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Abstract

Background: Transcriptome analysis aims at gaining insight into cellular processes through discovering gene
expression patterns across various experimental conditions. Biclustering is a standard approach to discover genes
subsets with similar expression across subgroups of samples to be identified. The result is a set of biclusters, each
forming a specific submatrix of rows (e.g. genes) and columns (e.g. samples). Relevant biclusters can, however, be
missed when, due to the presence of a few outliers, they lack the assumed homogeneity of expression values among
a few gene/sample combinations. The Max-Sum SubMatrix problem addresses this issue by looking at highly
expressed subsets of genes and of samples, without enforcing such homogeneity.

Results: We present here the K-CPGC algorithm to identify K relevant submatrices. Our main contribution is to
show that this approach outperforms biclustering algorithms to identify several gene subsets representative of
specific subgroups of samples. Experiments are conducted on 35 gene expression datasets from human tissues and
yeast samples. We report comparative results with those obtained by several biclustering algorithms, including CCA,
xMOTIFs, ISA, QUBIC, Plaid and Spectral. Gene enrichment analysis demonstrates the benefits of the
proposed approach to identify more statistically significant gene subsets. The most significant Gene Ontology terms
identified with K-CPGC are shown consistent with the controlled conditions of each dataset. This analysis supports
the biological relevance of the identified gene subsets. An additional contribution is the statistical validation protocol
proposed here to assess the relative performances of biclustering algorithms and of the proposed method. It relies on
a Friedman test and the Hochberg’s sequential procedure to report critical differences of ranks among all algorithms.

Conclusions: We propose here the K-CPGCmethod, a computationally efficient algorithm to identify K max-sum
submatrices in a large gene expression matrix. Comparisons show that it identifies more significantly enriched subsets
of genes and specific subgroups of samples which are easily interpretable by biologists. Experiments also show its
ability to identify more reliable GO terms. These results illustrate the benefits of the proposed approach in terms of
interpretability and of biological enrichment quality. Open implementation of this algorithm is available as an R
package.
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Background
Gene expression data is typically represented as a large
matrix of gene expression levels across various samples.
The study of such data is a valuable tool to improve the
understanding of the underlying biological processes. A
frequent objective of gene expression analysis is to group
genes according to their expression under certain con-
ditions or to group conditions based on the expression
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of a number of genes. Biclustering, also known as co-
clustering, is one of the most common approaches for
such a task as it identifies specific subsets of rows and of
columns which jointly form homogeneous entries [1, 2].
A substantial number of biclustering methods and

applications have been described since the application of
biclustering, introduced in [3], to gene expression data
analysis [4]. Several biclustering algorithms reviews have
been published emphasizing on various characteristics of
the biclustering algorithms, applications, or results.
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For example, Madeira et al. study in [1] a collection of
sixteen biclustering methods and categorize them accord-
ing to the structures and patterns of biclusters they can
find, the methods used to perform the search and the
approach used to evaluate the solution. In [5], the survey
mentioned above is updated and extended to forty-seven
biclustering algorithms. Each method is further catego-
rized based on the use, or not, of evaluationmetrics within
the search.
Padilha et al. conduct, in [6], a comparative study on

seventeen algorithms on a large collection of synthetic
and real datasets. They conclude that algorithms only
achieved satisfactory results in a specific context, and
that best results are obtained by selecting an algorithm
depending on the specific task at hand. A similar conclu-
sion is presented in [7], based on results from a compar-
ative study on twelve algorithms on a suite of synthetic
datasets and eight real datasets.
A systematic summary of basic and advanced applica-

tions of biclustering for biological and biomedical data is
presented in [2]. Guidance on the appropriate algorithms
and tools to effectively analyze specific data type and to
generate valuable biological knowledge is provided.
Biclustering is typically applied on a dataset in the form

of a matrix M where the entry Mi,j represents the value
of a specific row i (e.g. a gene) obtained for a specific col-
umn j (e.g. a sample). A bicluster is a submatrix of M
defined by a subset of selected rows and a subset of selected
columns. The selected rows or selected columns need not
be contiguous in the original matrixM.
Biclustering algorithms tend to produce biclusters shar-

