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Abstract: The immune checkpoint inhibitors have revolutionized cancer immunotherapy. These
inhibitors are game changers in many cancers and for many patients, sometimes show unprecedented
therapeutic efficacy. However, their therapeutic efficacy is largely limited in many solid tumors
where the tumor-controlled immune microenvironment prevents the immune system from efficiently
reaching, recognizing, and eliminating cancer cells. The tumor immune microenvironment is largely
orchestrated by immune cells through which tumors gain resistance against the immune system.
Among these cells are mast cells and dendritic cells. Both cell types possess enormous capabilities to
shape the immune microenvironment. These capabilities stage these cells as cellular checkpoints in
the immune microenvironment. Regaining control over these cells in the tumor microenvironment
can open new avenues for breaking the resistance of solid tumors to immunotherapy. In this review,
we will discuss mast cells and dendritic cells in the context of solid tumors and how these immune
cells can, alone or in cooperation, modulate the solid tumor resistance to the immune system. We
will also discuss how this modulation could be used in novel immunotherapeutic modalities to
weaken the solid tumor resistance to the immune system. This weakening could then help other
immunotherapeutic modalities engage against these tumors more efficiently.
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1. Introduction

Cancer is the second most common cause of death globally, and the number of people
with the disease increases each year [1,2]. The therapy of cancer currently stands on four
pillars—-surgery, chemotherapy, radiotherapy, and immunotherapy. The first three pillars
(surgery, chemotherapy, radiotherapy) target cancer cells directly. Immunotherapy, on
the other hand, is a type of therapy that uses substances to modulate the immune system
to help the body fight cancer [3]. For decades, cancer immunotherapy stood aside, not
matching the success rate of the traditional treatment modalities (surgery, chemother-
apy, or radiotherapy). However, this has changed with immunotherapy drugs called
“immune checkpoint inhibitors” [4]. The efficacy of these inhibitors and their successors
has already shown unprecedented results for some types of cancer, notably, where the
traditional treatment options had already failed [5]. Currently, these inhibitors are in-
creasingly being tested in a large number of clinical trials. For instance, the inhibitors
against PD-1 and PD-L1 molecules are tested in thousands of clinical trials in combination
with other treatment modalities [6–8]. Results of the studies are now allowing these in-
hibitors to be already registered and used even in first-line cancer therapy [9–11], something
hardly imaginable a decade ago. Apart from the checkpoint inhibitors, another group of
immunotherapeutic modalities showed promising results. These modalities are based
on in-vitro-modified/expanded immune cells, which can induce cancer-targeted immune
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responses [12] or directly target and eliminate cancer cells [13]. Many of these drugs have al-
ready been FDA-approved—-autologous dendritic cells (DCs) [14] or genetically-modified
T cells with chimeric antigen receptors (CAR-T) [15] or T cell receptors [16].

Despite the great success of immunotherapy over the past few years, immunotherapy
suffers from cancer resistance. This resistance means that most patients still do not benefit
from the therapy [17,18]. Although there are multiple mechanisms of cancer resistance
to immunotherapy [19], there could be basically drawn three critical causes why current
immunotherapy faces resistance: a limited specificity, an inability to reach and eliminate
its targets, and the immunosuppressive microenvironment of solid tumors. The limited
specificity is caused by aiming at targets that are not present only on the targeted cancer cells.
For instance, the inhibitory checkpoint molecule PD-1 is expressed not only on the tumor-
targeting immune cells (such as on cytotoxic CD8+ T cells) but also on the tumor-protecting
immune cells as regulatory CD4+ T cells [20]. Inhibition of PD-1, therefore, simultaneously
unleashes both pro- and anti-tumorigenic immune responses, the combination of which
may have either a curative or detrimental impact on the state of the disease. This may even
happen in the same cohort of the treated patients [20]. The inability of immunotherapy
to reach and eliminate its targets is also given by the inability of immune cells to reach
and eliminate cancer cells in solid tumors. There are many solid tumors that entirely block
their immune cell infiltration and, as such, prevent the immune system from attacking
them [21]. The immunosuppressive microenvironment then adds up to the immunotherapy
resistance where immunotherapy can overcome the solid tumor barriers, break in, and
reach its targets. Herein, the immunosuppressive tumor microenvironment steps in by
preventing immunotherapy from further acting against cancer cells efficiently.

