desa-
rrollo de tratamientos con moléculas que apunten directamente a vias de sefales del SNC que sean cri-
ticas en la regulacion de la plasticidad sindptica y en la resiliencia celular. Esto representard mejores tra-
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Amélioration de la plasticité synaptique et de la résilience cellulaire en vue de développer
de nouveaux et meilleurs traitements pour les troubles de I'humeur

Il a été montré a maintes reprises que les troubles de I’'humeur récidivants, considérés naguére comme
« maladies de bon pronostic », sont en fait souvent trés sévéres et présentent un risque vital. En outre,
bien que les troubles de I'humeur soient envisagés traditionnellement comme étant d’origine neuro-
chimique, nous disposons actuellement de tout un faisceau de preuves démontrant I'existence de réduc-
tions régionales du volume du systéme nerveux central (SNC) comme du nombre et/ou de la taille des
neurones et de la névroglie dans certaines zones distinctes du cerveau. En dépit de lacunes dans la com-
préhension des mécanismes cellulaires précis mis en jeu dans ces modifications morphométriques, les
données suggérent une association entre les troubles de I'humeur et des déficits de la plasticité synap-
tique et de la résilience cellulaire. Dans ce contexte, il convient de souligner que les études précliniques
montrent de plus en plus clairement que les antidépresseurs agissent au travers d’une régulation du
fonctionnement du systéeme glutamatergique. De plus, bien qu’il s’agisse a I’évidence de résultats préli-
minaires, les données cliniques disponibles suggérent I'existence d’un effet antidépresseur lié a une dimi-
nution de la fonction du N-méthyl-p-aspartate (NMDA). Des études cliniques et précliniques récentes ont
montré que les voies de signalisation impliquées dans la régulation de la vie et de la mort cellulaires
représentent des cibles a long terme pour I'action des antidépresseurs. Les antidépresseurs et les régu-
lateurs de I’'humeur modulent indirectement certains facteurs agissant sur les voies de la survie cellulai-
re, comme le facteur de transcription CREB (cyclic [adenosine monophosphate] response element bind-
ing protein), le facteur neurotrophique dérivé du cerveau (FNDC), la protéine antiapoptotique bcl-2 et
les protéines kinases mitogénes activées (PMA). De ce fait, certains des effets retardés bénéfiques a long
terme attribuables a ces médicaments peuvent étre occasionnés par ces effets neurotrophiques par
ailleurs sous-estimés. Davantage prometteur pour I'lamélioration du traitement a long terme des troubles
de I'humeur est le développement de futurs traitements plus directement axés sur les molécules des voies
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