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A b s t r a c t

Transforming growth factor-b (TGF-b) is a multifunctional cytokine that regulates
a wide variety of cellular functions, including cell growth, cellular differentiation,
apoptosis, and wound healing. TGF-b1, the prototype member of the TGF-b super-
family, is well established as a central mediator of renal fibrosis. In chronic kidney
disease, dysregulation of expression and activation of TGF-b1 results in the relentless
synthesis and accumulation of extracellular matrix proteins that lead to the develop-
ment of glomerulosclerosis and tubulointerstitial fibrosis, and ultimately to end-stage
renal disease. Therefore, specific targeting of the TGF-b signaling pathway is
seemingly an attractive molecular therapeutic strategy in chronic kidney disease.
Accumulating evidence demonstrates that the multifunctionality of TGF-b1 is con-
nected with the complexity of its cell signaling networks. TGF-b1 signals through the
interaction of type I and type II receptors to activate distinct intracellular pathways.
Although the Smad signaling pathway is known as a canonical pathway induced by
TGF-b1, and has been the focus of many previous reviews, importantly TGF-b1 also
induces various Smad-independent signaling pathways. In this review, we describe
evidence that supports current insights into the mechanism and function of TGF-b-
activated kinase 1 (TAK1), which has emerged as a critical signaling molecule in TGF-
b-induced Smad-independent signaling pathways. We also discuss the functional role
of TAK1 in mediating the profibrotic effects of TGF-b1.

& 2012. The Korean Society of Nephrology. Published by Elsevier. This is an open
access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Regardless of the cause of the initial injury, chronic kidney
disease (CKD) frequently progresses to end-stage renal disease
with the pathogenesis of fibrosis and complete destruction of
functional kidney tissues. CKD has become a major public health
concern worldwide as the incidence continues to rise and
portends high rates of morbidity and mortality [1]. The hallmark
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of progressive CKD is the development of renal fibrosis that is
thought to be the final common mechanism leading to end-
stage renal disease [2–4]. In general, fibrosis is characterized by
the continuous production and progressive accumulation of
extracellular matrix (ECM) proteins, including collagen and
fibronectin, in the tissues. Renal fibrosis shows significant
correlation with deterioration of kidney function [4,5]. The
growing body of evidence demonstrates that transforming
growth factor-b1 (TGF-b1) plays a pivotal role in the pathogen-
esis of renal fibrosis associated with progressive kidney diseases
[6,7]. Therefore, improved and more effective therapies with
direct antifibrotic effects are highly potent therapeutic strategies
for attenuation or prevention of progressive CKD.
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There are three mammalian isoforms, TGF-b1, TGF-b2, and
TGF-b3, of which TGF-b1 represents the predominant isoform
and the prototype member of the TGF-b superfamily of multi-
functional cytokines. TGF-b1 has been shown to be the key
regulator of a variety of cellular functions such as cell growth,
cellular differentiation, apoptosis, and wound healing, and is a
potent inducer of ECM synthesis [8,9]. In response to tissue
injury, upregulation of TGF-b1 expression and consistent activa-
tion is a common finding in the pathogenesis of renal fibrosis
seen in virtually every type of CKD [6,10,11]. In the acute phase,
however, TGF-b1 also triggers cytoprotective effects to mitigate
tissue injury through enhancing wound repair and tissue
regeneration, as well as anti-inflammatory effects [11–16].

Thus, it seems that TGF-b1 plays a paradoxically dual role
in tissue injury response, suggesting that simply inhibiting
the function of TGF-b1 receptors or TGF-b1 may not be an
appropriate strategy for therapeutic interventions in CKD. In
this context, a more detailed understanding of the cellular and
molecular mechanisms of TGF-b1 actions will not only pro-
vide a more comprehensive knowledge of the pathogenic
mechanisms in CKD, but may also guide the development of
therapeutic strategies specifically targeting the signaling
pathway responsible for the deleterious effects of TGF-b1.
TGF-b receptors