To eliminate the resistance requires making solid tumors accessible to the immune
cells, overcoming its immunosuppressive microenvironment to allow efficient cancer cell
elimination and establishing lasting immune protection from tumor recurrence. These
requirements are extremely challenging. However, there are two types of immune cells
whose combined harnessing in the immunotherapeutic algorithms could stand up to these
challenges. These cell types are mast cells (MCs) and dendritic cells (DCs).

2. MCs in Solid Tumors

MCs are tissue-resident highly granulated cells notoriously associated with the patho-
genesis of allergic and autoimmune diseases [22,23]. These cells are equipped with a large
number of receptors that enable them to respond to a large number of stimuli [24]. These
responses include release (exocytosis) of preformed secretory granules (degranulation),
migration, or de novo production of biologically and immunologically active products [24].
Their most notoriously known receptor is the high-affinity receptor for IgE, FcεRI. This
receptor induces a fast degranulation of MCs, often referred to as anaphylactic degranula-
tion since the content of the released granules are preformed mediators such as histamine,
proteases, and heparin [25], which are responsible for anaphylaxis [26,27]. Another re-
ceptor that defines MCs is the stem cell factor (SCF) receptor, KIT, which is essential for
MC development, survival, and migration [24]. Stimulation through this receptor can
also increase or decrease the extent of FcεRI-induced MC degranulation [28,29] or, under
some circumstances, even trigger this degranulation [30]. One of the MC receptors that
has brought attention in the past several years is the Mas-related G protein-coupled re-
ceptor X2 (MRGPRX2) [31]. This receptor can recognize various chemical compounds,
and its activation can cause pseudo-allergic reactions [31]. MCs are known to also interact
with other immune cells and regulate their functions. Activated MCs can enhance T cell
proliferation [32], co-stimulate T cells via a CD28-independent interaction [33], limit viral
infection through interactions with γδ T cells [34], attract and affect NK cells [35], and
recruit and alter functions of tumor-infiltrating macrophages, myeloid-derived suppressor
cells, neutrophils, and dendritic cells [36].

Due to a broad spectrum of MC biological and immunological activities [37], these cells
are also considered to be key orchestrators of the tumor immune microenvironment [38].
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For that reason, these cells are increasingly scrutinized as potential targets for cancer
immunotherapy [39]. However, MCs are highly complex immune cells whose function
can render these cells either pro- or anti-tumorigenic. The mechanisms of the pro- or anti-
tumorigenic activities of MCs are diverse and involve both the immune and non-immune
compartments of the human body [39]. A few examples of these mechanisms shown in
Table 1 indicate that effectors of these mechanisms are often soluble cytokines, chemokines,
or growth factors. Indeed, the spectrum of these molecules is exceptionally vast and
involves all critical molecules used in the regulation of innate and adaptive immunity [40].
However, in addition to the breadth of this spectrum, even one type of the MC-produced
effector molecule, such as histamine or the serine protease tryptase (Table 1), was found
to show either anti- or pro-tumorigenic activities in dependence on the leading impact
they have in individual cancers [41–44]. The leading anti-tumorigenic impact of individual
effector molecules could be the inhibition of tumor growth/tumor cell proliferation [43,45],
inhibition of tumor engraftment [46], promotion of DC development and maturation [41],
recruitment of CD8+ T cells and their subsequent antigen-mediated activation [47], tumor
cell cytotoxicity [48], or direct tumor cell clearance [49]. The leading pro-tumorigenic
impact, on the other hand, could be the enhancement of tumor cell proliferation [42],
angiogenesis [44,50], immunosuppression and inflammation decrease [51–53], or promotion
of the epithelial-to-mesenchymal transition (EMT) [54].

Table 1. The impact of MCs on the tumor microenvironment.

Effector Impact Malignancy/Model Reference
Anti-tumorigenic MCs

Tryptase Inhibition of tumor cell proliferation Melanoma [43]

Histamine Promotion of DC development
and maturation Lymphoma [41]

IL-6 Inhibition of tumor growth Melanoma [45]
Nanotubes/TNF-α Cytotoxic activity Breast cancer [48]

IL-9-mediated MC activity Tumor engraftment inhibition Colon carcinoma [46]

CCR2, CCR7, Leukotriene B4 CD8+ T cell recruitment and
antigen-mediated activation Intestinal tumors [47]

Phagocytosis Tumor cell clearance Breast cancer [49]
Pro-tumorigenic MCs

Tryptase Promotion of angiogenesis Pancreatic cancer [44]

Histamine Enhanced proliferation of histamine
receptor R1+ tumor cells

Hepatocellular
carcinoma [42]

