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Abstract

Genomic changes that drive cancer initiation and progression contribute to the 
co-evolution of the adjacent stroma. The nature of the stromal reprogramming involves 
differential DNA methylation patterns and levels that change in response to the tumor 
and systemic therapeutic intervention. Epigenetic reprogramming in carcinoma-
associated fibroblasts are robust biomarkers for cancer progression and have a 
transcriptional impact that support cancer epithelial progression in a paracrine manner. 
For prostate cancer, promoter hypermethylation and silencing of the RasGAP, RASAL3 
that resulted in the activation of Ras signaling in carcinoma-associated fibroblasts. 
Stromal Ras activity initiated a process of macropinocytosis that provided prostate cancer 
epithelia with abundant glutamine for metabolic conversion to fuel its proliferation and a 
signal to transdifferentiate into a neuroendocrine phenotype. This epigenetic oncogenic 
metabolic/signaling axis seemed to be further potentiated by androgen receptor signaling 
antagonists and contributed to therapeutic resistance. Intervention of stromal signaling 
may complement conventional therapies targeting the cancer cell.

Chromatin modification in cancer:  
a brief overview

Cancer is a general term for a group of diseases that 
diverge with respect to its origin and is characterized 
by uncontrolled proliferation with the potential for 
metastatic progression (Hanahan & Weinberg 2000, 
Chaffer & Weinberg 2011, Hanahan & Weinberg 2011). 
Cell proliferation is normally tightly regulated at the gene 
level with dynamic chromatin modifications (Perino & 
Veenstra 2016). Chromatin structure is central for the 
regulation of gene expression either by organizing the 
structure of promoters and regulatory elements or by 
providing accessibility to transcription factor binding at 
regulatory elements (Tirosh & Barkai 2008). One of the 

prime epigenetic phenomena in cancer is suppression 
or downregulation of tumor suppressor genes through 
aberrant promoter methylation and deacetylation, often 
associated with condensing the chromatin structure and 
preventing transcription factor loading, resulting in gene 
silencing (Robertson 2001, Luczak & Jagodzinski 2006). 
Conversely, the acetylation and demethylation of the 
gene-body can also result in gene silencing. The epigenetic 
activation of oncogenes on the other hand seem to be 
less associated with direct DNA or histone methylation/
acetylation of the oncogenes themselves, but rather 
miRNAs that can indirectly regulate tumorigenic potential 
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(Zhang et al. 2007, Mi et al. 2010, Yan et al. 2015). The 
role of miRNAs in the microenvironment is not discussed 
in this review as they are well reviewed elsewhere 
(Rupaimoole et al. 2016, Smith et al. 2017). However, the 
regulation of oncogene activity regulatory proteins of, as 
opposed to direct oncogene/tumor suppressor expression, 
can also result from DNA/histone modification. The tight 
oncogenic regulation suggests multiple mechanisms  
by which they can be subverted in the events leading  
to cancer.

The addition of a methyl group (CH3) at fifth 
carbon position of the cytosine ring of DNA, termed, 
5-methylcytosine (5mC), predominantly occurs in CpG-
rich sequences. Somatic, non-stem cells, normally have 
hypomethylated CpG islands in promoter sequences 
(Moore et  al. 2013). However, aberrant promoter 
hypermethylation of multiple tumor-suppressor 
genes is associated with the upregulation of DNA 
methyltransferases (DNMTs) in multiple cancer types 
(Jin & Robertson 2013, Moore et  al. 2013). The DNMT 
family comprises four members which include DNMT1, 
DNMT3A, DNMT3B and DNMT3L. All members of the 
family possess inherent enzyme activity except DNMT3L 
(Jin & Robertson 2013). While DNMT1 functions during 
DNA replication to maintain the DNA methylation 
pattern from the parental DNA strand onto the newly 
synthesized daughter strand, DNMT3a and DNMT3b are 
responsible for establishing de novo methylation pattern to 
unmodified DNA (Okano et al. 1998, 1999, Riggs & Xiong 
2004, Egger et al. 2006, Goll et al. 2006). Epigenetic cancer 
therapeutic targets DNA/histone methylation in order to 
reverse chromatin remodeling (Sproul & Meehan 2013). 
An feature of cancer cell is the reduced total global DNA 
methylation in the context of enriched DNA methylation 
at certain promoter CpG islands (Wu et  al. 2018). Laird 
et al. showed that heterozygotic mice with null mutation 
of Dnmt1, when treated with specific inhibitors of DNA 
methylation, such as 5-aza-2′-deoxycytidine (5-aza-dC) 
significantly reduced tumor formation in Apc Min+/− 
mice (Takebayashi et  al. 2007). Additional studies with 
gene knockout analysis in mice have shown that, a 
Dnmt1 hypomorphic allele (causing partial loss of 
function) can suppress polyp formation and CpG island 
methylation (Eads et al. 2002). In particular, studies have 
demonstrated that DNMT1 overexpression correlates 
with colon tumors, compared to non-malignant adjacent 
stroma (Honeywell et al. 2018). DNA methylation marks 
also involve active demethylation of 5mC by oxidizing 
enzymes including the ten-eleven translocation (TET) 
enzymes (TET1, TET2, TET3) as well as associated histone 

proteins by demethylase KDM4A/JHDM2A. Interestingly, 
epigenetic regulation can itself be regulated by metabolic 
intermediates. For example, the TCA cycle metabolite 
α-ketoglutarate is an inducer of TET2 (Raffel et al. 2017). 
The subsequent downstream metabolites, succinate 
and fumarate, promoted histone demethylation by 
KDM4A/JHDM2A (Xiao et  al. 2012). New findings on 
the relationship between chromatin modification and  
cancer metabolism provide new opportunities for 
epigenetic therapy.

