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Background: Breast cancer is one of the most common malignancies in women

worldwide. The purpose of this study was to identify the hub genes and construct

prognostic signature that could predict the survival of patients with breast cancer (BC).

Methods: We identified differentially expressed genes between the responder group

and non-responder group based on the GEO cohort. Drug-resistance hub genes were

identified by weighted gene co-expression network analysis, and a multigene risk model

was constructed by univariate and multivariate Cox regression analysis based on the

TCGA cohort. Immune cell infiltration and mutation characteristics were analyzed.

Results: A 5-gene signature (GP6, MAK, DCTN2, TMEM156, and FKBP14) was

constructed as a prognostic risk model. The 5-gene signature demonstrated favorable

prediction performance in different cohorts, and it has been confirmed that the signature

was an independent risk indicater. The nomogram comprising 5-gene signature showed

better performance compared with other clinical features, Further, in the high-risk group,

high M2 macrophage scores were related with bad prognosis, and the frequency of

TP53 mutations was greater in the high-risk group than in the low-risk group. In the

low-risk group, high CD8+ T cell scores were associated with a good prognosis, and

the frequency of CDH1 mutations was greater in the low-risk group than that in the

high-risk group. At the same time, patients in the low risk group have a good response

to immunotherapy in terms of immunotherapy. The results of immunohistochemistry

showed that MAK, GP6, and TEMEM156 were significantly highly expressed in tumor

tissues, and DCTN2 was highly expressed in normal tissues.

Conclusions: Our study may find potential new targets against breast cancer, and

provide new insight into the underlying mechanisms.
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INTRODUCTION

Breast cancer is one of the most frequently diagnosed malignancies in women and the major cause
of cancer-associated mortality worldwide. Recently, theWorld Health Organization’s International
Agency for Research on Cancer released the latest global cancer burden data for 2020. The most
obvious change is that the incidence of breast cancer has increased rapidly with 2.26 million new
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cases, thereby replacing lung cancer (2.20 million new cases)
as the most common cancer (1). From 2012 to 2016, the
incidence of breast cancer increased by 0.3% per year, and
the mortality rate continued to decline (2, 3). Assessing and
improving breast cancer patients’ outcomes are still tasks of
considerable importance.

In recent years, the diagnosis of BC mainly depended on
pathological examination, imaging examination, and evaluation
of tumor biomarkers. Because of the high recurrence rate of
BC, the age of onset of BC become younger gradually (4).
As a potential non-invasive monitoring option for the risk of
recurrence in BC patients, gene signatures have attracted more
and more attention. The integration of multiple biomarkers into
a single model can improve the accuracy of prediction compared
to a single clinical biomarker. Therefore, it is necessary and
effective to construct new biomarkers related to the prediction
of curative effect. The construction of such genetic markers may
have the clinical potential to predict the prognosis of patients
and aid in treatment selection. Previous studies have established
prognostic signatures for breast cancer by bioinformatics, such
as, Zhong et al. established an autophagy-related genes-based
prognostic signature for breast cancer patients, which was of
great significance in predicting the overall survival rate (5). Zhang
et al. developed an 11-gene signature associated with glycolysis
to predict survival in breast cancer patients (6). In addition, Xie
et al. developed a 12-gene prognostic signature that provided
new insights for assessing the high risk of death from breast
cancer and individualized use of immunotherapy (7). Although
several gene signatures associated with breast cancer have been
published, some of them still have some defects, and the existing
work related to prognosis of breast cancer patients has not been
well carried out. Therefore, there is an urgent need to construct a
breast cancer gene signature biomarkers to predict prognosis and
optimize treatment.

This study aimed to identify prognostic differentially
expressed genes (DEGs) and construct and validate a risk model
for breast cancer. Moreover, the differences in immune cell
infiltration and mutation character between high- and low-risk
patients were evaluated. We built a 5-gene signature prognostic
risk model with excellent stability and reliability for predicting
prognosis in breast cancer patients.

MATERIALS AND METHODS

Data Download and Preprocessing
The RNA-seq and clinical data of breast cancer were downloaded
from The Cancer Genome Atlas (TCGA; https://portal.gdc.
cancer.gov/). The RNA sequencing data were pre-processed in
the following steps: (1) the samples without clinical data were
removed; (2) the median expression value was selected for gene
symbols corresponding to multiple probes.

The GSE59515 data set, which contained information on
neoadjuvant ultrasound evaluating the sensitivity of drug
resistance, and the GSE20685 and GSE31448 data sets, which
contained information on the survival time of breast cancer,
were obtained from the Gene Expression Omnibus (GEO). The
GEO data sets were pre-processed in the following steps: (1) the

samples without clinical data were removed; (2) the probes were
converted to gene symbols; (3) the probes corresponding to more
than 1 gene were eliminated; (4) the median expression value
was selected for gene symbols corresponding to multiple probes.
After preprocessing, there were a total of 50 samples, including
34 for drug response (responder) and 16 for non-response (non-
responder), in the GSE59515 data set. There were 1,034 samples
in the TCGA data set, 327 in the GSE20685 data set, and 246 in
the GSE31448 data set. The clinical statistics information for all
cohorts is shown in Table 1.