VEGF Promotion of angiogenesis Laryngeal squamous
cell carcinoma [50]

IL-10 Anti-inflammatory/immunosuppressive - [51]
IL-13 Anti-inflammatory/immunosuppressive - [52]
IL-8 Promotion of EMT Thyroid cancer [54]
PD-1 Induction of IDO+ tolerogenic DCs - [53]

Such MC functional ambiguity towards tumors makes these cells controversial as to
whether these cells should be therapeutically targeted for elimination or, rather, for en-
hancement of their numbers and activities. Whether MCs become pro- or anti-tumorigenic
presumably lies in their functional plasticity, which is already programmed during their de-
velopment and maturation from stem cell progenitors. Pioneering in vitro studies showed
that a sustained presence of different cytokines during MC development programs their
activation phenotype [28,55,56]. In dependence on the cytokine presence in the cell culture,
this programming can be either reversible [55,56] or irreversible [28]. Since MC progen-
itors infiltrate tissues in which they then fully develop and mature, thus, acquiring the
tissue-specific phenotypes, the tumor microenvironment is presumably also infiltrated
with not yet fully developed/matured MCs, and their activation phenotype is then pro-
grammed as they develop and mature [57]. The specifics of the tumor microenvironment,
such as hypoxia, low pH, and metabolite composition, can then imprint the developing
and maturing MCs with a tumor microenvironment-specific activation phenotype, whose
impact on the tumor could be hardly inferred from plain numbers of infiltrating MCs and
their associations with the disease severity. In addition, mast cells in the tumor microen-
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vironment can be phenotypically/functionally heterogeneous [58]. MCs heterogeneity
was initially described based on their localization and protease content. The localization-
based division recognizes connective tissue (CTMCs) and mucosal (MMCs) MCs. The
protease-content-based division distinguishes MCs subtypes expressing tryptase (MCT)
or both tryptase and chymase (MCTC) [37]. Based on their origin, MCs are also divided
into a subgroup of constitutive or inducible MCs [59,60]. Nevertheless, regardless of the
yet still enigmatic origin of MCs and their subtype characteristics, the resulting functional
heterogeneity of developed and mature MCs seems to be substantially shaped by factors in
the surrounding milieu of MC residence [24]. Then different MC functional phenotypes are
presumably acquired in inflamed airways [61] and in the microenvironment of different
tumors [62]. Indeed, single-cell RNA sequencing studies revealed significant diversity
in MC development and MC residence-specific functional characteristics [63]. A recent
study showed that MC phenotypic heterogeneity and their histological distribution with
potentially distinct functions were observed even within an individual tumor microenvi-
ronment [58]. However, since there are currently no known specific markers of the tumor
microenvironment-infiltrating MCs and their subtypes, and the MC role towards the tumor
can be ambivalent, a design of MC-targeting strategies in cancer immunotherapy is, thus,
highly challenging.

3. DCs in Solid Tumors

DCs are major professional antigen-presenting cells that present antigens on their
surface via major histocompatibility complex I and II (MHC I and MHC II) to T cells to ini-
tiate adaptive antigen-dependent immune responses. DCs also mediate cross-talk between
the innate and adaptive immune system through direct interactions with other immune
cells—-natural killer (NK) cells [64], NK T cells [65], neutrophils [66], and MCs [67]. DCs
are derived from hematopoietic stem cell progenitors. The progenitors which infiltrate
peripheral tissues differentiate into immature DCs [68]. These immature (tissue-resident)
DCs have high phagocytic activity of extracellular material [69]. Without a maturation
signal, such as stimulation with pathogen-associated molecular pattern (PAMPs) or damage-
associated molecular pattern (DAMPs) molecules, the antigen presentation by immature
DCs leads to immune tolerance to the presented antigens, including the antigens from the
phagocyted material [70]. Such antigen presentation allows the establishment of periph-
eral immune tolerance to autoantigens [70]. However, once DCs mature, the phagocytic
capacity of DC decreases, and DCs start to efficiently present antigens to induce either im-
mune tolerance (tolerogenic DCs) or immune stimulation (immunogenic DCs) [70]. Which
phenotype prevails is dependent on the signals triggering the maturation. These signals
are elicited by soluble factors or interactions with surrounding cells [71]. Once mature, the
phenotype is often irreversible [72].