TGF-b1 signals are transmitted through transmembrane ser-
ine/threonine kinase receptors, type I (TbRI) and type II (TbRII),
to activate intracellular downstream signaling pathways [17].
In the absence of the ligand TGF-b1, TbRI and TbRII exist
as homodimers at the cell surface. Upon ligand stimulation,
TGF-b1 binds to TbRII, and in turn TbRI and TbRII form
heterotetrameric complexes. Since TbRII dimer is a constitu-
tively active kinase receptor, upon ligand binding it phosphor-
ylates serine/threonine residues in the cytoplasmic GS domain
of TbRI. However, TbRII signaling in the absence of TbRI has
not been reported. The phosphorylation of serine/threonine
residues in the GS domain activates TbRI, and this is followed
by activation of a number of intracellular signaling molecules
in a cell-specific and context-specific manner to mediate the
diverse biological functions of TGF-b1.

Although TGF-b1 binds efficiently to TbRI–TbRII com-
plexes, TGF-b type III receptor (TbRIII), also known as beta-
glycan, which lacks a signaling domain, serves as a co-
receptor to promote the binding of TGF-b ligands to TbRII in
certain cells [18]. This function of TbRIII appears to be
particularly important for TGF-b2. In contrast to TGF-b1 and
TGF-b3, affinity of TGF-b2 for TbRII is much weaker and
requires betaglycan for high-affinity binding to TbRII [19].
Signaling pathways induced by TGF-b1

A comprehensive overview of TGF-b-activated Smad-depen-
dent and Smad-independent signaling pathways is shown in
Fig. 1. The first member of the Smad family, Mad [mothers
against dpp (decapentaplegic)], was identified in a genetic screen
in Drosophila [17,20], and followed by cloning of sma-2, sma-3
and sma-4 (Small body size) in Caenorhabditis elegans [21,22].

Phosphorylation in the GS domain of TbRI resulting in its
receptor kinase activity recruits and activates receptor-regulated
Smads (R-Smads). In addition to the phosphorylation in the GS
domain [23], the nine-amino-acid L45 loop [24] of TbRI is
thought to be crucial for its interaction with R-Smads. The
recruitment of R-Smads to the receptor complex is mediated
by auxiliary proteins, such as Smad anchor for receptor activa-
tion (SARA) [25]. R-Smads, Smad2 and Smad3, are phosphory-
lated by kinase activity of TbRI and rapidly dissociate from TbRI.
Subsequently, the phosphorylated R-Smads interact to form
complexes with the common mediator (Co-Smad) Smad4, lead-
ing to nuclear translocation and transcriptional activity [26].
Transcriptional activation of Smad complexes leads to cooperate
with other co-activators, such as p300 and CREB-binding protein
(CBP), which possess histone acetyl transferase activity [27]. On
the other hand, the inhibitory Smads (I-Smads), Smad6 and
Smad7, inhibit TGF-b signaling through binding of their MAD
homology (MH) 2 domains to TbRI, thus preventing the recruit-
ment and phosphorylation of R-Smad [17,28].

The Smad signaling pathway is widely accepted as a canonical
pathway induced by TGF-b1 [29], and the role of Smads in kidney
diseases has been a topic of several previous reviews [30,31].
Nevertheless, it has become quite evident that the Smad signaling
pathway does not explain all of the diverse actions of TGF-b1. A
large body of evidence demonstrates that TGF-b1 also induces
the activation of various Smad-independent signaling pathways,
with or without direct crosstalk with the Smad [32,33].

The Smad-independent TGF-b signaling pathways, as illu-
strated in Fig. 1, include the mitogen-activated protein kinases
(MAPKs), namely extracellular signal-regulated kinases 1/2
[34,35], c-Jun N-terminal kinase (JNK) [36–38], and p38 MAPK
[39–42], phosphatidylinositol-3-kinase (PI3K)/AKT [43–46],
Rho-like GTPases (RhoA) [47,48], and protein phosphatase 2A
(PP2A) [49]. Recent studies have demonstrated the role of p38
MAPK signaling pathway in the development of glomerular and
tubulointerstitial fibrosis [50,51] in animal models and in
human kidney disease such as diabetic nephropathy [50,52].
We and others have demonstrated that TGF-b-activated kinase
1 (TAK1) is a major upstream signaling molecule in TGF-b1-
induced type I collagen and fibronectin expression through
activation of the MAPK kinase (MKK) 3–p38 and MKK4–JNK
signaling cascades, respectively (Fig. 2) [53–55]. Here, we review
recent progress toward understanding the molecular mechan-
isms of Smad-independent signaling pathway via TAK1 and its
role in mediating the cellular effects of TGF-b1.
TAK1 in TGF-b signaling