Epigenetic coevolution of stromal fibroblastic 
cells in response to tumorigenesis

It is now established that carcinogenesis involves 
reciprocal interactions between cancer cells and 
components of the surrounding microenvironment 
consisting of extracellular matrix, fibroblasts, vasculature-
associated endothelia and pericytes, as well as immune 
cells and occasionally adipose cells (Plava et  al. 2019). 
Based on the pro-tumorigenic role these non-tumorigenic 
components have, tumor microenvironment-targeted 
interventions have attracted notable attention in cancer 
therapy (Dey 2011, Quail & Joyce 2017). Prominently, 
angiogenesis inhibitors have been practice-changing for 
a few cancer types, but interestingly had a lesser impact 
on cancer care than originally anticipated. Regulators of 
fibrosis have had limited efficacy. While immune therapy 
targeting T cell activation has taken cancer care by storm 
recently, thus far under 20% of melanoma and lung cancer 
patients demonstrate lasting benefit. Interestingly, there 
is a distinct change in the chromatin-accessible regions 
of exhausted T cells that is not alterable by immune 
checkpoint inhibition (Pauken et al. 2016, Sen et al. 2016). 
The understanding of the most abundant cell type of the 
solid tumor microenvironment, the fibroblasts, remains 
largely unknown. Not without controversy, cancer-
associated fibroblasts (CAF), is considered not to be driven 
by genomic mutations (Hill et  al. 2005, Li et  al. 2007, 
Qiu et  al. 2008, Bianchi-Frias et  al. 2016). However, the 
seminal finding by Cunha and colleagues that CAFs have 
the capacity to maintain its tumor-inductive capacity 
in the absence of the constant signals from cancer cells 
for a period of time, suggested an inherent ‘memory’ 
(Olumi et  al. 1999, Hayward et  al. 2001). As evidence, 
CAF can be isolated from patient tissues, cultured, and 
then transferred to mice with non-tumorigenic cells to 
develop a tumor. In the absence of mutations, the pro-
tumorigenic phenotype of CAF is found to be driven by 
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epigenetic mechanisms associated with promoter DNA 
methylation (Dumont et al. 2008, Gascard & Tlsty 2016).

CAFs are the dominant cell type in tumor 
microenvironment, with both pro- and anti-tumorigenic 
capacity (Placencio et  al. 2008, Kalluri 2016, LeBleu & 
Kalluri 2018). The net effect of paracrine signaling crosstalk 
between CAFs and the cancer epithelia provides avenues 
for disrupting pro-tumorigenic signaling (Wu et al. 2012). 
In contrast to normal tissue-associated fibroblasts (NAFs), 
the epigenetic programming in CAFs represents a durable 
change that is able to promote tumor growth (Fiori 
et al. 2019). The distinct contribution of TME epigenetic 
landscapes in tumorigenesis was first highlighted by Hu 
and colleagues (Hu et  al. 2005) by developing a novel 
method – methylation-specific digital karyotyping tissue 
obtained from epithelial and stromal fibroblasts from 
normal breast and in situ and invasive breast carcinomas. 
This study highlighted that epigenetic landscape has a role 
in the maintenance of the abnormal microenvironment 
in breast cancer. In prostate cancer, pi-class glutathione 
S-transferase gene (GSTP1) promoter is methylated in >90% 
cases (Lee et al. 1994). This seminal study demonstrated 
distinct GSTP1 gene promoter methylation of the stromal 
cells in prostate cancer. Although the primary role of 
GSTP1 is in the detoxification of carcinogens (Allocati 
et  al. 2018), it is not involved in the suppression of 
cancer cell growth and cannot be classified as a tumor 
suppressor gene (TSG); however, its aberrant silencing 
in CAFs may create a permissive microenvironment 
for tumorigenesis (Lee 2007). In agreement Rodriguez-
Canales et  al. demonstrated significant topographical 
differences and distinct area of stromal methylation of 
the stroma especially at the center of the tumor in the 
prostate using laser capture microdissection (Rodriguez-
Canales et al. 2007). We have reported that the epigenetic 
silencing of the TGF-β type II receptor (Tgfbr2) in prostatic 
CAF can be causative for GSTP1 promoter methylation, 
as the knockout of the Tgfbr2 resulted in GSTP1 silencing 
in addition to a number of DNA damage repair genes 
(Banerjee et al. 2014). In addition, prostatic human CAF 
and mouse transgenic knockout of Tgfbr2 demonstrated 
elevated DNA methyltransferases I (DNMT1) activity 
and histone H3 lysine 9 trimethylation (H3K9me3) 
associated with greater promoter methylation. Notably, 
restoring the expression of the epigenetically silenced 
genes in the CAF using 5-azacitidine led to reduced tumor 
progression (Banerjee et  al. 2014). Promoter DNA and 
histone methylation can mediate a tumor permissive 
environment (El-Osta & Wolffe 2000, Rose & Klose 2014). 
A recent study showed that CAFs with a large number of 

H3K27me3 changes had greater tumor-promoting effects, 
associated with the secretion of the paracrine factor 
WNT5a (Maeda et  al. 2019). The epigenetic landscape 
of PCa CAF has diagnostic and grading capacity of PCa 
(Gordetsky & Epstein 2016, Pidsley et al. 2018).