Human DCs are divided into several subtypes based on their phenotype and ontogeny:
plasmacytoid DC (pDC), classical DC (cDC) type 1 and 2 (cDC1 and cDC2), DC3, and
monocyte-derived DC (mo-DC) [73]. The pDCs are present in lymphoid organs but not
peripheral tissues. Activated pDCs specialize in the production of type I IFNs and are
thought to be the main producers of these cytokines during infections and autoimmune
diseases [74]. The cDCs are tissue-resident DCs. The cDCs type 1 are specialized in
activating CD8+ and type 2 on CD4+ T cells, both of which play a role in the regulation
of anti-tumor immunity [75,76]. The place of their residency then further shapes their
phenotype to form multiple subsets of these cells in peripheral tissues [77]. The DC3
subtype is a novel subtype of DCs identified in the blood [78]. DC3s express a monocytic
marker CD14, share common markers of cDC2, and have monocyte gene signatures [78,79].
Similar to DC3s are mo-DCs, which show overlapping phenotypes with DC3s [79]. Mo-
DCs also share multiple phenotypic markers with monocyte-derived macrophages, thus,
making them difficult to distinguish from each other [80]. Mo-DCs are able to in vivo
cross-present antigens [81], and their ex vivo production from peripheral blood monocytes
has become central to the development of DC-based cancer immunotherapy [82,83].



Int. J. Mol. Sci. 2022, 23, 11080 5 of 18

An important role in the DC anti-tumor activities in the tumor microenvironment is
attributed to cDC1s, which play a crucial role in initiating and maintaining anti-tumor
immunity by cross-presenting tumor antigens to CD8+ T cells, stimulating NK and NKT
cells [84]. However, even though their role in anti-tumor immunity is necessary, it seems
that it is insufficient and needs to be promoted by a cross-talk with other DC subtypes,
namely the cDC2s [85]. The role of cDC2s in tumor immunity is ambivalent as these
DCs can show either pro- or anti-tumorigenic activities [76]. Similar is true for mo-DCs
and pDCs, both of which can adopt either pro- or anti-tumorigenic activities [86,87]. The
mechanism of their pro- or anti-tumorigenic activities is driven by their ability to recruit and
stimulate/inhibit cytotoxic or tolerogenic lymphocytes [88]. These abilities are allowed by
the production of many chemokines, pro-/anti-inflammatory cytokines, and the expression
of immune checkpoint molecules (details reviewed in [87,88]). However, regardless of
the DC subtype, the functional phenotype of DCs is significantly shaped by factors in the
milieu of their residence [89–92].

The tumor microenvironment also decides how DCs orchestrate pro- or anti-tumorigenic
activities (Table 2). Anti-tumorigenic activities in the tumor microenvironment can be medi-
ated by IL12-producing tumor-infiltrating DCs, which promote CD8+ T cell responses [93];
MHC-I cross-dressed DCs presenting tumor antigens and allowing cross-priming to CD8+

T cells [94]; CD1d high-expressor DCs, which increase activation of NKT, CD4+ and CD8+

T cells [95]; or by cCD2s, which can promote control of cytotoxic T cell-resistant tumors
via the CD4+ T cell-mediated activation of myeloid cells [96]. Mature cDCs and pDCs
can also inhibit angiogenesis through the production of IL-12, angiostatic chemokines,
or IFNα [97]. On the other hand, pro-tumorigenic activities of DCs can be adopted by
PD-1-expressing DCs, which accumulate in the tumor and inactivate CD8+ T cells [98];
arginase-expressing DCs, which causes arginine deprivation leading to the inhibition
of CD4+ T cell proliferation [99] or reactive oxygen species (ROS)-mediated inhibition
of CD8+ T cells [100]. Pro-tumorigenic activities are also elicited by indoleamine 2,3-
dioxygenase(IDO)-expressing DCs, which cause both tryptophan-depletion-mediated in-
hibition of CD8+ T cells and tryptophan-metabolite-mediated expansion of CD4+ Treg
cells [101]. Other DCs can produce TGF-β to induce immunosuppression [102], make IL10
alongside the surface expression of PD-L1 to impair CD8+ T cell activation [103], or shed
soluble CD25 to deplete IL-2 and inhibit T cell proliferation [104]. Immature DCs can also
promote angiogenesis [105]. Similar to MCs, whether the tumor-microenvironment-elicited
DC phenotype drives these cells to pro- or anti-tumorigenic activities could also be hardly
inferred from plain numbers of the infiltrating DCs and their associations with the disease
severity. Even though recent technological advances allow for detailed characterization of
DC subtypes infiltrating tumors [106,107], there are no known markers that would enable
specific targeting of individual DC subsets in the tumor microenvironment to enhance or
suppress, respectively, their pro- or anti-tumorigenic activities.
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Table 2. The impact of DCs on the tumor microenvironment.