TAK1, a serine/threonine kinase, was originally identified
as a member of the MAPK kinase kinase (MAP3K) family,
named as MAP3K7, and is rapidly activated by TGF-b1 [56,57].
To date, TAK1 is the only MAP3K family member that has
been directly implicated in TGF-b1 signaling. In addition to
TGF-b1, TAK1 can also be activated by various stimuli includ-
ing proinflammatory cytokines such as tumor necrosis factor-
a (TNF-a) [58] and interleukin-1 (IL-1) [59], lipopolysacchar-
ides [60], and environmental stress [61]. Phosphorylation of
Thr-187 and Ser-192 in the activation loop of TAK1 induces
TAK1 activation [62,63] and subsequently triggers the activa-
tion of several downstream signaling cascades, including
MKK4/7–JNK, MKK3/6-p38 MAPK, and nuclear factor-kappa
B (NF-kB)-inducing kinase-IkB kinase (Fig. 2) [58–60].

Recent investigations also indicate a role for TAK1 in the
regulation of Smad function. TAK1 interacts with the MH2
domain in Smad proteins, via which TAK1 dramatically
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Figure 1. Outline of transforming growth factor-b (TGF-b) signaling. Initiation of the TGF-b signaling cascade occurs upon ligand binding to TGF-
b receptor type II (TbRII) and subsequent TbRI–TbRII heterotetrameric complex formation. TbRII is a constitutively active receptor kinase and
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Smad2/3 through recruitment and phosphorylation by activated TbRI, and requires kinase activity of TbRI. The recruitment of Smad2/3 to the
receptor complex is mediated by auxiliary proteins, such as SARA. Smad2/3 is subsequently released from the receptor complex to interact with
Smad4 to transmit TGF-b1 signals. TGF-b1 also activates various Smad-independent signaling pathways, including TAK1, Ras, PI3K/AKT, RhoA, and
PP2A, which in turn triggers the activation of various downstream signaling cascades. See text for other abbreviations.
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interferes with R-Smad transactivation and affects the subcel-
lular distribution of Smad proteins [64]. Similarly, it has been
demonstrated that IL-1b transiently induces the association
between TAK1 and the MH2 domain of Smad3 and inhibits
TGF-b-induced Smad3 signaling [65]. These studies indicate that
TAK1 negatively regulates R-Smad activation through direct
interaction. Furthermore, TAK1 is able to repress Smad activa-
tion through upregulation of inhibitory Smad7 expression [66].
Intriguingly, however, TAK1 can also enhance TGF-b1-induced
Smad signaling. SnoN, an inhibitor of TGF-b signaling, recruits
transcriptional repressor complex to block Smad-dependent
transcriptional activation of TGF-b-responsive genes [67]. Fol-
lowing TGF-b stimulation, TAK1 interacts with and phosphor-
ylates SnoN, resulting in rapid degradation of SnoN and thereby
allowing the activation of TGF-b target genes by R-Smad [68].

There is also evidence to suggest a role of I-Smads in the
regulation of TAK1 function. Smad6 and Smad7 have been
shown to reversely inhibit TAK1 activation in certain cell types,
such as rat pheochromocytoma PC12 cells [69] and mouse
hybridoma MH60 cells [70]. Conversely, in human prostate
cancer PC-3U cells, Smad7 may act as a scaffolding protein and
facilitate the activation of the TAK1–MKK3–p38 signaling axis
[71]. Thus, the reciprocal regulation between TAK1 and Smad
proteins appears to be dependent on cell type and context.