DNA methylation and histone modification 
studies in CAF

Recent advancement in ‘omics’ technologies have 
allowed for genome-wide profiling of genome-scale DNA 
methylation both at a single-nucleotide and at a single-cell 
resolution (Lo & Zhou 2018). These methylation techniques 
are primarily based on the concept that treatment of 
sodium bisulfite on DNA leads to the conversion of 
nonmethylated cytosines to uracil whilst maintaining 
5-methylcytosine (5mC) unchanged (commonly called 
as protected region) (Clark et  al. 1994). Bisulphite 
conversion is still considered to be the ’gold standard’ to 
detect DNA methylation patterns. In addition, alternative 
methylcytosine-specific enrichment technologies, such 
as methylated DNA immunoprecipitation (MeDIP) and 
methyl-CpG-binding technologies are region-based 
approaches in whole genomes, therefore, do not deliver 
the detail of DNA methylation patterns (Bock et  al. 
2010). Incorporation of next-generation sequencing 
methods with bisulfite conversion is the basis for reduced 
representation (RRBS) or whole genome (WGBS) data to 
identify genome-wide CpG coverage (Harris et al. 2010). 
We performed first application of RRBS technology in 
analyzing DNA methylation pattern in fibroblasts (Mishra 
et  al. 2018). Comparing the DNA methylome analysis 
of prostatic NAF and CAF, we recognized genes that had 
reported roles in tumor progression, suppression, and 
metastasis (Table 1). There were 18 tumor-promoting, 
11 suppressing, 2 metastasis regulatory gene promoters’ 
hypermethylated in the prostatic CAFs. Heat maps of 
the genes suggest critical novel biomarkers for prostate 
cancer (Fig. 1). The rational for focusing on known 
tumor regulators in the non-transformed fibroblastic 
cells is based on significant evidence that such genes in 
fibroblasts have distinct paracrine effects on associated 
epithelia. Indeed, the forced expression of two oncogenic 
events are required to transform embryonic fibroblasts 
(Land et  al. 1983). However, the effects on adjacent 
epithelia only seem to require a single such hit. For 
example, the loss of tumor suppressors, such as TGFBR2 
or phosphatase and tensin homolog (PTEN) in prostate 
and breast fibroblasts, respectively, has been associated 
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Table 1 Differential promoter methylation of genes in prostatic CAF and NAF cells with roles as oncogene, tumor suppressor, 
and metastasis.

Name Description Biological effect Reference

Oncogene
 MEDAG Mesenteric estrogen-dependent adipogenesis Observed in almost all cases of papillary 

thyroid carcinomas. High expression was 
correlated with metastasis and poor 
disease-free survival.

(Song et al. 2019)

 ALX1 Aristaless-like homeobox1 Induces EMT and cell invasion in ovarian 
cancer cells by promoting Snail 
expression.

 (Yuan et al. 2013)

 CACNA1C Calcium voltage-gated channel subunit alpha1 C Expression was directly regulated by 
miR-363 whose high expression is 
associated with worse prognosis in diffuse 
large B-cell lymphoma (DLBCL).

(Zhang et al. 2019)

 GPT2 Glutamic pyruvate transaminase GPT2 Promotes tumorigenesis and stemness of 
breast cancer cells by activating the Shh 
signaling

(Cao et al. 2017)

 HSPA2 Heat shock-related 70-kDa protein 2 Overexpression is correlated with tumor 
angiogenesis and poor prognosis in 
pancreatic carcinoma.

(Zhai et al. 2017)

 PVRL4 Poliovirus-receptor-like 4 Associated with breast cancer 
transformation and involved in cell-to-cell 
attachment with monoclonal antibodies

(Pavlova et al. 
2013)

 LAMA3 Laminin alpha 3 The analysis identified a splice variant 
known to be involved in tumor cell 
invasion and progression.

(Moller-Levet et al. 
2009)

 NOS2 Nitric oxide synthase Its expression was associated with brain 
metastases in mouse models of orthotopic 
breast cancer xenografts.

(Heinecke et al. 
2014)

 FOXD2-AS1 FOXD2 adjacent opposite strand RNA1 Promoted the progression of colorectal 
cancer by regulating EMT and Notch 
signaling pathway.

(Yang et al. 2017)

 SFRP4 Secreted frizzled-related protein 4 (SFRP4) Elevated gene expression is associated with 
high grade disease and recurrent prostate 
cancer after surgery.

(Sandsmark et al. 
2017)

 SH3RF2 SH3-domain-containing RING finger protein Regulates p21-activated kinase 4 (PAK4) 
protein stability. Ectopic expression limit 
apoptosis and enhances cell migration, 
colony formation and tumor growth.

(Kim et al. 2014)

 CD74 Cluster of Differentiation 93 In several forms of cancer, CD74 is 
up-regulated and associated with 
enhanced proliferation and metastatic 
potential

(Schroder 2016)

 COBL cordon-bleu WH2 repeat protein) It is involved in the cancer cell 
morphogenesis, implicated in the 
acquisition of the neuron-like cell shape 
observed in neuroendocrine prostate 
cancer.