ing similar expression values, for example by minimizing
the variance across the selected genes and selected sam-
ples. However, some relevant biclusters may be missed
when, due to the presence of a few outliers, they lack the
assumed homogeneity of expression values among a few
gene/sample combinations.
As an alternative, the max-sum submatrix problem

seeks for subsets of rows and of columns with globally
high values. In biological terms, one looks for a subset
of biomarkers which are, after appropriate normalization,
relatively highly expressed among a subset of samples.
One could also look for patterns of low expression simply
by considering the opposite values of a normalized ver-
sion of the original matrix. By default, we will look for
high expression patterns. Both subsets of selected genes
and of selected samples are a priori unknown and must
be identified. They form a rectangular, and not neces-
sarily contiguous, submatrix of the original data matrix
exactly like biclusters do. Yet, the mathematical criterion
used to find such submatrix differs and is less influ-
enced by the presence of some outliers. In the sequel,
we use the terms submatrix and bicluster interchange-
ably and, depending on the context, they refer to the

solution of existing biclustering algorithms or of our
own method.
From a biological viewpoint, there might be several

biclusters to be identified from the same original data
matrix. Indeed, a single gene may participate in multi-
ple pathways which may or may not be co-active under
several conditions [1]. Specific genes may also be rep-
resentative of expression patterns among some samples,
while other genes would be more informative for other
subsets of samples. In other words, one typically looks at
several biclusters which might partially overlap in terms
of genes or of samples they contain.
The contributions of this work are:

1 the introduction of the max-sum submatrix
optimization problem as an alternative to
biclustering,

2 a greedy extension to the CPGC method proposed in
[8] to produce several, possibly overlapping,
biclusters of maximal sums,

3 a rigorous statistical validation protocol to assess the
performances of 6 well-known biclustering methods
compared between them and with our proposal,

4 practical experiments on 17 gene expression cDNA
microarray datasets from Saccharomyces cerevisiae
samples under various controlled conditions,

5 a gene enrichment analysis showing that our
proposed method outperforms biclustering
algorithms to find biologically relevant biclusters,

6 a freely available R package implementing the
proposed approach.

Problem definition
The max-sum submatrix problem consists in finding a
rectangular submatrix, not necessarily made of contigu-
ous rows or columns, of a large matrix with maximal sum
of the selected entries.

Themax-Sum submatrix problem (MSSM)
Given a matrix M ∈ R

m×n consisting of m rows and n
columns, let R = {1, . . . ,m} and C = {1, . . . , n} be index
sets for rows and for columns respectively, find the max-
sum submatrix (I∗; J∗) , with I∗ ⊆ R and J∗ ⊆ C, such
that:

(I∗; J∗) = argmax
I⊆R,J⊆C

f (I, J) = argmax
I⊆R,J⊆C

∑

i∈I,j∈J
Mi,j. (1)

Interpretation
The data matrix typically represents gene expression val-
ues in a continuous range, for instance on a logarithmic
scale and properly normalized: negative values, respec-
tively positive values, represent expression values below,
respectively above, a threshold θ . For example, θ may cor-
respond to the median expression level over the whole
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data matrix, or a row-specific value representing the aver-
age expression level of a gene across all samples. After
such normalization, positive values are considered as the
interesting ones. By default, they correspond to the high
levels of expression one is interested to find in the data
matrix. One could also look for low levels of expression
by replacing such a normalized matrix M by its opposite
−M. In any case, the objective function f (I, J) is the sum of
the entries of a submatrix (I; J). The maximization of this
objective rewards, respectively penalizes, matrix entries
with positive, respectively negative, values.
Figure 1a depicts a toy example of such a normalized

data matrix. Positive values (in red) are considered to have
high expression levels and negative values (in blue) corre-
spond to low expression levels. Figure 1b represents the
optimal solution to the maximal sum objective. It defines
a specific rectangular submatrix, or bicluster, of genes and
samples, maximizing the sum of its entries. It can include
a few outliers in terms of high expression levels. For exam-
ple, the -4.1 entry (row 4, column 4) is included in the
optimal solution because such a low value is compensated
along its row and its column by other positive values,
hence all selected rows and selected columns contribute
positively to the objective function. In contrast, as one
looks for a rectangular submatrix, a positive entry may be
excluded from the optimal solution if it is penalized by the
presence of negative values along its row and its column.
This is the case, for example, for the entry 4.0 in row 3 and
column 3 of this toy example.
Figure 1c and d represents the results obtained with