In addition to the role of TAK1 in the regulation of Smad
function, downstream targets of TAK1 such as p38 MAPK and
ATF2 crosstalk with Smads to regulate expression of certain
TGF-b1 target genes [39,72,73]. Collectively, these findings sug-
gest that TAK1 might play a pivotal role in regulating TGF-b
signaling.
Molecular mechanism of TAK1 activation

Requirement of TAK1-binding proteins

Among the MAP3K family members, TAK1 is unique in that
its activation requires the formation of complexes with specific
binding partner proteins known as TAK1-binding proteins 1, 2,
and 3 (TAB1, TAB2, and TAB3) [74–76]. TAB1 and TAB2 are
structurally unrelated TAK1-binding proteins, whereas TAB3 is a
TAB2-related protein that shares 48% amino acid sequence
identity with TAB2 [75,76]. Studies in embryonic fibroblasts
from Tab1-deficient mice have demonstrated that osmotic stress
induces TAK1 activation in a TAB1-dependent fashion [77], and
that TAB1 is also essential for TAK1 activity and necessary for
TGF-b signal transduction [78]. In vivo studies also indicate that
the TAK1–TAB1 complex plays a pivotal role in embryonic
development and morphogenesis, as Tab1 deletion in mice is
embryonically lethal and causes defects in the development of
major organs including the heart and lung [78]. We have also
shown that TAB1 is indispensable for TGF-b1-induced TAK1
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activation in glomerular mesangial cells [79]. By contrast, TNF-a
and IL-1-induced activation of TAK1 did not require TAB1 [77],
but rather TAB2 and TAB3 function redundantly as mediators of
TAK1 activation in TNF-a and IL-1 signaling transduction [75].
Thus, the requirement for these TAK1-binding proteins appears
to be dependent on the stimuli.

Moreover, there is evidence that supports cell-type speci-
ficity in the involvement of the specific TAK1-binding pro-
teins. For instance, TNF-a and IL-1 induced activation of TAK1
is entirely normal in Tab1-deficient mouse embryonic fibro-
blasts [77], indicating that TAB1 is not required, whereas in
HeLa cells, TNF-a-induced TAK1 activation involves a signal-
ing complex with TAB1 as well as TAB2 [63]. In addition, in
skin epithelial cells, TAB1 but not TAB2 is essential for TAK1
activation [80]. Interestingly, in the intestinal epithelium,
TAK1 activity appears to be regulated through two indepen-
dent mechanisms, in which TAB1 regulates basal activity of
TAK1, and TAB2 mediates stimulus-dependent TAK1 activa-
tion [80]. Moreover, ablation of Tab1 downregulates, but
double ablation of Tab1 and Tab2 abolishes, in vivo epithelial
TAK1 activity, and epithelial-specific Tab1 and Tab2 double-
knockout but not Tab1 or Tab2 single-knockout mice pheno-
copy epithelium-specific Tak1 knockout mice [80].

Requirement of ubiquitin ligase TNF receptor-associated
factor 6

Despite the remarkable progress that has been made in
unraveling the mechanism involving TGF-b-induced R-Smad
activation, events that link the activation of non-Smad signal-
ing molecules are less clearly understood. Recent evidence
has demonstrated that the TAK1 activation mechanism is
quite different from that of Smad2/3. Perhaps the most
interesting difference is that TGF-b1-induced TAK1 activation
occurs independently of TbRI kinase activity [79,81], whereas
activation of Smad2/3 involves recruitment and phosphoryla-
tion by TbRI and requires kinase activity of TbRI [23,24].
Activated Smad2/3 are released from the receptor complex to
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interact with Smad4 to transmit TGF-b1 signals. By contrast,
TAK1 has been shown to be stably associated with TbRI in the
absence of ligand stimulation in glomerular mesangial cells
[79]. Upon TGF-b1 stimulation, TAK1 is rapidly dissociated
from the TbRI–TbRII complex, TAK1 is subsequently activated
by its interaction with TAB1 and TAB1-mediated autopho-
sphorylation, and TGF-b1-induced TAK1 activation occurs
independently of receptor kinase activity of TbRI in glomer-
ular mesangial cells [79]. Thus, although TAB1 is indispensa-
ble for TGF-b1-induced TAK1 activation in glomerular
mesangial cells, TAB1 itself does not interact with TGF-b
receptors and is not required for the TAK1–TbRI interaction.