Effector/Marker Impact Reference
Anti-tumorigenic DCs

IL-12+ DCs Promotes CD8+ T cell responses [93]
DC cross-dressing CD8+ T cell priming [94]

CD1d++ DCs Increased activation of NK T cells, CD4+, and CD8+ T cells [95]

cDC2 Increased control of cytotoxic T-cell-resistant tumors via CD4+

T-cell-mediated activation of myeloid cells [96]

Mature cDCs and pDC Angiogenesis inhibition [97]
Pro-tumorigenic DCs

PD-1+ DCs CD8+ T cell inactivation [98]

Arginase+ DCs
Arginine-deprivation-mediated inhibition of CD4+ T cell

proliferation
ROS-mediated inhibition of CD8+ T cells

[99]
[100]

IDO+ DCs Tryptophan-depletion-mediated inhibition of CD8+ T cells
Tryptophan-metabolite-mediated expansion of CD4+ Treg cells [101]

TGF-β+ DCs Anti-inflammatory/immunosuppressive [102]
IL-10+/PD-L1+ DCs Impaired CD8+ T cell activation [103]

sIL25+ DCs Inhibition of T cell proliferation by IL-2 depletion [104]
Immature DCs Angiogenesis promotion [105]

4. MC/DC Interplay

Both MCs and DCs are powerful standalone players in the tumor microenvironment.
However, both cell types were also shown to impact each other. This impact can occur
either via secreted factors or direct interactions. The interaction via secreted factors is
less specific and driven mainly by MCs towards DCs. MC secreted factors can promote
tolerogenic [52] or immunostimulatory [108] functions of DCs. On the other hand, direct
interactions between these cell types are more specific and can impact both cell types.
A study showed that migratory DCs in inflamed skin initially scan MCs and later come
into long-lasting synaptic interactions. These interactions result in a DC-to-MC molecule
transfer, including major histocompatibility complex class II (MHCII) molecules, which
then enables MCs to prime T cells, therefore, promoting T-cell-driven inflammation in the
skin [109]. Vice versa, activated MCs can form immunological synapses with immature
DCs and transfer the MC-internalized antigen to immature DCs. The transferred antigen is
then processed and presented by DCs to stimulate T cells [67]. Additionally, the tolerogenic
or stimulatory outcome of the MC–DC interaction can be substantially affected by the
expression of immune checkpoint molecules and their ligands on both cell types [53].

Regardless of the mechanisms that come into play upon MC–DC interactions, these
mechanisms can substantially impact the balance between the tolerogenic and stimula-
tory activities of the immune system. Indeed, MCs activity toward DCs was shown to
substantially suppress [52,110] or, vice versa, promote the immunogenic properties of
DCs [111,112]. The suppression was elicited by MC-produced IL-13, which inhibited IL-12
expression in DCs with subsequent inhibition of DC-mediated induction of the TH1 re-
sponse [52], or by promoting the DC tolerogenic phenotype through MC-produced large
amounts of GM-CSF [110]. On the other hand, the promotion was elicited either by DC
engulfment of MC-released granules, which was followed by DC migration to lymph nodes,
their maturation, and boosting their T-cell priming efficiency [108], or by MC-mediated DC
maturation followed by their recruitment to the site of infection [112].

5. MCs in Immunotherapy of Solid Tumors

The ambivalent role of MCs in tumors makes these cells challenging to judge how these
cells should be targeted. Recent studies show that depletion of these cells or downregulation
of their functions in the tumor microenvironment can help break tumor resistance [113–115].
Although these studies were made in mouse models, they used MC-targeting drugs that
are already used in clinical practice—-antihistamine and MC stabilizer ketotifen [116,117],
MC stabilizer cromolyn [117], or c-KIT inhibitors [118]. Their use, or use of other clinically
administered or tested MC-targeting drugs (anti-Siglec therapies [119] or other biolog-
ics [115]), could in combination with other cancer treatment modalities (i.e., chemotherapy
or immunotherapy) then indeed represent a new promising treatment strategy in which
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MCs would be approached as inhibitory immune checkpoint cells in the tumor microen-
vironment [113,114]. This therapeutic approach would be presumably relevant in tumors
where the tumor burden with MCs or their products are largely and convincingly associated
with the disease severity and dismal prognosis [120,121], or where another therapeutic
modality increases their numbers with pro-tumorigenic activities and causes a resistance to
the therapy [122].