(Lopes et al. 2016, 
Takayama et al. 
2018)

 NAV1 Neuron navigator 1 Expressed in brain astrocytoma, its 
expression was positively correlated with 
the degree of malignancy

(Xing et al. 2014)

 B3GNT1 β-1,3 -N-ac etylg lucos aminy ltran sfera se 1 Wild-type but not mutant B3GNT1 in human 
prostate cancer cells led to increased 
levels of α-dystroglycan glycosylation, 
associated with extracellular matrix.

(Buysse et al. 2013)

 CD93 
 
 

Cluster of Differentiation 93 
 
 

A key regulator of glioma angiogenesis, 
acting via cytoskeletal rearrangements 
required for cell-cell and cell-matrix 
adhesion.

(Langenkamp et al. 
2015) 
 

(Continued)
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Name Description Biological effect Reference

 NTRK1 Neurotrophic receptor tyrosine kinase 1 Tumor samples from 3 of 91 patients with 
lung cancer (3.3%) without known 
oncogenic alterations assayed by next-
generation sequencing or fluorescence in 
situ hybridization demonstrated evidence 
of NTRK1 gene fusions

(Vaishnavi et al. 
2013)

 SIX2 SIX homeobox 2 Transcription factor involved in organ 
development and breast cancer stem cells 
through the positive regulation of SOX2

(Wang et al. 2014, 
Oliphant et al. 
2019)

Tumor suppressor
 FES c-fes protein-tyrosine kinase Expression downregulated in colon tumors. 

Restoration of expression suppressed 
their colon cancer growth in soft agar.

(Delfino et al. 2006)

 LSP1 Lymphocyte‐specific protein 1 Inhibits the growth of hepatocellular 
carcinoma by suppressing ERK1/2 
phosphorylation. Patients with high LSP1 
expression had significantly better overall 
survival.

(Zhang et al. 2016)

 LIMCH1 Lim and calponin-homology domains 1 Potentiates actin stress fiber assembly and 
stabilizes focal adhesions to negatively 
regulate cell spreading and migration

(Lin et al. 2017)

 CDYL Chromodomain on y-like CDYL bridges REST and histone 
methyltransferases for gene repression 
and suppression of cellular 
transformation. Loss of heterozygosity 
associated with cervical cancer 
transformation.

(Mulligan et al. 
2008)

 CCDC68 Coiled-coil domain containing 68 Allows for centriol anchoring to 
microtubules in interphase cells. Directly 
associated with pancreatic cancer 
proliferation. 

(Radulovich et al. 
2015)

 ISYNA1 Inositol 3-phosphate synthase (ISYNA1) Ectopic ISYNA1 expression increased 
myo-inositol levels in the cells and 
suppressed tumor cell growth.

(Koguchi et al. 
2016)

 LZTS3 Leucine zipper tumor suppressor family member 3 In silico characterization of LZTS3 identified 
its potential tumor suppressor. 

(Teufel et al. 2005)

 ING3 Inhibitor of growth Can activate p53 trans-activated promoters, 
including promoters of p21/waf1 and Bax. 
Overexpression can inhibit cell growth and 
induce apoptosis in head and neck 
cancers

(Gou et al. 2014)

 TBX4 T-box transcription factor Tbx4 Reduced expression suggests a worse 
prognosis for pancreatic cancer patients.

(Zong et al. 2011)

 RPL23A Ribosomal protein L23A gene A component of the 60S ribosomal subunit 
exhibits anti-cancer function on the Hep-2 
cells.

(Sun et al. 2012)

 HOXA5 Homeobox A5 Loss of expression occurs frequently in 
breast cancer and correlates with higher 
pathological grade and poorer disease 
outcome.

(Teo et al. 2016)

Metastasis
 ESRP1 Epithelial splicing regulatory protein 1 Drives a switch from mesenchymal to 

epithelial phenotype characterized by 
reduced cell migration of ovarian cancer

(Jeong et al. 2017)

 ANXA2 
 
 
 

Annexin A2 
 
 
 

High-affinity binding for Ca and 
phospholipids like other annexin family 
members. Implicated in multiple cancer 
types to greater metastasis and poor 
prognosis. 

(Christensen et al. 
2018, Li et al. 
2019) 

Table 1 Continued.
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with breast and prostate cancer mouse models (Bhowmick 
et  al. 2004, Cheng et  al. 2005, Trimboli et  al. 2009). In 
parallel, oncogene expression of cyclin D1 (CCND1) 
and CMYC in the CAF has been reported to promote 
tumorigenicity in PCa models (He et  al. 2007, Valencia 
et al. 2014, Minciacchi et al. 2017). In fact, gastric cancer-
associated stromal methylation signature was found to 
be a determinant of epithelial tumor stage (Jiang et  al. 
2008). Methylation-sensitive SNP array analysis (MSNP) 
was used to compare DNA methylation in NAF and 
CAF cells. Fewer genes were found to have promoter 
hypermethylation in CAFs compared to NAF (Jiang et al. 
2008). Aberrant DNA methylation pattern in CAFs that 
affected TGF-β signaling was found to be prognostic for 
non-small-cell lung cancer patients (Vizoso et  al. 2015). 
CAF in pancreatic ductal adenocarcinoma, associated 
with extensive connective tissue deposition, had a 
distinct methylation landscape that promote malignant 
growth and progression. Suppressor of cytokine signaling 
(SOCS) family gene, SOCS1 was identified as a prominent 
gene frequently methylated in pancreatic CAFs (Xiao 
et  al. 2016). Conversely, the ADAM12 gene promoter 
was hypomethylated in pancreatic CAFs (Yu et  al. 
2012). Together, these data demonstrate stromal DNA 
methylation status can impact cancer progression.