However, the association of TAK1 with TbRI requires TAB2
and an additional adapter protein known as TNF receptor-
associated factor 6 (TRAF6). The ubiquitin ligase (E3) TRAF6 is
a member of a family of RING (really interesting new gene)
domain ubiquitin ligases that catalyzes the synthesis of
polyubiquitin chains linked through Lys-63 of ubiquitin.
The highly conserved ubiquitin-binding zinc finger domain in
TAB2 preferentially binds Lys-63-linked polyubiquitin chains on
TRAF6 and facilitates TGF-b1-induced TAK1 activation [81–83].
TbRI contains a consensus binding site (basic residue-X-P-X-E-
X-X aromatic/acidic residue) for TRAF6, by which TRAF6 physi-
cally interacts with TbRI and promotes Lys-63-dependent poly-
ubiquitination of TAK1 at Lys-34 and subsequent TAK1 activation
[81–84]. However, several recent studies have claimed that Lys-
158 on TAK1 instead of Lys-34 is the polyubiquitination target
site of TRAF6 for TAK1 activation [85–87], although the reason for
the discrepancy of polyubiquitin site on TAK1 remains unclear.

Nonetheless, there are notable differences in the mechanism
of Smad2/3 and TAK1 activation. TbRI kinase activity is required
for activation of the canonical Smad signaling pathway, whereas
ubiquitin ligase activity of TRAF6 regulates the activation of
TAK1 in a receptor kinase-independent manner. TGF-b1 speci-
fically activates TAK1 through the interaction of TbRI with
TRAF6, whereas Smad activation is not dependent on TRAF6.
Inactivation of TAK1 by protein phosphatases

It is thought that dysregulated and prolonged TGF-b
signaling is implicated in disease states. In order to prevent
excessive actions of TGF-b1, a mechanism for efficient down-
regulation of TAK1 activity would be important. In general,
tight regulation of intracellular signaling cascades is accom-
plished by cyclic phosphorylation and dephosphorylation. In
the case of TAK1 inactivation, several members of the Ser/Thr
protein phosphatase family have been demonstrated to nega-
tively regulate TAK1 activity. PP2C is capable of binding and
dephosphorylating TAK1 in 293 cells under nonstimulated
condition [88,89]. Another Ser/Thr protein phosphatase
family member, PP6, interacts with and negatively regulates
IL-1-induced TAK1 in 293 cells [90] and TNF-a-induced TAK1
in fibroblasts [91].

We have reported that TAK1 activation by TGF-b1 in
glomerular mesangial cells is negatively regulated by another
Ser/Thr protein phosphatase family member, PP2A [92],
which was previously shown to mediate TGF-b inhibition of
p70 S6 kinase (p70S6K) to induce cell-cycle G1 arrest [49].
PP2A associates with TAK1 and TAB1, and Thr-187 in the
activation loop of TAK1 is a major dephosphorylation target of
PP2A. Our findings in mesangial cells reveal that TAK1 is
activated and deactivated very rapidly (Fig. 3). Similar
findings have been also reported in cardiac myocytes [93].
Therefore, TAK1 activation is tightly regulated and controlled
through rapid phosphorylation and dephosphorylation. In
addition, inhibition of PP2A significantly upregulates TAK1
phosphorylation and activity [92], indicating that blockade or
attenuation of dephosphorylation by protein phosphatases
may cause prolonged activation of TAK1.
TGF-b/TAK1 signaling-mediated fibrotic response

