
Research and Applications

The anatomy of a distributed predictive modeling

framework: online learning, blockchain network, and

consensus algorithm

Tsung-Ting Kuo 1

1UCSD Health Department of Biomedical Informatics, University of California San Diego, La Jolla, California, USA

Corresponding Author: Tsung-Ting Kuo, PhD, UCSD Health Department of Biomedical Informatics, University of California

San Diego, 9500 Gilman Drive, San Diego, CA, USA; tskuo@ucsd.edu

Received 30 March 2020; Revised 21 April 2020; Editorial Decision 22 April 2020; Accepted 29 April 2020

ABSTRACT

Objective: Cross-institutional distributed healthcare/genomic predictive modeling is an emerging technology

that fulfills both the need of building a more generalizable model and of protecting patient data by only ex-

changing the models but not the patient data. In this article, the implementation details are presented for one

specific blockchain-based approach, ExplorerChain, from a software development perspective. The healthcare/

genomic use cases of myocardial infarction, cancer biomarker, and length of hospitalization after surgery are

also described.

Materials and Methods: ExplorerChain’s 3 main technical components, including online machine learning,

metadata of transaction, and the Proof-of-Information-Timed (PoINT) algorithm, are introduced in this study.

Specifically, the 3 algorithms (ie, core, new network, and new site/data) are described in detail.

Results: ExplorerChain was implemented and the design details of it were illustrated, especially the develop-

ment configurations in a practical setting. Also, the system architecture and programming languages are intro-

duced. The code was also released in an open source repository available at https://github.com/tsungtingkuo/

explorerchain.

Discussion: The designing considerations of semi-trust assumption, data format normalization, and non-

determinism was discussed. The limitations of the implementation include fixed-number participating sites,

limited join-or-leave capability during initialization, advanced privacy technology yet to be included, and further

investigation in ethical, legal, and social implications.

Conclusion: This study can serve as a reference for the researchers who would like to implement and even de-

ploy blockchain technology. Furthermore, the off-the-shelf software can also serve as a cornerstone to acceler-

ate the development and investigation of future healthcare/genomic blockchain studies.

Key words: blockchain distributed ledger technology, privacy-preserving predictive modeling, online machine learning, clinical

information systems, decision support systems

LAY SUMMARY

While multiple healthcare/genomic institutions may want to col-

laboratively create a predictive model to better predict patient out-

comes (eg, heart disease, cancer biomarker, and postsurgery

hospital length of stay), privacy concerns of sharing patient data

directly and the security risks of having a central server to coordi-

nate the machine learning process can be potential burdens. To

mitigate these issues, several cross-institutional distributed predic-
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tive modeling methods have been proposed. In this study, the de-

sign and implementation details are presented for one specific

blockchain-based approach ExplorerChain. The healthcare/geno-

mic use cases for ExplorerChain are also described. Specifically,

the 3 main technical components, online learning, blockchain net-

work, and consensus algorithm are introduced. The development

configurations, system architecture, and programming languages

are described as well. Besides, the designing considerations and the

limitations of the implementation were discussed. This study can

serve as a reference for researchers who would like to implement/

deploy blockchain technology in healthcare/genomic domain.

Also, the software of ExplorerChain is available at https://github.

com/tsungtingkuo/explorerchain.

BACKGROUND AND SIGNIFICANCE

Cross-institutional predictive modeling is an emerging technology

that fulfills both the need for building a more generalizable model

and for protecting patient data by only exchanging the models but

not the patient data, across multiple healthcare/genomic institu-

tions.1–4 Traditional approaches are mainly based on a client-

server architecture, which requires a central server to coordinate

the learning process, collect the partially trained models from each

site, and then integrate and send the global model back to every

site. This centralized approach can create risks such as single-

point-of-failure.5,6 Therefore, several existing researches proposed

to leverage blockchain,7–9 a peer-to-peer decentralized architec-

ture, to remove the central server.5,6,10–12 Blockchain, a technol-

ogy originated from financial domain, provides additional

desirable technical features such as immutability, provenance, and

transparency.11–13

Although the literature illustrated the rationale and results of

adopting blockchain for cross-institutional predictive modeling, the

details of the implementation are yet to be described. For example,

one of the blockchain-based cross-institutional predictive modeling

methods, ExplorerChain,14 leverages online machine learning on

blockchain and was evaluated on healthcare/genomics datasets

(Figure 1). Although the advantages/disadvantages of adopting

blockchain, the comparison of different architectures/designs, and

the equivalent correctness results of ExplorerChain were shown

(more details in Healthcare/genomic use cases section),14 the feasi-

bility study did not include practical considerations while being con-

structed, and these details could serve as cornerstones for future

researchers to develop new algorithms.