two different biclustering algorithms, namely CCA and
ISA (further described in the “Methods” section), starting
from the same toy example (Fig. 1a). Both their solu-
tions strongly differ from the one represented in Fig. 1b.
In particular, the CCA solution includes many negative
entries as they imply a lower variance along selected rows
and selected columns. In contrast, the ISA solution only
includes positive entries but is missing several genes and

samples that should arguably be selected as in Fig. 1b.
Our experimental results reported in the “Results” section
illustrate the benefits of the proposed approach to extract
biologically relevant gene subsets.
Finding a submatrix of maximal sum, as formalized in

problem (1), is an NP-hard combinatorial optimization
problem. This can be shown from a reduction to the max-
imum edge weight biclique problem [9], by considering
the rows and columns of the original matrix as the two
sets of nodes of a bipartite graph. This problem is dif-
ficult to solve, especially in gene expression analysis, as
one is typically interested in solving it for large instances
made of thousands of genes (rows) and possibly hun-
dreds of samples (columns). Polynomial algorithms have
been proposed in the restricted case of finding a subma-
trix made of contiguous rows and contiguous columns
of the original matrix [10–12]. Such a restriction is how-
ever not justified in the general context of transcriptomics
since it would require to know in advance unique and spe-
cific orders in which the genes and the samples can be
clustered.
Our previous work [8] presents several algorithms to

address problem (1) without any restriction. They include
a mixed integer linear programming (MILP) and two
constraint programming (CP) approaches. The first CP
method combined with large neighborhood search is an
improved version of the work proposed in [13]. Gene
expression analysis results were already reported in this
earlier work but the proposed approach looks for fully
disjoint biclusters. We argue that some overlap may exist
between various expression patterns extracted from the
same data matrix. The second method, denoted CPGC,
includes a global constraint and proved, in our previous
work, to be the most efficient one to solve problem (1).
We study here its applicability to discover several, and
possibly overlapping, biclusters from gene expression data
and we show its benefits compared to existing biclustering
algorithms.

Fig. 1 Toy example. a Illustration of a full, normalized, matrix, b the associated submatrix of maximal sum, c bicluster returned by CCA and d
bicluster return by ISA
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Results
Table 1 gives a global overview of the ability of various
algorithms to find significantly enriched biclusters among
35 gene expression datasets from human tissues and Sac-
charomyces cerevisae. The eight algorithms and 35 gene
expression datasets considered in this work are detailed
in the “Methods” section. The K-CPGC algorithm clearly
outperforms the other approaches in this global overview:
it is the best in terms of the number of enriched biclusters
found. Some algorithms are only able to produce a lim-
ited number of distinct biclusters, even less enriched ones.
This is due to the specifics of each algorithm. For instance,
several random initializations used by ISA do not guaran-
tee to find distinct solutions. Plaid only returns biclus-
ters that offers a better fit to their underlying statistical
model than those obtained through random permutations
of the original matrix. As for K-CPGC, a slight increase of
the threshold θ would lead to producing more biclusters
while constraining further the objective of finding high
expression patterns. The reported setting looks sound
anyway as the prescribed number of 10 biclusters for each
dataset is very close to being found with this approach.
A non-parametric Friedman test [14] is routinely used

in the machine learning literature to assess the relative
performance of various classification algorithms across
several datasets [15]. We adopt here the same method-
ology to compare biclustering algorithms and our own
K-CPGC method. For each dataset, the algorithms under
study are ranked according to the number of enriched
biclusters they return. Table 2 reports the number of
enriched biclusters identified per dataset by each algo-
rithm and its associated rank. The last row reports the
average rank RA of algorithm A over all datasets. The
Friedman statistic has a χ2

F distribution with ν −1 degrees
of freedom where N is the number of datasets and ν the
number of algorithms being tested:

Table 1 Total number of identified and enriched biclusters

Algorithm Biclusters Enriched biclusters

CCA 349 108

ISA 163 90

K-CPGC 342 177

Plaid 102 57

QUBIC 269 107

Spectral 147 44

xMOTIFs 309 60

CPGC 35 35

Results reported for each algorithm on the 35 gene expression datasets from
human tissues and Saccharomyces cerevisae. The defined target is K = 10 biclusters
for each dataset, for a maximum of 350 biclusters overall. A bicluster is considered
significantly enriched if the subset of genes it contains is associated to at least one
GO term with an FDR corrected p-value below 5%