TGF-b1 is believed to be the most potent profibrotic cytokine,
and evidence is now accumulating demonstrating that TGF-b1-
induced TAK1 signaling plays a critical role in ECM production
and the pathogenesis of renal fibrosis. Studies in cultured
primary mesangial cells have shown that TGF-b1-induced
activation of the MKK3–p38 MAPK cascade leads to type I
collagen expression [40,41] and that TAK1 is a major upstream
signaling molecule mediating TGF-b1-induced MKK3 activation
and collagen induction [54]. Similarly, TAK1 has been shown to
mediate TGF-b-induced expression of types I and IV collagen
and fibronectin in cultured immortalized mesangial cells [53].
In fibroblasts, TGF-b-induced fibronectin expression is mediated
by TAK1 via the MKK4-JNK signaling cascade [55] and TAK1-
deficient fibroblasts exhibit reduced profibrotic response to
TGF-b1 stimulation [94]. In addition, p38 MAPK activation is a
common mechanism implicated in podocyte injury in protei-
nuric glomerulopathies induced by puromycin and adriamycin
[95]. These studies help to establish TAK1 as a major regulator of
TGF-b signaling and pathogenic mechanisms in the renal
cellular injury and profibrotic response.

Recent in vivo evidence also provides further support for
the critical role of the TAK1 signaling pathway in tissue injury
response and fibrosis. Several reports have demonstrated that
the MKK3–p38 MAPK and JNK pathways mediate renal
inflammation and fibrosis by using pharmacological inhibi-
tors and gene-deficient mice in experimental models of
glomerular and tubulointerstitial injury [50–52,96–101].
Increased renal MKK3–p38 MAPK activation has been
observed in experimental models of streptozotocin-induced
type 1 diabetes and in type 2 diabetic db/db mice, as well as in
human diabetic nephropathy [50,52], whereas Mkk3-deficient
db/db mice did not exhibit increased renal p38 MAPK activa-
tion and were protected against glomerular injury and fibrosis
[50]. These studies suggest that the MKK3–p38 MAPK path-
way plays a pathogenic role in diabetic nephropathy. Further-
more, in the unilateral ureteral obstruction (UUO) model of
renal fibrosis, blockade of the MKK3–p38 MAPK or JNK
pathways resulted in substantial amelioration of and protec-
tion against renal inflammation and fibrosis [51,96,101].
Inhibition of the p38 MAPK pathway also protected against
experimental chronic allograft nephropathy [97], and inhibition
of JNK signaling suppressed glomerular and tubulointerstitial
damage in the rat antiglomerular basement membrane disease
model [98] and in the experimental ischemia/reperfusion model
[99,100].

Examination of human biopsy tissues also provides evi-
dence of increased glomerular p38 MAPK activation in
patients with various forms of glomerulonephritis [102,103],
as well as induction of JNK activation following ischemia/
reperfusion in human kidney allografts [100] and in various
kidney diseases including diabetic nephropathy and IgA
nephropathy [99], that paralleled renal injury and implicated
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p38 MAPK [52,102,103] and JNK [99,100] signaling in the
development of inflammation and fibrosis in human kidney
disease. Given that TAK1 is a major upstream signaling
molecule mediating the activation of the MKK3–p38 MAPK
and JNK pathways (see Fig. 2), it stands to reason that TAK1
might play an important role in renal fibrosis in vivo. Indeed,
conditional Tak1 gene deletion in mice demonstrates that
TAK1 deficiency suppressed interstitial myofibroblast accu-
mulation, collagen deposition, and expression of profibrotic
molecules in the UUO kidneys [104]. Collectively, these
studies strongly support the notion that TAK1 signaling
pathways mediate the development of inflammation, ECM
elaboration, and the pathogenesis of renal fibrosis.

In addition to the kidney, TAK1 signaling is also implicated in
profibrotic effects in other organs. TAK1 expressed in the
myocardium of transgenic mice enhanced p38 MAPK phosphor-
ylation and promoted interstitial fibrosis and severe myocardial
dysfunction [93]. TAK1 has also been identified as a main
signaling mediator of epithelial–mesenchymal transition (EMT)
and fibrosis in mesothelial epithelial cells from human perito-
neum [105,106]. In addition, TAK1 functions downstream of
TGF-b-induced focal adhesion kinase-1 (FAK)/Src activation to
mediate fibrotic responses including matrix contraction and
expression of a-smooth muscle actin (a-SMA) and profibrotic
genes in fibroblasts [94]. By contrast, hepatocyte-specific dele-
tion of the Tak1 gene in mice resulted in spontaneous hepato-
cyte death, inflammation, fibrosis, and carcinogenesis, indicating
that TAK1 signaling can be antifibrotic and is an essential
component of cellular homeostasis in the liver [107]. The
seemingly opposite effects suggest that TAK1 signaling is, like
TGF-b1, capable of exerting dual functions in a tissue/cell type-
and context-dependent manner.
Other signaling pathways mediated by TAK1