Identification of Differentially Expressed
Genes Associated With Neoadjuvant
Chemosensitivity and Functional
Annotation
The limma package was applied to calculate the DEGs between
the responder and non-responder subtypes in the GSE59515 data
set. Further, the Gene Ontology (GO) functional enrichment and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
of the differentially expressed genes between the responder
and non-responder groups were performed by the R package
WebGestaltR (v0.4.3).

Identification of Co-expression Modules
The weighted gene co-expression network analysis
(WGCNA)was applied to identify co-expression genes and
modules based on the GSE59515 expression profiles by the R
software package. The log(k) of the node with connection degree
k was inversely associated with the log(P(k)) of the probability
of the occurrence of the node, and the genes with a correlation
coefficient > 0.85 were included. Subsequently, the expression
matrix was transformed converted into the adjacency matrix, and
the topological overlap matrix was calculated from the adjacency
matrix, and then hierarchical clustering was performed. Next,
average linkage hierarchical clustering was performed on the
basis of the topological overlap dissimilarity measure. After
the gene module was determined, coexpressed modules were
determined using a dynamic hybrid tree cut algorithm setting
with a least number 100 for each module, and the eigenvectors
of each module were calculated and the closer modules were
merged into a new module.

Identification of Hub Genes and
Protein-Protein Interaction Network
Analysis
STRING (https://string-db.org/) is a public database that
contains interactions between known and predicted proteins,
covering 9.6 million proteins and 13.8 million protein-protein
interactions from more than 2,031 species. STRING is a
comprehensive database derived from experimental data, co-
expression data, and automated text mining, and it also contains
the results of bioinformatics predictions. The study of the
protein-protein interaction network is helpful to excavate hub
regulatory genes. There are many databases of protein-protein
interactions, but STRING covers the most species and has the
most information about interactions.
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TABLE 1 | Sample information.

Clinical features TCGA-BRCA GSE20685 GSE31448 GSE59515

Response

Responder 34

Non-responder 16

OS

0 888 244 167

1 146 83 79

T stage

T1 176

T2 591

T3 128

T4 36

TX 3

N stage

N0 484

N1 351

N2 110

N3 72

NX 17

M stage

M0 851

M1 21

MX 162

Stage

I 179

II 585

III 229

IV 19

X 22

ER

Negative 222

Positive 769

Unknown 43

PR

Negative 317

Positive 672

Unknown 45

Her2

Negative 527

Positive 151

Unknown 356

Age

≤ 60 578

>60 456

Subtype_PAM50

Basal 177

Her2 73

LumA 538

LumB 196

Normal 38

Unknown 12

We identified the common DEGs between the responder,
non-responder, and yellow module genes, and then we drew
a Venn diagram. We analyzed the protein-protein interaction
(PPI) network of these common genes by the STRING database
and performed visualization with Cytoscape (v3.7.2) to find the
network module.

The Prognostic Risk Model Construction
Training Set Samples Random Grouping
First, all samples (n = 1,034) from the TCGA database
were randomly assigned to a training cohort and a validation
cohort at the ratio of 1:1. To eliminate the influence of
random allocation bias on the model stability, samples were
randomized by resampling 100 times with replacement. Eligible
training and validation cohort were selected according to
the following criteria: (1) both groups were well-matched for
age, sex, follow-up time, and patient mortality ratio; and (2)
the numbers of binary classification samples were close after
clustering the gene expression profiles into 2 randomly grouped
data sets.

Univariate Survival Analysis of the Training Cohort
Univariate survival analysis was assessed using the R survival
coxph function (P < 0.05) to identify the prognostic hub
genes in the training cohort. Stepwise regression based on
Akaike Information Criterion (AIC) was used to provide
a balance between the goodness of model fit and the
number of parameters required. Variables were dropped
sequentially by evaluating the effects of their removal on
the models AIC, where the lower the AIC, the better
the fit.

Immunohistochemical Staining Evaluation
To validate the expression of 5 gene ssiganture, tissue
microarrays comprised of 89 cases (45 cases of BRCA tissues,
44 cases of normal paired samples) were purchased from
Shanghai Outdo Biotech Co., Ltd. The studies were conducted
in accordance with the International Ethical Guidelines for
Biomedical Research Involving Human Subjects (CIOMS),
and the research protocols were approved by the Clinical
Research Ethics Committee of First Affiliated Hospital of Jinzhou
Medical University.

The TMA slides were incubated with anti-GP6 antibody
(1:200 dilution; SAB - 47582), FKBP14 antibody (1:100
dilution; GENX SPAN- GXP155296), DCTN2 antibody (1:100
dilution; GENX SPAN- GXP187676), MAK antibody (1:100
dilution; GENX SPAN- GXP309295), TMEM156 antibody
(1:100 dilution; Proteintech-25159-1-AP), and spend the night
at 4C.