On the other hand, many studies showed that tumoral/peritumoral MCs are not only
associated with a better prognosis [123,124] but that MCs can also directly eliminate cancer
cells [49,125]. The mechanism of this elimination could be even unique, as demonstrated
in a recent study where MCs were found to efficiently kill cancer cells with the help of
cancer-cell-penetrating tunneling nanotube-like structures [48]. This killing was preceded
by the recognition of cancer cells through the cancer cell antigen-specific IgE bound to the
FcεRI expressed on the surface of MCs [48]. In addition, another recent study of the group
showed that the IgE-sensitized MCs could easily infiltrate and eliminate masses of cancer
cells both in vitro and in vivo [126,127]. This infiltration is presumably driven by MC
chemotaxis towards the antigen of the FcεRI-bound IgE [128]. This antigen-driven chemo-
taxis and the unique killing mechanism may provide these cells with a novel advantage
over other immune cells, which can also recognize and kill cancer cells [129]. Indeed, with
the technological advances in ex vivo preparation of MCs from adipose tissue or CD34+

hematopoietic progenitors, a new field is already opening where MCs in combination with
tumor antigen-specific IgEs are used for adoptive cell transfer (ACT)-based cancer cellular
immunotherapy [130]. MCs in this field then could newly join the list of immune cells used
or tested for this therapeutic modality.

6. DCs in Immunotherapy of Solid Tumors

In contrast to MCs, many cancer immunotherapeutic strategies based on DCs have
already been tested in the last few decades. These strategies are mainly based on the
unique ability of DCs to shape both adaptive and innate immune responses. As profes-
sional antigen-presenting cells, DCs are able to induce tumor-antigen-specific responses
through the interaction with naive T cells [131]. Furthermore, mature DCs produce cy-
tokines such as interleukin-12 or type I interferons that enable the regulation of many
immune cell types that take part in anti-tumor immunity, including many innate immune
cells [132,133]. For these biological features, DCs were believed to be very promising tools
for ACT-based cancer cellular immunotherapy, also called—-DC-based vaccines. DC-based
vaccines are usually based on autologous DCs that are differentiated ex vivo from mono-
cytes or hematopoietic stem cell progenitors, loaded with tumor antigens, and exposed to
maturation stimuli. DCs prepared in this way are then transferred into the patient’s body,
where they induce anti-tumor immune responses through the activation of tumor-specific
lymphocytes [134].

The first DC-based cancer vaccine clinical trials date back to the 1990s of the twentieth
century. These early clinical trials mainly focused on the treatment of melanoma and
showed promising results and favorable safety profiles [135–137]. The next wave of trials
focused on leukemia and other solid tumors [138–140]. Out of so many clinical trials, there
came only one FDA-approved DC-like-based commercially available product, Sipuleucel
T (Provenge), which was designated for the treatment of metastatic prostate cancer [141].
However, this product is still not widely used in clinical practice [142].

The disappointment from the early “DC era” is presumably due to the fact that many
studies were not designed in combination with other immunotherapeutic interventions
and patients were enrolled at late stages of the disease, often associated with advanced
tumor microenvironment and the disease-elicited immune system defects [143–145]. How-
ever, DC-based immunotherapy still goes on through efforts to find new ways for their
improvement [146]. Due to advances in genomics, many recent DC-based approaches
focus on targeting neoantigens that have become considered powerful targets for cancer
immunotherapy [147–149], including DC-based vaccines [150]. In addition, current designs
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of therapeutic algorithms also rely on combinations of DC-based cancer vaccines with
other therapeutic modalities [151,152]. There is also a developing new field that attempts
to identify new biomarkers that could predict the therapeutic efficacy of the vaccines based
on the patient’s immunotype [153].