A summary of additional signaling pathways mediated by
TAK1 is depicted in Fig. 4. Recent evidence has shown that
TAK1 is activated by agonists of AMP-activated kinase (AMPK)
and ischemia, which in turn activates the LKB1/AMPK path-
way, a key energy sensor pathway [108]. AMPK is highly
expressed in the kidney, where it is thought to be involved in
a variety of physiological and pathological processes includ-
ing ion transport, podocyte function, and diabetic renal
hypertrophy [109].

TAK1 has also been shown to negatively regulate the
canonical Wnt/b-catenin signaling pathway [110]. Wnt/b-cate-
nin signaling plays an essential role in tissue development,
including the kidney, and changes in Wnt ligands and pathway
components are associated with acute renal failure and ischemic
renal injury, as well as many CKDs, such as diabetic nephropathy,
renal fibrosis, kidney cancers, and cystic kidney disease, a class of
genetic diseases that includes the most common hereditary life-
threatening syndrome polycystic kidney disease [111–114].

It should be noted that several Wnt proteins are induced
simultaneously in response to TGF-b [115], as well as adria-
mycin [116] or UUO [117], suggesting that Wnt proteins
cooperatively function to trigger podocyte injury or interstitial
fibrosis, respectively. Wnt-5a activates the TAK1–Nemo-like
kinase (NLK) pathway via a noncanonical Wnt/Ca2þ pathway
through activation of Ca2þ/calmodulin-dependent protein
kinase II (CaMKII), and antagonizes canonical Wnt/b-catenin
signaling [118]. b-Catenin is known to form complexes with
members of the T-cell factor/lymphoid enhancer factor (TCF/
LEF) classes of transcription factors to regulate the expression
of target genes, and the CaMKII–TAK1–NLK pathway inhibits
b-catenin-TCF-dependent transcription through phosphoryla-
tion of TCF. Although TAK1 is implicated in the negative
regulation of canonical Wnt/b-catenin signaling in the Xenopus
embryo and in certain mammalian cells including human
embryonic kidney HEK293 cells [118], the role of TAK1 in
Wnt/b-catenin signaling-mediated renal pathophysiology
remains unexplored.
TAK1 signaling in cell fate

TGF-b1 is known to regulate cell survival and cell death,
and TAK1 in a similar fashion possesses pro- and antiapopto-
tic functions. The TAK1-null phenotype is lethal early in
embryonic development, and knockdown of TAK1 expression
or inhibition of TAK1 activation augments cell apoptosis
induced by TGF-b in various cell types in vitro and in vivo,
including the kidney, indicating that TAK1 is required for the
prevention of apoptosis and plays a role as a cell survival
factor [103,119]. Similarly, TAK1 is essential for preventing
the accumulation of TNF-induced reactive oxygen species and
the subsequent activation of reactive oxygen species-
mediated death pathways in keratinocytes [120]. Conditional
tak1 gene deletion in mice resulted in a twofold increase in
the apoptotic response in the obstructed kidney after UUO
[104]. In contrast, abrogation of TAK1 activation inhibits TGF-
b-induced apoptosis in embryonic fibroblasts, prostate cancer
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cells, and AML12 liver cells, indicating that TAK1 also acts as a
promoter of apoptosis [81,82].
TAK1 signaling in autophagy

Autophagy, also known as macroautophagy (literally, self-
eating), is a fundamental cellular homeostatic process by which
cells degrade and recycle proteins and remove damaged orga-
nelles [121]. The role of TGF-b1 as an inducer of autophagy is
just beginning to be appreciated, and little study has so far been
made on the TAK1 signaling pathway in the regulation of
autophagy. Autophagy can lead to cell death in response to
stress, but it can also act as a protective mechanism for cell
survival. It is plausible that the functions of TGF-b1 as both an
apoptosis promoter and apoptosis suppressor may relate to its
regulation of autophagy. Indeed, it has recently reported that
tumor necrosis factor-related apoptosis inducing ligand (TRAIL),
which triggers apoptosis preferentially in cancer cells, spares
normal untransformed cells from apoptosis by inducing cyto-
protective autophagy via the TAK1 signaling pathway [122].