In a noteworthy study, Albrengues et al. demonstrated 
that an epigenetic switch involving the leukemia-
inducible factor (LIF), a proinflammatory cytokine 
of IL-6 class secreted by cancer cells, reprograms 
human head and neck CAF into a state that supported 
cancer cell invasion via extracellular matrix (ECM) 
remodeling (Albrengues et  al. 2015). They further 
showed that DNMT3B methylated CpG sites of the 
SHP-1 phosphatase promoter to downregulate SHP-1 
expression, resulting in constitutive phosphorylation of 
JAK1. Thereafter JAK1/STAT3 signaling was sustained by 
maintenance methylation enzyme, DNMT1. This study 

provided a unique link of histone modification and 
DNA methylation in fibroblasts. The authors observed 
that DNMT inhibitor, 5-AzaDC, restored the expression 
of SHP-1, thereby decreasing JAK1/STAT3 activation, 
and tumor-inductive properties of the fibroblasts. All 
together, these studies demonstrated crucial role of DNA 
methylation activity of the tumor microenvironment 
provided sustained head and neck cancer proinvasive 
activity. Histone methylation is also crucial for fibroblast 
activation. Accordingly, Tyan et al. reported that the loss 
of EZH2 (enhancer of zeste homolog 2) caused promoter-
associated histone H3K27 methylation at the ADAMTS1 
gene (ADAM metallopeptidase with thrombospondin 
type 1 motif), accounting for its enhanced expression 
(Tyan et  al. 2012). These studies supported the role of 
epigenetic modification in breast stromal fibroblasts in 
conferring a tumor-inductive phenotype. Apart from 
histone modification, non-histone chromatin remodeling 
gene, Hmga2 (High-mobility group AT-hook 2) has 
been identified as an epigenetic regulator in prostatic 
fibroblasts. Stromal-specific overexpression of Hmga2 
in mouse fibroblasts was sufficient for the induction of 
multifocal prostatic intraepithelial neoplasia in adjacent 
prostatic epithelia (Zong et  al. 2012). More research is 
needed to understand the underpinning mechanisms 
for the emergence of the stable CAF phenotype.  
Figure 2 illustrates general epigenetic changes involved  
in fibroblast which alter cancer epithelial communications 
and proliferations.

Epigenetic silencing of RasGAPs: alternative 
route to Ras signaling activation in cancer

Altered Ras signaling has achieved notoriety in 
contributing to tumorigenesis (Fernandez-Medarde & 
Santos 2011). More than 30% of all human neoplasms 

Figure 1
Heatmap summarizing DNA methylation levels of 
CpG repeats (blue color indicates 
hypomethylation and brown represents 
hypermethylation). (A) Hierarchical clustering and 
heatmap were generated for logarithmically 
transformed RRBS data and a columnwise 
normalization using MetaboAnalyst 3.0. (B) Tumor 
suppressor and (C) oncogenes identified from top 
200 methylated genes differentially expressed 
between NAF and CAF are indicated. Each column 
represents a fibroblast sample, and each row 
represents the methylation level of indicated  
gene (n = 5).
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harbor an oncogenic form of Ras proteins, made up of 
a small family of three closely related proteins (K-Ras, 
H-Ras, or N-Ras) (Adjei 2001, Canevari et  al. 2002). 
As GTPases, Ras proteins oscillate between an active 
GTP-bound and guanosine diphosphate (GDP)-bound 
inactive state. The RasGAP family of proteins inactivate 
Ras signaling by binding Ras and catalyzing Ras-GTP 
hydrolysis to Ras-GDP (King et al. 2013, Simanshu et al. 
2017, Scheffzek & Shivalingaiah 2019). The silencing of 
the RasGAP genes by promoter methylation results in 
the activation of RAS signaling and promote primary 
tumor development (Fernandez-Medarde & Santos 2011, 
Simanshu et al. 2017). In addition, the inactivation of the 
RasGAP, RASAL1, in fibroblasts can contribute to renal and 
cardiac fibrosis (Bechtel et al. 2010, Xu et al. 2015). There 
are 14 RasGAP genes identified in the human genome 
(Bernards 2003). We performed Oncomine analysis to 
investigate the differences in the mRNA levels of different 
RasGAPs genes, between tumor and normal tissues in 
multiple cancer types (Fig. 3). The epigenetic regulation 
of RasGAP proteins that contribute to activation of Ras 
signaling and its implication in tumorigenesis is further  
discussed below.

DAB2IP is one of most well-studied RasGAPs in 
cancers, also known as AIP1 (ASK1-interacting protein). 
Several studies reported DAB2IP gene regulation through 
aberrant methylation in prostate, breast, lung, liver and 
gastrointestinal cancers (Chen et  al. 2003, Dote et  al. 
2004, 2005, Yano et  al. 2005). A DNA methylation-
based study conducted in renal cell carcinoma 
identified DAB2IP promoter methylation as a practical  