7. MC/DC Interplay as the Cellular Immune Checkpoint for Cancer Immunotherapy

The history of the use of MCs and DCs in cancer immunotherapy is, therefore, en-
tirely different. Whereas MCs have become the center of interest in immunotherapy re-
cently [130], DCs are not new players in the field. Three decades ago, DCs were thought to
be highly promising immune cells for cancer therapy, namely, for ACT-based immunother-
apy. Despite many disappointments in clinical trials, the use of these cells still showed
a notable therapeutic efficacy, and their role in cancer immunotherapy is indeed still
ongoing [146,154,155]. As research into immunotherapy accelerated after the immune
checkpoint inhibitor had entered the field, the efficacy of DC-based immunotherapy was
found to be largely restricted by the settings (immunotype) of the patient’s tumor immune
microenvironment [153,156]. Moreover, there is growing evidence that the functional
heterogeneity of DC populations is even more complex than previously thought [73],
and, therefore, more attention needs to be paid to the way DCs are ex vivo produced for
ACT [82]. This attention relates to the DC differentiation process, antigen loading strategy,
and DC maturation [82,146]. In this regard, the interaction of MCs with DCs may come
with an advantage in the ex vivo preparation of DCs. In our previous work, we found
that a stimulated human LAD2 MC line could be a highly potent cellular adjuvant for
the maturation of ex-vivo-produced human-monocyte-derived DCs for ACT [157]. This
high adjuvant potency was conditioned by previous MC stimulation with thapsigargin, an
inhibitor of sarco/endoplasmic reticulum Ca2+-ATPases (SERCA) [158,159], which induces
a strong mobilization of intracellular calcium followed by fast and extensive degranula-
tion of LAD2 MCs [160]. Such previously stimulated and rinsed LAD2 MCs were, unlike
their non-stimulated or FcεRI-stimulated counterparts, able to mature monocyte-derived
DCs, which were even refractory to the maturation with polyinosinic:polycytidylic acid
(poly I:C), a toll-like receptor-3 agonist often used for the production of matured DCs for
ACT-based cancer cellular immunotherapy [154,155]. Moreover, the study showed that
the adjuvant effect was still notable even when the MC:DC ratio was 1:150 [157]. This
maturation efficiency indicated that a very small number of MCs can promote DC matu-
ration. Apart from maturation, the MC–DC interaction can provide a targeted loading of
DCs with an extracellular antigen, which is then efficiently presented to T cells [67]. This
mechanism could be presumed to come also into play upon an MC-based ACT, where MCs
could be expected not to only specifically (in an antigen-dependent manner) destroy cancer
cells in the tumor [126] but to also come in contact with the tumor-infiltrating DCs and
restore their antitumor activity [67]. Restoration of efficient antitumor activity of other-
wise defective tumor-infiltrating DCs was already demonstrated for many tumors using
different approaches [98,161,162]. Whether an MC-based ACT could also participate in
the DC restoration in the tumor microenvironment and, as such, promote lasting immune
protection against the disease remains to be investigated.

8. Future Perspectives

Recent development in MC research and its translation to cancer immunotherapy
opens new avenues in developing novel immunotherapeutic combination strategies for
treating solid tumors. The opening of the avenues was enabled by novel approaches in
ex vivo clinical-scale preparation of autologous MCs [130,163,164]. The opening was then
secured by the findings that these cells can not only kill tumor cells in an antigen/IgE/FcεRI-
dependent manner but also translocate in vivo into tumors where they can deliver a
therapeutic impact [126]. This translocation into tumors, presumably based on antigen-
driven chemotaxis of MCs, seems to be one of the MC attributes that could challenge
solid tumor resistance to ACT-based cancer immunotherapy. In addition, it could be even
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enhanced after targeted radiotherapy or chemotherapy, which spikes the release of tumor
antigens from dying cancer cells [165,166] (Figure 1).

Figure 1. The perspective of combined MC- and DC-based ACT. Autologous MCs are produced
in vitro from adipose tissue or CD34+-derived stem cell progenitors. DCs are produced in vitro from
peripheral blood monocytes or CD34+-derived stem cell progenitors. MCs are sensitized with a
selected tumor antigen (Ag)-specific IgE or genetically modified with a chimeric FcεRI-based receptor
specific to the selected tumor Ag. The IgE-sensitized or genetically modified MCs are transferred back
to the patients (MC ACT). The transferred MCs are specifically chemoattracted to the tumor through
the selected Ag concentration gradient. The release of the selected Ag from the tumor is spiked
by targeted radiotherapy or chemotherapy. Chemoattracted MCs infiltrate the tumor mass where
they eliminate cancer cells. The tumor-infiltrating MCs also interact with endogenous(endo)/tumor-
infiltrating DCs to load them with the tumor Ag and restore their antitumor activity through priming
tumor Ag-specific T cells. Multiple tumor Ags, including the patient-specific neoAgs, are released
from the tumor and captured by endogenous DCs, which primes T cells with a broad repertoire of
tumor Ag specificity. The DC-primed T cells expand and infiltrate the tumor. The infiltrated multiple
Ag-specific T cells also eliminate evasive variants of cancer cells that are negative for the selected
tumor Ag. To corroborate the efficacy of the MC-based ACT, autologous DCs are produced in vitro
from peripheral blood monocytes or CD34+-derived stem cell progenitors. The DCs are loaded with
the selected tumor antigen or other tumor-associated Ags, matured, and transferred back to the
patients (DC ACT). The transferred DCs promote the expansion of the tumor-Ag-specific T cells. The
previously cold tumor turns into a hot tumor by infiltrating immune cells with prevailing antitumor
activities. Created with BioRender.com (agreement number: HM24B8W5CT).