We have reported that TAK1 mediates TGF-b1 induces
autophagy, which protects glomerular mesangial cells from
undergoing apoptosis during serum deprivation [46]. We also
uncovered a novel role of autophagy activated by the TAK1–
MKK3–p38 signaling axis as a cytoprotective mechanism to
promote intracellular degradation of collagen, and thus nega-
tively regulate and prevent excess collagen accumulation in
the kidney [123]. Intriguingly, recent evidence has been
demonstrated that two TAK1 binding partners, TAB2 and
TAB3, are endogenous inhibitors of autophagy [124,125]. In
nonstimulated conditions, TAB2 and TAB3 are bound with
beclin 1, an autophagy-related protein, and maintain the
inactive state of beclin 1 and autophagy. In contrast,
in response to proautophagic stimuli, TAB2 and TAB3
dissociate from beclin 1 and subsequently bind with TAK1
to facilitate proautophagic stimulation through TAK1 activa-
tion (Fig. 5).
Implications for anti-TGF-b therapy

There has been much interest in anti-TGF-b therapy, but
although a significant body of evidence in preclinical studies
aimed at TGF-b blockade showed great promise of antifibrotic
effects in experimental models, limited advances have so far
been made in translation to the treatment of human diseases,
and the results of most clinical trials have been rather
disappointing. A phase I/II randomized, placebo-controlled
trial of TGF-b inhibitor therapy using a human anti-TGF-b
antibody (Cat-192) in 45 patients with scleroderma failed to
show any significant benefits in these patients [126].

Recently, Trachtman et al. reported the results of the first
phase I clinical study for the treatment of kidney disease
using fresolimumab, a neutralizing anti-TGF-b antibody [127].
Fresolimumab is a human monoclonal antibody that neutra-
lizes all three isoforms of TGF-b. The phase I open-label study
was conducted in patients with treatment-resistant primary
focal segmental glomerulosclerosis (FSGS) to assess the
safety, tolerability, and pharmacokinetics of a single-dose
infusion of fresolimumab [127]. The results indicate that
fresolimumab is relatively safe and well tolerated in patients,
and a larger randomized clinical trial to assess the efficacy of
this agent is anticipated.

Pirfenidone is another antifibrotic therapy that is garnering
some interest. Its effects are thought to be, in part, mediated
by inhibition of TGF-b promoter activity and TGF-b
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protein secretion, and inhibition of TGF-b-induced Smad2
phosphorylation [128]. In early clinical studies, pirfenidone
has shown some promise as a therapy for patients with
idiopathic pulmonary fibrosis [129], and to slow the decline
of renal function in patients with FSGS [130].

Excessive TGF-b1 activity leads to fibrotic conditions,
but, given the complexity and pleiotropic actions of TGF-b1,
therapies aimed at indiscriminate blockade of TGF-b1
effects may not be ideal; rather, specific targeting of the
TGF-b signaling pathway may arguably be a more effective
molecular therapeutic strategy in CKD. Targeting the TAK1
signaling pathway is an attractive strategy that targets the
major proinflammatory, proapoptotic, and profibrotic path-
ways, such as the MMK3–p38 MAPK and JNK, in the
treatment of CKD.

In a recently reported preclinical study, the administration
of LYTAK1, a selective small-molecule inhibitor of TAK1, plus
gemcitabine significantly reduced tumor burden in nude mice
with human pancreatic tumor xenografts and prolonged
survival duration [131]. Generalizability of the results to
human patients is uncertain and too premature at this point.
However, it illustrates that targeting of TAK1 is a plausible
therapeutic strategy. There is still a great need for future
investigations to gain further insights into the complex TGF-b
signaling mechanisms, with the ultimate goal of developing
novel and more effective therapies for progressive kidney
diseases.
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