prognostic biomarker. The CpG methylation biomarker 
is located upstream of the transcription start site of 
DAB2IP (DAB2IP CpG1). Pyrosequencing quantitative 
methylation assay of over 550 patient paraffin renal 
cancer tissue sections was used to establish a correlation 
between DAB2IP CpG1 methylation and overall 
survival (Wang et  al. 2016). Similarly, DAB2IP promoter 
methylation and expression downregulation were 
identified to be associated with breast cancer lymph node 
metastasis (Dote et al. 2004). The restoration of DAB2IP 
expression by 5-acetazolamide-2-cytosine deoxyriboside 
(5azaDC, DNA demethylating agent) supported the 
epigenetic regulation of breast cancer progression (Dote 
et al. 2004). Methylation of DAB2IP exon 3 was associated 
with histone H3 di- and trimethyl H3-Lys27 (H3K27me2 
and H3K27me3), a site known to be modified by EZH2 
and recruitment of polycomb repressive complex 2 and 
histone deacetylases (Chen et al. 2003, Smits et al. 2012). 
The established tumor-suppressive role of DAB2IP has 
been extended to its role in angiogenesis inhibition 
and chemo/radiation sensitization, to reveal some  
Ras-independent effects of this RasGAP.

RASAL1 has been identified as a tumor suppressor, 
frequently silenced by promoter hypermethylation 
in numerous cancer types. For example, screening 
of 13 RasGAPs in 12 human thyroid cancer cell lines 
revealed epigenetic silencing of RASAL1 (Liu et al. 2013). 
Notably, treating these cell lines with 5azaDC restored 
RASAL1 expression. In another example, promoter 
hypermethylation of RASAL1 was found in colorectal 
cancers, interestingly frequently also associated with 

Figure 2
A general scheme of epigenetic changes in 
fibroblasts include four basic mechanisms: (I) 
promoter DNA modifications, (II) histone 
modifications, (III) chromatin remodeling with 
polycomb proteins, and (IV) aberrant expression 
of miRNA. These well-known epigenetic 
modifications taking place in the tumor 
microenvironment can lead to transcriptomic 
changes, that in-turn can be suppressive of 
promoting of tumor expansion in a paracrine 
manner.
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K-Ras mutational activation (Ohta et  al. 2009). Ectopic 
expression of RASAL1 or using a DNA methylation 
inhibitor was found to reduce Ras signaling and colon 
cancer progression (Liu et  al. 2005, Ohta et  al. 2009). 
Likewise, RASAL1 promoter DNA hypermethylation in 
gastric cancer tumor tissues were greater than that in 
paired adjacent non-tumor tissues (Chen et  al. 2013). 
Apart from DNA methyltransferases, there are also 
histone-modifying enzymes, which can play a role in 
the regulation of RASAL1. Brigette et  al. revealed that 
treatment with histone deacetylase inhibitor (HDACi), 
belinostat (PXD101), led to a modest restoration of 
RASAL1 expression in HepG2 and Hep3b cell lines 
(Ma et  al. 2010). For these diverse cancer types with 
RASAL1 epigenetic silencing, often associated with Ras-
driven carcinogenesis, the added loss of the suppressor 
potentially super-activates the Ras signaling axis. In 
the same models, however, the restoration of RASAL1 
expression was found to negate some of the effects of the 
endogenous Ras-activating mutations or amplification. 
Thus, epigenetically regulated RasGAP activity can be 

considered to be dominant over such genomic alterations 
of the Ras gene.

Epigenetic silencing of RASAL2 has demonstrated 
that it can function as a tumor and metastasis suppressor, 
in breast cancer, hepatocellular carcinoma, colorectal 
cancer (Jia et al. 2017), nasopharyngeal carcinoma, lung 
cancer, and ovarian cancer (McLaughlin et al. 2013, Feng 
et  al. 2014, Huang et  al. 2014, Li & Li 2014, Stefanska 
et al. 2014, Wang et al. 2015, Yan et al. 2016, Olsen et al. 
2017). Notably, promoter hypermethylation of RASAL2 
and DAB2IP was identified in aggressive luminal B breast 
cancer (Olsen et  al. 2017). Performing gain-of-function 
and loss-of-function studies, Hui et  al. demonstrated 
that formation of new blood vessels was suppressed 
by RASAL2 via VEGFA downregulation in renal cell 
carcinoma metastasis (Hui et  al. 2018). Further, the 
epigenetic silencing of RASAL2 was negatively correlated 
with the overall survival of renal cell carcinoma  
patients (Hui et al. 2018).

Unlike the other two RASAL family members, RASAL3 
has not been considered a tumor suppressor in the 