The stained score were evaluated by three pathologists who
were blinded to patients’ clinical characteristics. The scoring
system was based on the proportion of positive cells in all
tissue cells and the staining intensity of these positive cells. The
intensity of staining was classified as 0 (negative), 1 (weak), 2
(moderate), or 3 (strong). The staining ratio of positive cells
was: 0 (<5%), 1 (5–25%), 2 (26–50%), 3 (51–75%), or 4 (>
75%). According to the staining intensity and the proportion
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of positive cells, the immunohistochemical results were divided
into 0–1 grade, negative (–); > 1–4, weakly positive (+); > 4–8,
moderately positive (++), and > 8–12, strong positive (+++).

RESULTS

Identification of Differentially Expressed
Genes and Functional Enrichment
The DEGs were filtered with thresholds of P < 0.05 and
Fold Change (FC) >1.2. There were 979 DEGs including
367 upregulated and 612 downregulated genes between
the responder and non-responder groups were identified.
The volcano plot and heat map showed that the DEGs
between the responder and non-responder groups were mainly
downregulated genes (Figures 1A,B). The DEGs were listed in
Supplementary Table 1.

The 979 DEGs between the responder and non-responder
groups were subjected to GO functional enrichment analysis
and KEGG pathway analysis by the R package WebGestaltR
(v0.4.3). There were 10 significantly enriched biological process
annotation terms with a False Discovery Rate (FDR) smaller
than 0.05 presented (Figure 1C); 56 significantly enriched
cellular component annotation terms (Figure 1D); and 3
significantly enriched molecular function annotation terms
(Figure 1E). Besides, 10 KEGG pathways were identified
(Figure 1F, Supplementary Table 2).

Identification of Co-expression Modules
First, we obtained the 1,034 breast cancer samples from the
TCGA database and used hierarchical clustering to cluster the
samples (Figure 2A). There was 1 outlier sample, which we
removed, so 49 samples remained. Next, we calculated the
corresponding Pearson correlation coefficients for each gene
and built a weighted co-expression network using R software
package WGCNA. Here, the power of β = 3 was selected
ensuring close to the scale-free network (Figure 2B). After the
module was determined by the dynamic tree cut algorithm, the
eigenvectors of each module were calculated. Then we clustered
the modules, merged the similar modules into new modules, and
set height = 0.25, deepSplit = 3, minModuleSize = 100. Finally,
we obtained 12 modules (Figure 2C). Further analysis of the
correlations between each module and response type (responder
and non-responder) was performed (Figure 2D). The results
showed that the yellow module, which contained 697 genes
(Supplementary Table 3), was the most positively correlated
with the responder group and themost negatively correlated with
the non-responder group.

Identification of Hub Genes and
Protein-Protein Interaction Network
Analysis
Weplotted the Venn diagram of theDEGs between the responder
and non-responder groups and the yellow module genes, and
180 genes were identified as common genes, among which 112
were upregulated and 68 were downregulated in the responder

group (Supplementary Figure 1A). Functional annotation was
performed for these 180 genes (Supplementary Table 4).

The protein-protein interactions of the 180 DEGs were
analyzed using STRING and the resulting file was used to
screen the network modules using Cytoscape (v3.7.2). Then, the
MCODE1 genemodule was identified via theMolecular Complex
Detection (MCODE) plugin (Supplementary Figure 1B). We
performed functional annotation for the MCODE1 genes shown
in Supplementary Table 5.

The Prognostic Risk Model Construction
Training Set Samples Random Grouping
There were 517 samples in the training cohort and 517 in the
validation cohort (Table 2). The result showed that the groupings
were reasonable and all comparisons between the training and
validation cohort were not significantly different by chi-square
test (P > 0.05).

Univariate Cox Analysis of the Training Cohort
The R survival coxph function was applied to the 180 hub genes.
There were 8 genes with a significant difference with P < 0.05
(Supplementary Table 6).

Multivariate Analysis of the Training Cohort
Eight prognosis-related genes were identified and then subjected
to multivariate analysis and the best model with the lowest AIC
was identified. Finally, 5 genes, GP6, MAK, DCTN2, TMEM156,
and FKBP14 were obtained.

The 5 genes prognostic Kaplan-Meier curves were shown
in Supplementary Figure 2. The GP6, DCTN2, and TMEM156
genes could significantly divide the TCGA training cohort
into high-risk and low-risk groups (P < 0.05). The final
risk score formula was generated based on the hub genes as
follows: risk score = −0.462∗GP6-0.403∗MAK+0.569∗DCTN2-
0.214∗TMEM156+0.417∗FKBP14.

Construction and Evaluation of the Risk Model
We calculated and visualized the each sample risk score
(Figure 3A). It was considered that breast cancer patients in
the high-risk group had a worse prognosis. The 5 signature
gene expression values changed with increased risk values.
Further, the receiver operating characteristic curves (ROC) of
risk score was plotted with the R package timeROC. The areas
under the curve (AUCs) at 1, 3, and 5 years were 0.69, 0.70,
and 0.76, respectively (Figure 3B). Patients were divided into
the high-risk group (risk scores >0) and low-risk group (risk
scores <0) using the Z-score method. Significant differences
were found in the high-risk group with 297 samples and the
low-risk group with 238 samples by KM curves (P < 0.0001,
Figure 3C).