OBJECTIVE

In this article, the implementation details for ExplorerChain are dis-

sected from a software development perspective. This article

addresses head-on one of the main problems facing blockchain proj-

ects today: much is envisioned but little is actually implemented to

give developers an idea of using blockchain for distributed predictive

model building in practice. A detailed design and implementation of

an “off-the-shelf” tool can also help technologists make decisions to

adopt blockchain for their specific healthcare/genomic use cases,

aiming at accelerating cross-institution research and expedite quality

improvement initiatives. ExplorerChain was applied in 3 use cases,

including myocardial infarction, cancer biomarker, and length of

hospitalization after surgery.14

MATERIALS AND METHODS

The 3 main technical components of ExplorerChain include online ma-

chine learning, metadata of transaction, and the Proof-of-Information-

Timed (PoINT) algorithm. As shown in Figure 1, online machine learn-

ing generates models, metadata of transaction disseminates the models,

and the PoINT algorithm determines the learning order. These 3 com-

ponents are introduced in the following 3 subsections.

Online machine learning and the EXPLORER algorithm
ExplorerChain is designed to operate without a centralized server to

compute and manage the predictive models, hence online machine

learning4,15–17 is of interest here because it is designed to update the

model incrementally and can create/update models without a central

server. In ExplorerChain, the EXPLORER online learning method4

was adopted. EXPLORER is an online logistic regression based on a

Bayesian approach that can revise the model when the records are

updated, without re-training on the entire dataset,4 and therefore is

suitable for the purpose of ExplorerChain. The core EXPLORER

modeling algorithm, EXPLORER-Intra, was adopted for Explorer-

Chain, while the inter-site model update component (ie, the central

server) of EXPLORER was replaced by transferring the model di-

rectly among sites for updates.

Metadata of transaction and blockchain implementation
The partially trained machine learning models are disseminated us-

ing the metadata of the blockchain transaction.5,6 The details of the

data fields are described in Table 1. Note that in the implementation

of this private blockchain network, ExplorerChain only provides

sites with nonfinancial incentives (ie, improved correctness of the

predictive model using cross-institution data in a privacy-preserving

manner), instead of a financial incentive (eg, mining rewards or

transaction fees as in Bitcoin), to create the blocks and verify the

transactions. MultiChain,18,19 a general purpose blockchain plat-

form, was selected because it is designed for private blockchains and

is based on the popular and proven Bitcoin Blockchain platform,

according to a prior systematic review of blockchain platforms.9

The default configurations of MultiChain were used to implement

ExplorerChain. Also, Mining Diversity,18,19 a round-robin-based

consensus protocol in MultiChain designed for private blockchain

networks, was adopted.

PoINT algorithm
The basic idea of the PoINT algorithm is based on the Proof-of-

Information (PoI) algorithm5,6: if a site s contains data that cannot

be predicted accurately using a current model M, those data may

contain more information to improve M; therefore, while choosing

the next site to update M, the algorithm should assign s with higher

priority. The PoINT algorithm starts with the selection of the best

performing model among all sites to prevent the propagation of er-

ror. Next, it selects the site with the highest error for the current

model, and this site is charged with updating the model. Then, the

model update process is repeated, until a site cannot find any other

site with higher error; the final consensus model is then complete.