Figure 3
The expression levels of human RASAL1, RASAL2, 
RASAL3 and DAB2IP are profiled across multiple 
cancer types, compared to normal tissue by 
Oncomine. The gene expression level differences 
between cancer and normal tissue are illustrated. 
The number of datasets in which statistically 
significant mRNA overexpression or under-
expression was observed is indicated in red or 
blue boxes, respectively. The color intensity 
corresponds to the gene rank and magnitude of 
expression differences with a statistically 
significant threshold.
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traditional sense, in terms of being silenced in tumor cells. 
The role of RASAL3 in immune cells have been recognized. 
Initially, the epigenetic silencing of Rasal3 was observed in 
canine B-cell lymphoma, identified by DNA methylome 
by genome-wide CpG microarray (Stefanska et al. 2014). 
Subsequently, a mouse model systemically knocking 
out Rasal3 resulted in reduced number of natural killer 
(NK) cells and diminished expression of interleukin-4 
and interferon-γ by the NK cells (Saito et  al. 2015). The 
knockout of Rasal3 also results in reduced number of naïve 
T cells, demonstrating the role of RASAL3 in supporting 
cell survival (Muro et al. 2018). In light of the recognized 
importance of tumor immunity, there may be further 
justification for the restoration of RASAL3 expression, 
potentially through the use of HDAC inhibitors or DNA-
demethylating agents. In fact, the current use and observed 
efficacy of such therapeutics may in part be due to their 
impact on RASAL3 on non-tumor cells. We reported 
RASAL3 promoter methylation, through RRBS sequencing 
analysis, is a crucial step in activating Ras signaling in 
prostatic CAF (Mishra et  al. 2018). As described earlier, 
oncogene signaling in CAF can potentiate the expansion 
of adjacent cancer epithelia. Accordingly, we found that 
active Ras signaling in the CAF caused PCa epithelial 
proliferation and acquisition of a neuroendocrine 
phenotype. Interestingly, we further revealed that RASAL3 
epigenetic silencing and Ras signaling activation in CAF 
was heightened by the androgen receptor antagonism, a 
mainstay in PCa therapy. It is important to note that PCa is 
not recognized as a Ras-driven cancer. Hormone signaling 
regulates oncogenic signaling mechanisms that stimulate 
the activation of fibroblasts, can cause therapeutic 
resistance of the adjacent epithelia in a paracrine manner.

Enhanced macropinocytosis provide 
metabolic flexibility for tumor cells

In Ras-driven cancers like pancreatic and glioblastoma, a 
process of uptake of albumin and other macromolecules 
from its surroundings, termed macropinocytosis occurs 
(Commisso et  al. 2013, Muller-Greven et  al. 2017). 
Subsequent albumin translocation to lysosomes generates 
amino acids. And as albumin is rich in glutamine, an 
outcome of macropinocytosis is glutamine efflux. For 
pancreatic cancer, the further metabolism of glutamine 
serves as a means of fueling cancer progression. 
However, we found that prostatic CAFs do not seem to 
metabolize the glutamine further (Mishra et  al. 2018).  
Rather, glutamine gets secreted for its uptake by adjacent 

cancer epithelia, where it is metabolized to glutamate and 
enters the TCA cycle via α-ketoglutarate. A key hurdle 
for cancer cells is to fulfill rising energy demand for the 
growing biomass in often nutrient-depleted conditions 
(DeBerardinis & Chandel 2016). In order to meet energy/
biosynthetic demand, tumors have evolved tremendous 
capacity to reprogram pathways triggering nutrient 
acquisition. Metabolic reprogramming is recognized as 
one of the hallmarks of cancer (Hanahan & Weinberg 
2011) and explored as therapeutic targets (Altman et al. 
2016, DeBerardinis & Chandel 2016, Cluntun et  al. 
2017). We demonstrated that the uptake of glutamine by 
amino acid transporter (SLC1A5), as well the metabolism 
of glutamine to glutamate by glutaminase (GLS) was 
upregulated in the cancer epithelia in response to elevated 
concentrations of glutamine in the media (Mishra et al. 
2018). Macropinocytosis is one of the important strategies 
that cancer cells use as an alternative nutrient acquisition 
pathway (Commisso et al. 2013, Zwartkruis & Burgering 
2013, Nakase et  al. 2015, Wang et  al. 2018). While the 
first microscopic observations of macropinocytosis in 
malignant cells was discovered in 1930s, its mechanistic 
understanding occurred in the last few years. The uptake 
of macromolecules through a specialized process of 
plasma membrane ruffling for the formation of endocytic 
macropinosomes that fuse into lysosomes is now an 
established process for anabolic metabolism for cancer 
cells (Recouvreux & Commisso 2017, Wang et al. 2018). 
Apart from oncogenic Ras activation, phosphatidylinositol 
3-kinase (PI3-kinase) and phosphatase and tensin 
homolog (PTEN) mutations found in cancer (Chalhoub & 
Baker 2009) may also potentiate macropinocytosis as an 
adaptation to limiting nutrient availability (DeBerardinis 
& Chandel 2016, Cluntun et  al. 2017, Recouvreux & 
Commisso 2017). However, in the case of PCa, the 
stromal co-evolution with the cancer epithelia involve 
epigenetic imprinting associated with RASAL3 silencing. 
This particular stromal reprogramming supports cancer 
progression via the induction of fibroblastic activation 
and secretion of glutamine.

The role of glutamine as a conditionally essential 
amino acid for cancer cells is well documented as a critical 
metabolite for nucleotide biosynthesis and anaplerosis. 
In addition, we found that incubation of PCa cells with 
glutamine resulted in the expression of neuroendocrine 
markers. We demonstrated that the uptake and  
metabolism of glutamine by SLC1A5 and GLS, 
respectively, was critical to the differentiation of prostate 
adenocarcinoma to the neuroendocrine phenotype. 
Neuroendocrine prostate cancer (NEPC) cells loose 
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granular structure and tend to have a small cell-like 
morphology characterized by the varying levels of 
expression of neuronal markers, including chromogranin 
A (CGA), synaptophysin (SYP), neurospecific enolase 
(NSE), and more recently T-Box brachyury (Blaschko et al. 
1967, Schmechel et  al. 1978, Wiedenmann et  al. 1986, 
Pinto et al. 2016). De novo NEPC is one of the rarest form 
(<1%) of the disease (Gupta & Gupta 2017). However, 
in response to AR signaling inhibition and/or androgen 
deprivation therapy, transdifferentiation to NEPC can 
support rapid disease progression with universally poor 
outcome, with an overall 5-year survival rate of 12.6% 
(Beltran et al. 2014, Yadav et al. 2016). Importantly, the 
transdifferentiated NEPC does not necessarily exhibit 
all the characteristics of de novo NEPC (Beltran et  al. 
2012, 2014). For example, transdifferentiated NEPC 
often maintains responsiveness to androgens despite its 
resistance to AR signaling inhibitors. While its incidence in 
primary prostate cancers is exceedingly low, in metastatic 
castrate-resistant prostate cancers (CRPCs), its percentage 
goes up to 25–30% (Gupta & Gupta 2017). Paracrine 
glutamine signaling is a mechanism by which AR signaling 
inhibitors potentiate this phenotype. We validated this 
finding in PCa patients that were on androgen receptor 
signaling inhibitors and found that those patients that 
developed therapeutic resistance had significantly higher 
blood glutamine levels compared to those who remained 
sensitive to hormone therapy (Mishra et al. 2018).