Validation of the Risk Model
Validation of the Robustness of the 5-Gene Signature

in Different Cohorts
To determine the model’s robustness, we used the same
coefficients and formul as the training set in the entire TCGA
cohort. We calculated the risk score of each sample according
to the gene expression level, and draw their distribution
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FIGURE 1 | Identification of differentially expressed genes between the Responder and Non-responder group and functional enrichment. (A) Volcano plot, red

represents up-regulation, and green represents down-regulation. The abscissa represents log2FC, and the ordinate represents p-value; (B) Heat map of differentially

expressed gene expression of Responder and Non-responder group; (C) Differentially expressed genes enriched in Biological process; (D) Differentially expressed

genes enriched in Cellular component; (E) Differentially expressed genes enriched in Molecular function; (F) Differentially expressed genes enriched in pathways. The

abscissa represents the percentage of gene enrichment; the ordinate represents the enriched function or pathway.
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FIGURE 2 | (A) Sample clustering analysis; (B) Network topology Analysis for various soft-thresholding powers; (C) The gene dendrogram and the corresponding

module colors; (D) The correlation analysis between 12 modules clinical phenotypes.

in the testing cohort as shown in Supplementary Figure 3A.
The risk score at 1, 3, and 5 years with ROC was plotted
(Supplementary Figure 3B). Significant differences were found
in the high-risk group and the low-risk group by KM curves,
and patients in the high-risk group had a significantly worse
prognosis (P < 0.01, Supplementary Figure 3C).

The external cohorts GSE20685, GSE6532, and GSE42568
were included to test the model robustness. We calculated and
plotted the risk score of each sample in the GSE20685, GSE6532,
and GSE42568 cohorts (Supplementary Figures 3D,G,J). ROC
of Risk score was plotted with the R package timeROC.
The 3-, and 5-year ROC results of the GSE20685 was
0.70,0.66, respectively (Supplementary Figure 3E). The 3-,
and 5-year ROC results of the GSE6532 was 0.78, 0.70,

respectively (Supplementary Figure 3H). And the 3-, and 5-
year ROC results of the GSE42568 was 0.66, 0.74, respectively
(Supplementary Figure 3K). Significant differences were found
in the KM curves between the high-risk and low-risk groups
in the GSE20685, GSE6532m and GSE42568 cohorts (P < 0.05,
Supplementary Figures 3F,I,L).

Prognostic Analysis of the Risk Model and
Clinical Features
We found that the tumor stage (T stage), node stage (N
stage), metastasis stage (M stage), clinical stage, ER status, PR
status, HER2 status, and the LumB subtype could be divided
into 2 groups with significant prognostic differences based
on the risk score (P < 0.05, Figure 4). However, the risk
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TABLE 2 | TCGA training cohort and validation cohort sample information.

Clinical Features TCGA-train TCGA-test P

OS

0 446 442 0.7888

1 71 75

T stage

T1 145 31 0.5596

T2 291 300

T3 65 63

T4 14 22

TX 2 1

N stage

N0 232 252 0.5106

N1 189 162

N2 52 58

N3 36 36

NX 8 9

M stage

M0 428 423 0.861

M1 11 10

MX 78 84

Stage

I 91 88 0.8007

II 297 288

III 107 122

IV 11 8

X 11 11

ER

Negative 105 117 0.6178

Positive 389 380

Unknown 23 20

PR

Negative 157 160 0.8921

Positive 336 336

Unknown 24 21

Her2

Negative 263 264 0.9902

Positive 75 76

Unknown 179 177

Age

≤ 60 292 286 0.7541

>60 225 231

Subtype_PAM50

Basal 89 88 0.9582

Her2 37 36

LumA 264 274

LumB 99 97

Normal 21 17

Unknown 7 5

score could not significantly divide the LumA subtype into
2 groups (P > 0.05, Figure 4O). These results demonstrated

that Riskscore can be used as a prognostic marker for
clinical subgroups.

Performance of the Risk Score in Clinical
Features
By comparing the distributions of the risk scores among the
clinical features in the TCGA cohort, we found that there were
significant differences in N stage, M stage, stage, ER status, PR
status, and the PAM50 subtype (P < 0.05, Figure 5).