In the original PoI algorithm,5,6 one potential issue is that al-

though the underlying EXPLORER algorithm is guaranteed to con-

verge,4,20 it may require too many iterations (ie, model transferring)

without achieving the “best” consensus predictive model, thus con-

suming unnecessary computational power. To solve this issue, a

time-to-leave counter was added to limit the maximum number of

iterations in the PoINT algorithm.5,6 This way, ExplorerChain is
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prevented from executing too long. The training “error” adopted in

ExplorerChain was based on the complement of the full Area Under

the receiver operating characteristic Curve (AUC).21,22 Specifically,

the error was defined as E¼1 – AUCtraining, where AUCtraining was

computed using the data at each site. AUC was also used as the eval-

uation metrics; the training sets were used to guide the process of

PoINT (by using AUCtraining), and the test sets were utilized to com-

pute the evaluation metric (ie, AUCtest).

The detailed PoINT algorithm is shown in Algorithms 1–3. Algo-

rithm 1 is the core part of the PoINT algorithm. It determines the

machine learning order, and then repeats the training process until

finding the consensus model. Each site executes Algorithm 2 (which

then executes Algorithm 1) to identify a consensus model for a new

blockchain network. A running example for PoINT to find a consen-

sus model is shown in Figure 2. At the initial stage (t¼0), the model

with lowest error (site s1 with E01 ¼ 0.2) is selected as the initial

model; choosing the best initial model (M01) helps prevent the prop-

agation of error. The selected model M01 is then submitted to site

s2, s3, and s4. Next (t¼1), M11 (the same model as M01) is evalu-

ated by each site using the local data. Suppose s2 has the highest er-

ror (E12 ¼ 0.7). Given that the data in s2 are less accurately

predicted using the model M11, s2 is assumed to contain the richest

information to improve M11. Therefore, model M11 is now concep-

tually “transferred” to s2 within a blockchain transaction (with

amount ¼ 0 and transaction fee ¼ 0). Then (t¼2), s2 updates the

model as M22. Again, s2 sends M22 to all other sites (within another

blockchain transaction), and the site with highest error (or richest

information given the current model) will be the next to update the

model locally (s3). This process is repeated until a site updates the

model and finds itself producing the highest error when compared

to other sites, or until the maximum number of iterations is reached.

For example, when t¼3, s4 has the highest error (0.3) and thus wins

the bid to update the model; but when t¼4, s4 still has the highest

error (0.2) using the updated model. Thus, M44 is regarded as the fi-

nal consensus model and the online machine learning process stops.

On the other hand, a site executes Algorithm 3 with it has new

data (a new site is considered as a site of which all data are new), af-

ter a consensus model has been found. Algorithm 3 starts from the

latest consensus model and also leverages Algorithm 1 to update the

consensus model. The examples for new site/data inclusion and sit-

uations in which a site leaves are demonstrated in Figure 3.

First, if there are new data in s1 (Figure 3A), re-training the

whole model is not needed. Instead, an algorithm similar to that

shown in Figure 2 can be used to determine whether the model

Figure 1. ExplorerChain.14 Each site maintains an exact copy of the blockchain, and exchanges partially trained machine learning models via the metadata of

transactions on-chain. The patient-level data never leave each site to protect patients’ privacy.

Table 1. The on-chain data in ExplorerChain

Field name Description Possible values

Model mean The mean vector of the EXPLORER model.4 A numerical vector with length equal to mþ1.

Model covariance The covariance matrix of the EXPLORER model.4 A numerical (mþ1) � (mþ1) square symmetric matrix.

Flag The type of action performed by a site. UNKNOWN, INITIALIZE, UPDATE, EVALUATE,

TRANSFER, CONSENSUS, TEST, CLEAR.

Error The training error. A numerical value between 0 and 1.

From site The site that has submitted the model. A unique name or identifier representing the sender site.

To site The site that will receive the model. A unique name or identifier representing the receiver site.

Time The time that the site submitted the model. A timestamp.

Iteration The current iteration of the cross-institutional

model learning process.

A non-negative integer.

The EXPLORER model contains both the mean coefficient vector and the covariance matrix.4 Also, m is the number of features in the dataset.
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should be updated using the new data. Suppose the new data d1
0 is

in s1, while the current (t¼4) consensus model is M44. In time

t¼5, s1 uses the updated data (including both d1 and d1
0) to evalu-

ate model M54 (which is the same as M44), and finds that the error

E51 ¼ 0.4 is larger than the error of the current updating site (ie, s4

with E54 ¼ 0.2). Therefore, the model M54 is now transferred to s1

to be updated. The iteration i is reset to 1, and the same process

shown in Figure 2 is repeated until a final consensus model is iden-

tified. In the case that the error E54 is higher than E51, the new

data are considered not bringing enough information to update the

model M54, thus no transfer/update is required. A similar mecha-

nism can be used for a new site (treated as a site where all data are

new).