Therapeutic interventions in response to 
stromal co-evolution

There is a need for better understanding of NEPC with 
the approval of more effective inhibitors of AR signaling  

(i.e. enzalutamide, apalutamide, darolutamide) for  
advanced PCa. Genomic characterization of 
transdifferentiated NEPC phenotypic tumors revealed 
recurrent amplifications of MYCN and AURKA as well as 
lesions of RB1 and TP53 (Beltran et  al. 2011, Tan et  al. 
2014). For example, MYCN mutations are found in 40% of 
NEPCs, but only observed in 5% of all other PCa (Beltran 
et  al. 2011). However, expression of other recognized 
NEPC markers, CHGA, SYP, NCAM1, and ENO2, was 
heterogeneous. The role of biomarkers not only serve 
to characterize the tumor type, but may provide a clue 
as to an effective intervention. Aurora kinase (AURK) 
was a specifically targeted kinase for cancers driven by 
MYCN, such as NEPC, neuroblastoma, and hepatocellular 
carcinoma with significant efficacy in mouse models 
(Otto et al. 2009, Dauch et al. 2016, Lee et al. 2016). Since 
AURK was found to bind and stabilization of MYCN (Otto 
et al. 2009), its inhibition resulted in MYCN degradation 
and reduction in tumor volume in a model of NEPC (Lee 
et al. 2016). A subsequent phase II clinical trial for NEPC 
patients with a AURK inhibitor, alisertib, unfortunately 
did not meet its primary endpoint, but the subset of 
patients that exhibited elevated MYCN and AURK  
were found to gain significant clinical benefit  
(Beltran et al. 2019).

MYC amplification can contribute to the regulation 
of glutamine metabolism in prostate cancer. Cancers 
with MYC amplification exhibit elevated expression of 
amino acid transporters SLC1A5 and SLC38A5, as well 
as glutamine-metabolizing enzyme, GLS. Glutamine 
addiction of cancer cells can be exploited through the 
inhibition of amino acid transporters or inhibitors of 
glutamine metabolism. However, non-cancer cells are 
generally non-vulnerable to such glutamine deprivation 
(Chen & Cui 2015, Altman et al. 2016, Still & Yuneva 2017).  

Figure 4
Proposed model of stromal induced-
neuroendocrine prostate cancer (NEPC). 
Carcinoma-associated fibroblasts (CAFs)-derived 
glutamine that can be taken-up by glutamine 
transporter, SLC1A5, and result in elevated mTOR 
signaling. Typical disease markers including 
chromogranin A (CHGA), FOXM1 and FOXA2 are 
shown upregulated after glutamine uptake in 
response to mTOR signaling. Inhibition of 
glutamine uptake by using SLC1A5 inhibitor, 
GPNA, limit the expression of NEPC markers. The 
studies suggest the importance of glutamine in 
NEPC transdifferentiation of prostate 
adenocarcinoma (Mishra et al. 2018).
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Understanding of compensatory pathways of glutamine 
metabolism may improve the efficacy of cancer treatments. 
A sensor for abundant ATP includes the inhibition 
of AMP kinase, a known blocker of mTOR signaling. 
Thus, glutamine metabolism causes inhibition of the 
inhibitor of mTOR, resulting in mTOR activation and its 
downstream transcription factor FOXM1 in potentiating 
the expression of a number of NEPC-associated genes 
(Mishra et al. 2018). FOXM1 is a known master regulator 
of cancer metastasis, the expression of multiple stem 
cell genes, as well as MYCN and AURK (Raychaudhuri 
& Park 2011). Blocking GLS with BPTES (bis- 2-(5- pheny 
lacet amido -1,3, 4-thi adiaz ol-2- yl)et hyl sulfide) inhibited 
NEPC transdifferentiation (Mishra et  al. 2018) (Fig. 4). 
CB-839 is a glutaminase inhibitor that is shown to be safe 
in phase I clinical trials and considerably more potent 
than BPTES. Blocking glutamine uptake by using GPNA 
(l-γ-glutamyl-p-nitroanilide), a SLC1A5 inhibitor was 
effective in reducing tumor growth in the context of a 
commonly administered androgen receptor signaling 
inhibitor, enzalutamide (Mishra et al. 2018). As metastatic 
castrate-resistant prostate tumors have elevated available 
glutamine in circulation and its uptake can potentiate 
resistance to current AR signaling inhibition, a richer 
understanding of this pathway would contribute to better 
PCa treatment strategies.
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