Apart from the engagement of IgE-mediated mechanisms in the MC antitumor activi-
ties, MCs can also enter a new uncharted territory of advanced genetic engineering that
has already been developed for years for ex vivo modifications of other immune cells [167].
Similar to the T cell chimeric receptors, CAR [168] and TCR [169], chimeric antigen recep-
tors based on FcεRI and its downstream signaling could be one of the plausible strategies
for advanced MC-based ACT (Figure 1).
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As a standalone produced/engineered player for ACT, MCs would certainly suffer
from the drawback apparent to other immune cells used for ACT—-the single antigen-
driven specificity, which could be evaded by the loss or downregulation of the expression of
the targeted tumor antigen [170]. This drawback could be, however, overcome through the
MC–DC interplay. This interplay can harness endogenous or even tumor-infiltrating DCs
whose engagement and loading with antigens released from MC-killed cancer cells could
stimulate T cells and, as such, broaden the tumor antigen repertoire through which the
immune system recognizes and eliminates cancer cells [134,171,172]. This repertoire could
also include neoantigens, whose targeting by T cells seems to be critical for immunothera-
peutic efficacy [147]. This presumed synergistic MC–DC-interplay-based antitumor activity
would be particularly important in so called “cold tumors” [21], which prevent the immune
cells from the tumor infiltration and subsequent induction of broad antigen-driven antitu-
mor immune responses. Since the initial work with the cytotoxic MCs was performed with
the Her2+ breast cell line [126], which forms “cold tumors” [173], there is a likelihood that
the presumed MC–DC-interplay-elicited antitumor activity could also be attained in the
immunotherapeutically-difficult-to-challenge “cold tumors” [21,174] (Figure 1).

Many combination strategies in cancer therapy rely on DC ACT as enhancers of
therapeutic efficacy [146]. Many of these strategies involve combinations of DC ACT with
other immunotherapeutic approaches, including immune checkpoint inhibitors [174], NK
cells [175,176], or CAR-T cells [177]. In cold tumors, the combination is presumed to work
towards turning the “cold tumors” into “hot tumors,” thus, enhancing the tumor immune
cell infiltration [178]. Combining the cold-tumor-penetrating cytotoxic MCs with DC ACT
could, therefore, also synergize in promoting the cold-to-hot turning process (Figure 1).
Apart from the “turning process”, both cell types could also enhance the anti-tumor activity
of other immune cells, including endogenous T cells [32] or adoptively transferred CAR-T
cells [177].

Using MCs in combination with DCs in cancer immunotherapy needs to be designed
with respect to tumor types, ongoing therapy, and mast cell-driven co-morbidities. The
tumors that are known to be more sinister when large numbers of MCs infiltrate them [179]
or when immunotherapy enhances their numbers alongside the growing tumor resis-
tance [122] are presumably situations where MCs activities need to be suppressed or the
cells even eliminated. A similar approach needs to be also considered when patients suffer
from diseases related to dysregulated MC numbers [180] or their activation [181] or when
MCs are directly part of the malignant neoplastic disease [182].

9. Concluding Remarks

MCs are now becoming a new player in the field of cancer immunotherapy. The new
advances in their in vitro preparation and the recent demonstration of MC’s potential to
infiltrate solid tumors and kill cancer cells within the tumor [126] bring expectations in
these cells for cancer immunotherapy [130]. Although the demonstrated performance of the
cancer cell-killing MCs in the tumor needs to be further investigated, this review suggests
that the therapeutic power of MCs in cancer treatment may not so much lie in their single-
antigen-driven cytotoxicity, but in their potential to trigger much more robust and lasting
anti-tumor immunity to those solid tumors that so far have resisted immunotherapeutic
interventions. This review also suggests that the key partner necessary for unleashing the
therapeutic potential of MCs are DCs and that combination of MC- and DC-based ACT
could be the therapeutic algorithm for licensing MCs for efficient cancer immunotherapy
in clinics.
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