Comparison of Immune Scores Between
the High and Low-Risk Groups
To determine the relationship between the immune scores
and high-risk and low-risk groups of the TCGA cohort, we
evaluated stromal scores, immune scores, and estimate scores
by the ESTIMATE package, assessed the scores of 10 immune
cell types by MCPcounter, and calculated the proportion 22
immune cell types by CIBERSORT. We then compared the
differences between immune scores and the risk score groups.
The distributions of the high- and low-risk scores in terms of
the 22 immune infiltration cell scores were shown in Figure 6A.
Box plots showed that M0 macrophages and M2 macrophages
had significantly higher scores in the high-risk group than
in the low-risk group, while B cells and CD8+ T cells had
significantly lower scores in the high-risk group than in the
low-risk group (Figure 6B). The scores of B cell and T cells
CD8 in the high-risk group were significantly lower than in
the low-risk group, which was consistent with the CIBERSORT.
In addition, the scores of myeloid dendritic cells, neutrophils,
and cytotoxic lymphocytes were significantly lower in the high-
risk group than in the low-risk group (Figure 6C), and the
immune scores and estimate scores in the low-risk group were
higher than in the high-risk group (Figure 6D). To a certain
extent, different immune expression characteristics affected the
prognosis of different groups.

Comparison of Mutation Characteristics
Between the High- and Low-Risk Groups
Using oncoplot to analyze the mutation distributions in the
different risk groups, we found that TP53 mutations were
significantly more common in the high-risk group than in
the low-risk group (20 vs. 12%), and CDH1 mutations were
significantly more common in the low-risk group than in the
high-risk group (9 vs. 5%). Other mutations, such as PIK3A,
TTN, and GATA3 mutations, also had significant differences
(Figures 7A,B).

Nomogram and Decision Curve Analysis of
Risk Scores and Clinical Features
The univariate Cox regression analysis showed that the risk score
was significantly associated with the survival of breast cancer
patients, while risk type (hazards ratio [HR] = 1.62, P = 0.002),
age (HR= 2.98, P= 1e-05), M stage (HR= 3.04, P= 0.023) were
significantly related to survival by multivariate Cox regression
analysis (Figures 8A,B), suggesting that they were independent
risk factors for the prognosis of breast cancer patients.
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FIGURE 3 | (A) The distribution of risk score and survival time, survival status as well as the 5 genes expression in the TCGA training cohort; (B) ROC curves and

AUCs of the 5-gene signature classification performance in the TCGA training cohort; (C) KM curve of 5-gene signature in the TCGA training cohort. The abscissa

represents survival time, the ordinate represents survival probability, the red line represents high expression group, and the green line represents low expression group.

Nomograms can be used to show risk model results intuitively
and effectively, and they are convenient to use in the prediction
of outcomes. A nomogram was constructed with the significant
factors identified in the multivariate analysis of the entire TCGA
data set (Figure 8C). It was can be found that the risk score
had the maximum effects on survival and the calibration curves
indicated that the risk model had kind predictive performance
(Figure 8D). In addition, we plotted the decision curves of age,
M Stage, risk score, and the nomogram, and it was found that the
nomogram had good clinical applicability (Figure 8E).

Comparison of the Risk Signature With
Others
Three risk models about breast cancer prognosis including a
4-gene signature (8), a 19-gene signature (9), and a 10-gene
signature (10) were found from the literature. We used the same
method to calculate the risk score of each sample according
to the corresponding gene in the three models. The ROC and
KM curves of the 3 models were shown in Figures 9A–F. The

results showed that the 3-year AUC of the 19-gene signature (Su)
was higher than our model, but the 1- and 5-year AUCs were
lower than those of our model. The 1-, 3-, and 5-year AUCs of
the 4-gene signature (Qi) and 10-gene signature (Huang) were
lower than those of our 5-gene signature. The KM survival of the
high- and low-risk groups was also significantly different between
the 3 models (P < 0.05). To further compare the predictive
performance of the models, we calculated the concordance index
(C-index) values of all 4 models with the rms package in R.
We found that our risk score model had the highest C-index
among the 4 models (Figure 9G), suggesting that the overall
performance of our model was better than that of the other
3 models.

Prediction of Risk Model for
Immunotherapy
Currently, effective predictive markers for gene immunotherapy
are limited. The identification of new predictive markers is
essential for further advancement of precision immunotherapy.
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FIGURE 4 | The prognostic performance of risk signature on different clinical features in the TCGA dataset. (A) T1+T2 group of patients; (B) T3+T4 group of patients;

(C) N0 group of patients; (D) N1+N2+N3 group of patients; (E) M0 group of patients; (F) Stage I+II group of patients; (G) Stage III+IV group patients; (H) Age> 60

group patients; (I) Age ≤ 60 group patients; (J) ER negative group patients; (K) ER postive group patients; (L) PR negative group patients; (M) PR postive group

patients; Patients in (N) Her2 postive group; patients in (O) LumA group; patients in (P) LumB group. The abscissa represents survival time, the ordinate represents

survival probability, the red line represents high expression, and the green line represents low expression.