Next, if the site (eg, s1) leaves while it is updating the model

(Figure 3B), it can simply be ignored. This is because until s1 com-

pletes the model update, the latest model M54 (at the end of the

blockchain) remains unchanged and can be used for prediction tasks

by the other sites in the network. Once coming back to the network,

s1 can continue the process of updating the model. In the case that

the site (eg, s2) leaves while not updating the model (Figure 3C), the

departure can be ignored; the site can rejoin the network at any

time. For example, if the site with the highest error leaves the net-

work and does not submit its error, it will time out and the site with

the second highest error will replace it, and so on. As a result, in

both above-mentioned situations, the departure of a site can be dealt

with by the blockchain mechanism of ExplorerChain.

There are 4 main hyper-parameters in PoINT: (1) the total number

of participating sites N, (2) the polling time period D, (3) the waiting

time period H, and (4) the maximum number of iterations X. The to-

tal model size (including mean and covariance) is O(m2), where m is

the number of features. Using online learning (ie, without a central

server like the one in EXPLORER to compute the optimized global

model), ExplorerChain is actually an approximation to the optimal

solution.

Site
s1

Site
s2

Site
s3

Site
s4

Model M11
PHI

Data d1

PHI
Data d3

PHI
Data d2

PHI
Data d4

Model M11
Model M22

Model M11
Model M22
Model M33

M01 E01 = 0.2 M02 E02 = 0.3

M03 E03 = 0.5 M04 E04 = 0.4

E11 = 0.2M11 E12 = 0.7M11

E14 = 0.6M11E13 = 0.4M11

E22 = 0.3M22

E24 = 0.5M22E23 = 0.6M22

E21 = 0.1M22

E31 = 0.1M33 E32 = 0.2M33

E33 = 0.2M33
E34 = 0.3M33

E42 = 0.1M44E41 = 0.1M44

E43 = 0.1M44 E44 = 0.2M44

Itera�on i = 2

Itera�on i = 3

Itera�on i = 4

Itera�on i = 1

Figure 2. An example of the Proof-of-Information-Timed (PoINT) algorithm.5,6,14 Mts is the model and Ets is the error at time t on site s. The timestamp t is not

equivalent to the iteration i; the iteration i only increases when the model initialization or transferring occurs. The model/error with green underline is the selected

one at that timestamp (ie, at each t, only one model/error is selected). Abbreviation: PHI, Protected Health Information.
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Figure 3. An example of the PoINT algorithm for the situations in which any site adds new data or a site leaves the network.5,6,14 (A) New data (eg, in s1). (B) Site

leaving while it is updating the model (eg, s1). (C) Site leaving while not updating the model (eg, s2).
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RESULTS

A simplified flowchart of the implemented algorithms is illustrated

in Figure 4. When a site starts ExplorerChain, it first determines

whether to execute Algorithm 2 (for the initialization scenario) or

Algorithm 3 (for the new data scenario). Afterwards, the site runs

Algorithm 1 as a “daemon” service to monitor the blockchain net-

work and perform model or error computations as needed. There-

fore, Algorithm 1 is always watching the blockchain to check the

availability of any newly updated model or an incoming transferred

model. In other words, Algorithm 1 keeps running, while occasion-

ally the consensus learning process in it may pause because of the

confirmation of a consensus model. Algorithm 1 stops when a site

that is running leaves the network (while other sites are still running

Algorithm 1), or when the site has new data and would like to stop

and run Algorithm 3 instead.

The system architecture and programming languages used in

ExplorerChain are demonstrated in Figure 5. The system (including

ExplorerChain and the underlying MultiChain) was deployed on in-

tegrating Data for Analysis, Anonymization, and SHaring

Algorithm 1. Core high-level algorithm to determine the order of the online machine learning in ExplorerChain. Step 1 is the

main loop, while Steps 2 and 3 update errors and models, respectively. Note that the model in all algorithms includes both

the mean vector and the covariance matrix.

Input: The local data D, the polling time period D, the waiting time period H, and the maximum iteration X.

Output: The latest consensus online machine learning model M.

Step 1. For every time D, check the blockchain for either the latest new model L (Step 2) or the latest model W that is trans-

ferred to this site (Step 3).

Step 2. If L is found, do the following sub-steps (Steps 2.1 and 2.2).

Step 2.1. If iteration X is reached, the consensus model M¼L.

Step 2.2. If iteration X is not reached and an error has not been computed, use L to compute error on local data D, and sub-

mit the error to the blockchain.

Step 3. If W is found and the consensus model is not identified yet, update W using local data D, submit the updated model

C to the blockchain, and do the following sub-steps (Steps 3.1 and 3.2).

Step 3.1. If iteration X is reached, the consensus model M¼C.

Step 3.2. If iteration X is not reached, wait for time H to collect errors of model C from all other sites, choose the site s with

the largest error, and increase iteration i by 1. If s is not this site, transfer model C to site s; otherwise, the consensus model

M¼C.

Algorithm 3. Main high-level algorithm for a new participating site, or an existing site with newly available data, after a con-

sensus model has been found in ExplorerChain. The transferring of the model to the local site (Step 4 in this algorithm) also

triggers a model update in the Step 3 of Algorithm 1.

Input: The local data D, the polling time period D, the waiting time period H, and the maximum iteration X.

Output: The latest consensus online machine learning model M.

Step 1. Retrieve the latest consensus model L and current largest error R from the site s on the blockchain.

Step 2. If L and R do exist, continue for the following Steps 3–4.

Step 3. Compute the error E using L on local data D.

Step 4. If E is smaller than R, the consensus model M¼L; otherwise, transfer L from s to this site with iteration i reset to 1,

and thenrun Algorithm 1 with hyper-parameters D, H, and X to update M.

Algorithm 2. Main high-level algorithm for a new network in ExplorerChain (ie, all participating sites are new). The transfer-

ring of the model to the local site (Step 4 in this algorithm) actually triggers a model update in the Step 3 of Algorithm 1.

Input: The local data D, the polling time period D, the waiting time period H, the maximum iteration X, and the total number

of participating sites N.

Output: The latest consensus online machine learning model M.

Step 1. Learn a model C using local data D, compute error, and submit C to the blockchain.

Step 2. Check the blockchain every time D until the errors from all N sites are received, and identify the site s with the small-

est error.

Step 3. Wait for time H to let every site to determine the site s with the smallest error.

Step 4. If s is this site, submit C with iteration i¼1 to the blockchain, to transfer C to s itself.

Step 5. Run Algorithm 1 with hyper-parameters D, H, and X to find M.
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Figure 4. A simplified flowchart demonstrating the implementation of Algorithms 1–3 of PoINT.

Figure 5. System architecture of ExplorerChain. This example shows the architecture under the 8-site configuration.
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(iDASH),23,24 a private HIPAA-compliant computing environment

including both virtual machines (VMs) and a cloud-based network.

Within ExplorerChain, Protected Health Information is only used

for internal model training (through EXPLORER-Intra), while the

model is disseminated on the blockchain (through Blockchain-Con-

nector).

Java is used as the main implementation language to interact

with EXPLORER-Intra (written in MATLAB) and MultiChain

(written in Cþþ) via runtime command execution. The

EXPLORER-Intra MATLAB code was refactored to the APIs (ie,

initializing, updating, and evaluating the model) that can be called

by ExplorerChain without changing the original learning functional-

ities. The simulation includes the multiple site scenarios on iDASH

VMs, with different numbers of sites (2, 4, and 8 in the experiment).