We searched an immunotherapy data set (Imvigor210) to
explore whether the 5-genes model can predict the effect
of immunotherapy. Imvigor210 recorded expression profile
in metastatic urothelial carcinoma (mUC) samples from
patients who responded or did not respond to anti-PD-L1
immunotherapy. The Kaplan–Meier curve shows that in mUC

patients receiving immunotherapy, a higher RiskScore value
is associated with a worse survival rate (Figure 10A). ROC
analysis shows that the combinationmodel integrating Riskscore,
Neo-antigen (NEO), and tumor mutation burden (TMB) has
higher predictive performance (Figure 10B, ROC = 0.7);
As the immune cell (IC) score increases, the RiskScore
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FIGURE 5 | Distribution of Risk score on different clinical features in the TCGA dataset. (A) The expression difference of Risk score between N stages; (B) The

expression difference of Risk score between M stages; (C) The expression difference of Risk score between clinical stages; (D) The expression difference of Risk score

between ER status; (E) The expression difference of Risk score between PR status; The expression difference of FD Risk score between different molecular subtypes.

gradually decreases (Figure 10C); Tumors were divided into
three subgroups, namely “immune desert,” “immune excluded,”
and “inflamed” cases in order to recapitulate a proposed
model of different immunological backgrounds in cancer. We
found that immune-inflamed tumor is often accompanied by
low Riskscore (Figure 10D). The expression of Riskscore is
negatively correlated with immune cells such as CD8+ Tcell,
CD4+ Tcell, B cell (Figure 10E), which further showed that
low Riskscore is accompanied by higher immune infiltration.
The comprehensive illustration of the above results suggested
that the immune response treatment effect of the patients
in the low RiskScore group is better than that in the high
RiskScore group. Therefore, our model can predict the effect of
gene immunotherapy.

Clinical Validation of 5 Gene Expression
To demonstrate the expression of 5 gene signature further. Tissue
microarrays comprised of 89 cases (45 cases of BRCA tissues, 44
cases of normal paired samples) were included. The results of
immunohistochemistry showed thatMAK, GP6 and TEMEM156
were significantly highly expressed in tumor tissues, and DCTN2
was highly expressed in normal tissues. FKBP14 showed no

significant difference between tumor tissues and normal tissues
(Figures 11A–E).

DISCUSSION

Recently, the diagnosis and treatment of breast cancer have
improved rapidly due to ongoing research, but assessing and
improving prognosis in breast cancer patients are still difficult
tasks. Therefore, there is an urgent need to find gene expression
biomarkers to help predict prognosis and optimize treatment. To
identify such prognostic markers in breast cancer patients, a 5-
gene signature was established and validated to investigate the
potential link between the risk score and survival.

In the present study, we obtained 1,034 samples of breast
cancer from the TCGA database and 180 common DEGs from
the intersections of the responder and non-responder subtypes
from the GSE59515 and WGCNA. Then AIC was used for
stepwise regression to construct a 5-gene signature (GP6, MAK,
DCTN2, TMEM156, and FKBP14) as a risk model for survival
prediction. The result indicated the 5-gene signature was robust
and valid in different data sets (GSE20685 and GSE31448).
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FIGURE 6 | (A) Distribution of immune cell infiltration score in high and low-risk groups. (B) Comparison of immune scores between high risk and low-risk group in

CIBERSORT; (C) Comparison of immune scores between high risk and low-risk group in MCPcounter; (D) Comparison of immune scores between high risk and

low-risk group in the estimate. *P < 0.05, **P < 0.01, and ****P <0.001.
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FIGURE 7 | (A) Comparison of mutation characteristics in high-risk group. (B) Comparison of mutation characteristics in low-risk groups. The abscissa represents the

number of samples, and the ordinate represents the mutant gene. Different colors represent different types of mutations.

Compared with the 3 existing models, our 5-gene signature
prognostic risk model had better stability and reliability. The
analysis revealed that the 5-year survival rate in the high-risk
group survived lower than those in the low-risk group. The risk
score could divide T stage, N stage, M stage, Clinical stage, ER
status, PR status, HER2 status, and the LumB subtype, but not
the LumA subtype, into 2 prognostic groups with significance,
demonstrating that the predictive power of this model was
better than other clinicopathological features included. The risk

score was also an independent predictor compared with other
clinicopathological features per the 5-year survival nomogram.

Male germ cell-associated kinase (MAK) is the first protein
kinase to be shown to be a direct transcriptional target of
androgen receptors and to act as a co-activator of androgen
receptors in the transmission of androgen signals. MAK
is overexpressed in prostate cancer cell lines and clinical
specimens and leads to mitosis defects via APC/CCDH1
imbalance. MAK plays important role in normal prostate
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FIGURE 8 | (A) Univariate survival analysis of risk score and clinical features; (B) Multivariate survival analysis of risk score and clinical features. (C) The nomogram

model constructed by combining the clinical features with the RiskScore; (D) The 1-, 3-, 5- year survival nomogram calibration curves; (E) The DCA curves of risk

model with clinical features (Age, M Stage, Risk score, and nomogram).
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FIGURE 9 | (A,B) ROC and KM curve for overall survival for high-risk and low-risk groups based on 4-gene signature (Qi); (C,D) ROC and KM curve for overall survival

for high-risk and low-risk groups based on 19-gene signature (Su); (E,F) ROC and KM curve for overall survival for high-risk and low-risk groups based on 10-gene

signature (Huang); (G) C-index of four prognostic risk models. The abscissa represents different signatures, and the ordinate represents C-index.

FIGURE 10 | (A) KM curve of Imvigor210 data set, horizontal axis represents survival time, vertical axis represents survival probability, red line represents high

expression group, green line represents low expression group; (B) ROC curve of Imvigor210 data set, horizontal axis represents False postive rate, The vertical axis

represents True postive rate; (C) RiskScore difference between immune cell (IC) scores, a PD-L1 scoring: IC0: <1%; IC1: ≥ 1% and <5%; IC2: ≥ 5% and <10%;

(D) Differences in Risk Score between different immune characteristics, The abscissa from left to right is “immune desert” group, “immune excluded” group, and the

“inflamed” group; (E) Heat map of the correlation between Riskscore and immune characteristic cell type. Red represents positive correlation, blue represents

negative correlation.
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FIGURE 11 | Expression verification of 5 genes in breast cancer clinical samples. (A) DCTN2 expression in cancer and para-cancerous tissues; (B) FKBP14

expression in cancer and para-cancerous tissues; (C) GP6 expression in cancer and para-cancerous tissues; (D) MAK expression in cancer and para-cancerous

tissues; (E) TMEM156 expression in cancer and para-cancerous tissues.

development and prostate cancer progression. The positive rate
of androgen receptors in breast cancer is about 60–80%, and
androgen receptors are also key factors in the pathogenesis of
breast cancer. Androgen receptor-targeted therapies, including
androgen receptor agonists, androgen receptor antagonists, and

PI3K inhibitors, have shown encouraging outcomes in breast
cancer clinical trials (11). Higher levels of androgen receptor
mRNA have been associated with improved survival in patients
with ER-positive and HER2-negative breast cancer (12). By
inhibiting the expression of MAK, androgen receptor signal
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transduction is greatly hindered, and the highly restricted
expression of this kinase makes it a potential target. Dynactin
(DCTN) is a 6-subunit protein encoded by the DCTN gene,
which is involved in the activation of cytokinin in eukaryotes
(13). This gene is located on chromosome 12q13-q15, which
is a region prone to stable amplification in many cancers. The
DCTN family has been linked to neurodegeneration (14, 15),
and more and more studies have shown that DCTN2 may be a
potential prognostic biomarker for cancer, including cutaneous
melanoma, colon adenocarcinoma, and osteosarcoma (16–18).
FK506-binding protein 14 (FKBP14) belongs to the FK506-
binding protein family. FKBP14 is an oncogene that has been
reported in several malignant tumors, including osteosarcoma,
ovarian cancer, cervical cancer, gastric cancer, and colon cancer.
Specifically, FKBP14 acts as an oncogene by inhibiting apoptosis
and promoting the movement of human cervical cancer (19).
FKBP14 promotes the proliferation and migration of colon
cancer cells by targeting the IL-6/STAT3 signaling pathway (20).
The expression of FKBP14 is higher in gastric cancer patients
with lower survival rates, and it is associated with lymph node
metastasis and advanced histological grade. However, reports
on FKBP14 in breast cancer are unavailable. Glycoprotein 6
(GP6) is a member of the immunoglobulin superfamily and is
believed to be the major platelet collagen receptor involved in
arterial thrombosis, and it plays a vital role in platelet activation
and aggregation. GP6 has been reported to be associated with
the thrombus pathway in acute myocardial infarction, ischemic
stroke, and fetal loss (21–23). GP6 and TMEM156 have not
been studied in tumors. Further functional studies are needed to
explore themolecular functions of these hub genes, and they need
to be validated in breast cancer tissue samples or patients.

Breast tumor consisted of tumor cells and stromal cells, such
as fibroblasts, endothelial cells, and infiltrating immune cells.
The most widely studied immune cell is the tumor infiltrating
lymphocyte. The presence of tumor infiltrating lymphocytes
is potentially predictive and prognostic in both HER2-positive
and triple-negative breast cancer subtypes. Increased tumor
infiltrating lymphocyte levels at the time of diagnosis was
significantly associated with reduced distant recurrence and good
prognosis (24–26). CD8+ tumor infiltrating lymphocytes are
particularly essential for tumor destruction. A study of 3,992
breast cancer patients showed that CD8+ tumor infiltrating
lymphocytes was an independent indicator related with good
survival in patients with basal-like breast cancer, but not patients
with other intrinsic molecular subtypes (27). A study of 12,439
patients indicated that the presence of CD8+ T cells dramatically
reduced the risk of death in breast cancer (28). Several studies
have proven that CD8+ T cells can be used to predict the
response to treatment during the neoadjuvant chemotherapy
phase, particularly in the triple-negative and HER2-positive
breast cancer subtypes (29–31).

Tumor-associated macrophages are related to tumor
cell invasion and tumor angiogenesis in breast cancer
(32, 33). Tumor-associated macrophages are divided into 2
main phenotypes: M1 macrophages (which inhibit cancer
progression) and M2 macrophages (which promote cancer
progression). Studies have shown that high concentrations

of M2 tumor-associated macrophages and hyaluronic acid in
combination lead to inflammatory conditions that promote
tumor progression and poor survival (34). CHI3L1 secreted
from M2 macrophage promotes breast cancer cell metastasis
in vitro and in vivo. Activation of IL-13Rα2 by CHI3L1
triggers the activation of the mitogen-activated protein kinase
signaling pathway, upregulating matrix metalloproteinase genes
expression and promoting tumor metasta (35). Besides, M2
macrophages stimulate tumor angiogenesis, cancer cell invasion,
immunosuppression, and matrix remodeling (36, 37).