Each VM contains 2 Intel Xeon 2.30 GHz CPUs, 8 GB RAM, and

100 GB storage.

For EXPLORER-Intra, the prior mean was set to 0 and variance

was set to 5 for the normal distribution.4 The other hyper-

parameters of EXPLORER-Intra were set to the default values of

EXPLORER. For ExplorerChain, the hyper-parameter values are as

follows: (1) polling time period D ¼ 1 (s), (2) waiting time period H
¼ 30 (s), (3) maximum iteration X ¼ 10, and (4) total number of

participating sites N¼2, 4, or 8. The time periods (ie, D and H)

were chosen based on the estimated model training/updating time of

EXPLORER-Intra (about 3 s for the experiment datasets in this

study, including the time to load MATLAB) and network latency

(relatively small in the underlying iDASHcomputing environment).

Also, the blockchain network was checked only for the latest N (ie,

2, 4, or 8) transactions that had hexadecimal transaction metadata

size >20 in the PoINT algorithm.

HEALTHCARE/GENOMIC USE CASES

The use cases and the efficacy of the ExplorerChain were described

in Ref.14 and summarized below (all with 8 total number of partici-

pating sites and 80%/20% training/test data splitting for 30 trials):

(1) Myocardial infarction.25 In this use case, the binary outcome is

the presence of disease, and the dataset contains 9 covariates (eg,

Pain in Right Arm) and 1253 samples. ExplorerChain reached a pre-

diction correctness of 0.954 in AUC,21,22 3.633 of average learning

iterations, and about 184 s of total execution time.14 (2) Cancer bio-

marker.26 The binary outcome is the presence of cancer, and the

dataset contains 2 covariates (ie, CA-19 and CA-125) and 141 sam-

ples. ExplorerChain reached 0.876 in AUC, 3.233 of average learn-

ing iterations, and about 173 s of total execution time.14 (3) Length

of hospitalization after surgery.27,28 The binary outcome is whether

the hospital length of stay is greater than 3 days. This dataset con-

tains 34 covariates (eg, preoperative opioid use) and 960 samples.

ExplorerChain reached 0.712 in AUC, 9.833 of average learning

iterations, and about 365 s of total execution time.14

DISCUSSION

There are design considerations of ExplorerChain that are common

to distributed networks federating data at the institutions of origin:

it is based on a semi-trust assumption that the sites are willing to

share the aggregated model data but not the patient-level data, and

the data format (both syntactic and semantic) on each site must be

normalized using standards, such as the Observational Medical Out-

comes Partnership (OMOP) Common Data Model (CDM).29 Also,

the method is nondeterministic, because the learning process

depends on network and computation latency of each blockchain

node. Finally, ExplorerChain is platform independent, and can

adopt other blockchain such as BigchainDB.30

One potential concern may be the increased model complexity

(ie, a large number of covariates). Since ExplorerChain stores model

covariance matrix, the space complexity of a model with m covari-

ates is O(m2), as shown in Table 1. In the case of a large m, the size

of the model covariance may exceed the limit of a MultiChain. In

this case, a different blockchain platform that supports larger trans-

action size can be adopted.

Regarding limitations, the participants of a permissioned Explor-

erChain network are predetermined, therefore the total number of

participating sites (the hyper-parameter N) has a known value. Any

site within the predetermined participating sites can join or leave the

network; however, nonapproved sites cannot join during the pro-

cess. Besides, with current design, the participating sites cannot join

or leave during the initialization phase.

Also, privacy-preserving methods such as the re-identification

risks considered in the research field of differential privacy31–37 (ie,

the data in some sites are very small thus the model parameters may

lead to re-identification of cases and thus compromise privacy) were

not fully investigated, while methods such as LearningChain10 focus

on protecting the differential privacy. Not only theoretical guaran-

tees of privacy protection, but also ethical, legal, and social implica-

tions that may arise from repeated access to a distributed computing

system need to be further pondered to protect human subjects.

CONCLUSION

A software implementation of ExplorerChain has been developed,

and is publicly available in an open source repository (https://github.

com/tsungtingkuo/explorerchain). With the previously shown accu-

racy, the details about how a blockchain program can be imple-

mented to solve the cross-institutional predictive modeling problem

are further described in this study. Also, healthcare/genomic use

cases demonstrate the efficacy of ExplorerChain. This work can

serve as a reference for the researchers who would like to implement

and even deploy blockchain technology, and the off-the-shelf soft-

ware can also serve as a cornerstone to accelerate the development

and investigation of future healthcare/genomic blockchain studies.
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