In this study, we calculated immune cell scores using
3 methods and then compared the differences between the
high- and low-risk groups. We found that the scores of M0
macrophages and M2 macrophages in the high-risk group were
significantly higher than those in the low-risk group. Meanwhile,
the scores of B cells and CD8+ T cells in the high-risk group
were significantly lower than those in the low-risk group. Per
MCPcounter, the scores of B cells and CD8+ T cells in the high-
risk group were significantly lower than those in the low-risk
group. In coincidence with previous studies: the high expression
of M2 macrophages in the high-risk group was linked to bad
prognosis in breast cancer, and high expression of CD8+ T cells
in the low-risk group was linked to a good prognosis.

Using oncoplot to analyze mutation distributions, we found
that TP53 mutations were significantly more common in the
high-risk group than in the low-risk group (20 vs. 12%),
while CDH1 mutations were significantly more common in
the low-risk group than in the high-risk group (9 vs. 5%).
TP53 mutations are the most common mutations in breast
cancer, occurring in 30–35% of all breast cancer cases and
about 80% of triple-negative breast cancer cases (38, 39). There
was strong evidence that TP53 mutations were correlated with
poor disease-free survival and overall survival rates in breast
cancer (40, 41). On the other hand, carriers of mutations in
the gene encoding E-cadherin (CDH1) have a significant risk
(more than 70%) of developing hereditary diffuse gastric cancer,
and women with CDH1 mutations are at high risk (cumulative
risk of about 40%) of lobular breast cancer (42). Patients
with hereditary diffuse gastric cancer and lobular breast cancer
with CDH1 mutations have a poorer prognosis (43, 44). Our
findings are consistent with the fact that TP53 mutations are
significantly more common in high-risk patients than in low-
risk patients, indicating a poor prognosis for breast cancer in
those with high-risk scores. However, we found that CDH1
mutations were significantly less common in the high-risk
group than in the low-risk group, which was inconsistent with
others’ findings, possibly due to the limited sample size in
this study.

In recent years, there has been more and more research on
breast cancer prognosis models. We compared 3 published breast
cancer gene signatures to demonstrate the good performance
of our model. Huang et al. (10) built and validated a 10-
gene signature for breast cancer patients who took tamoxifen.
Patients with low-risk scores had significantly longer survival
times than those with high risk scores, and the 5-year AUC
was 0.733. The risk score was related with stage and grade
of lymph node metastasis, but not with age, sex, lymphatic
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invasion, or tumor size. Qi et al. (8) constructed a 4-mRNA
(ACSL1, OTUD3, PKD1L2, and WISP1) prognostic risk model
by comprehensive survival analysis. The survival status of the
high-risk group was worse than that of the low-risk group. In that
study, patients with high expression of OTUD3, PKD1L2, and
WISP1 mRNA tended to have a better outcome, while patients
with high expression of ACSL1 mRNA tended to have a worse
outcome. Su et al. (9) established a 19-gene signature related
to clinical prognosis for breast cancer patients. It could also
be used to stratify early (I and II) and late (III and IV) breast
cancer patients. In this study, we constructed a novel signature
and nomogram for breast cancer patients, and it showed good
application. The results of ROC analysis and overall survival
KM curve analysis of the 4 models showed that the AUC of
the 19-gene signature (Su) at 3 years was higher than that of
our risk model, but the AUCs at 1 and 5 years were lower than
those of our risk model. The AUCs of the 4-gene signature
(Qi) and 10-gene signature (Huang) at 1, 3, and 5 years were
lower than those of our signature. Besides, Our signature had
the highest C-index among the 4 models. These results suggested
that our 5-gene signature was superior to the other 3 signatures
in terms of overall performance. Further, our signature had a
plausible number of genes and had superiority in predicting
overall survival.

Our findings were based on retrospective studies, and we did
not conduct a comprehensive analysis of the correlations between
clinicopathological features and risk scores. This study may have
contributed to selection bias because of limited samples, and
some key genes may have been omitted leading to the limitation
of the risk model.

In conclusion, we identified and constructed a 5-gene
signature (GP6, MAK, DCTN2, TMEM156, and FKBP14)
prognostic model to predict prognosis in breast cancer patients.
The results consistently showed that the survival time of patients
with high-risk scores was significantly lower than that of patients
with low-risk scores. The model had a good performance in
both the training and independent validation cohorts, and it

was found to be an independent prognostic clinical feature.
Therefore, the 5-gene signature is practical and trustworthy to
predict the outcomes of breast cancer patients. We recommend
using this classifier as a potential biomarker for the prognosis of
breast cancer patients.
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