χ2
F = 12N

ν(ν + 1)

[
ν∑

A=1
R2
A − ν(ν + 1)2

4

]
(2)

The results presented in Table 2 lead to reject the null
hypothesis of no difference between the ν = 8 algorithms
over N = 35 datasets with an associated p-value equal
to 1.33 × 10−11. It should be highlighted that some algo-
rithms present performances discrepancies regarding the
data collections. Namely, ISA, QUBIC and Spectral
present higher enrichment performances on the Human
tissues collection than on the Yeast collection. Each of the
other approaches provides comparable performances on
both collections of datasets.
We proceed with a post hoc test, the Hochberg’s

sequential procedure [16], to determine whether K-CPGC
significantly outperforms the other algorithms. Figure 2
reports a diagram of critical differences between the ranks
of the various algorithms. The horizontal lines in bold
represent the differences between ranks that are required
for statistical significance. Such intervals increase as more
approaches are included in the comparison following the
Hochberg’s correction for multiple testing. In conclusion,
K-CPGC has a significantly better rank compared to all
other approaches.
The analysis so far has been focusing on the number

of biclusters for which the subset of genes they con-
tain is associated with at least one significant GO term.
Since K-CPGC and CCA are the best methods accord-
ing to this analysis, one looks now at all significant GO
terms identified by both algorithms on all 35 datasets.
Figure 3 reports the difference metric between p-values of
these GO terms according to equation (4). It shows that
K-CPGC outperforms CCA in this regard since it exhibits
a positive difference in 638 out of 1054 cases. In other
words, K-CPGC identifies gene subsets which are gener-
ally estimated more significant as they correspond more
often to lower p-values.
To complement the analysis, we evaluate the p-values

differences on a per dataset basis. Comparing p-values
of terms found by K-CPGC and CCA would have lit-
tle sense whenever the enriched terms differ completely
between both approaches, however. As a consequence, we
first report in Fig. 4a the number of terms found by the
two approaches, as well as the number of terms that are
common to both approaches. Figure 4b reports the num-
ber of the terms common to K-CPGC and CCA for which
an algorithm presents a smaller p-value as compared to
the other algorithm. It shows that when K-CPGC and CCA
return several GO terms in common, the significance of
such terms is typically better with our K-CPGC approach
(see Fig. 4b). When no such overlap exists between the
enriched terms reported by both approaches, this is essen-
tially due to the fact that CCA hardly returns any enriched
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Table 2 Number of enriched biclusters found by each algorithm on each dataset

dataset CCA ISA K-CPGC Plaid QUBIC Spectral xMOTIFs CPGC

1 1 (5.0) 7 (1.0) 6 (2.0) 1 (5.0) 0 (7.5) 0 (7.5) 2 (3.0) 1 (5.0)

2 0 (7.5) 8 (1.0) 6 (2.0) 1 (5.0) 1 (5.0) 0 (7.5) 2 (3.0) 1 (5.0)

3 1 (6.0) 8 (1.0) 7 (2.0) 1 (6.0) 5 (3.0) 0 (8.0) 3 (4.0) 1 (6.0)

4 1 (5.5) 2 (2.5) 1 (5.5) 2 (2.5) 0 (8.0) 5 (1.0) 1 (5.5) 1 (5.5)

5 2 (4.0) 6 (1.5) 2 (4.0) 1 (6.5) 6 (1.5) 0 (8.0) 2 (4.0) 1 (6.5)

6 1 (5.5) 7 (1.0) 5 (2.0) 2 (4.0) 0 (7.5) 0 (7.5) 3 (3.0) 1 (5.5)

7 2 (5.0) 3 (4.0) 8 (1.0) 1 (7.0) 7 (2.5) 7 (2.5) 1 (7.0) 1 (7.0)

8 3 (5.0) 8 (1.5) 8 (1.5) 1 (7.5) 6 (3.0) 5 (4.0) 2 (6.0) 1 (7.5)

9 1 (7.0) 2 (4.5) 7 (1.0) 1 (7.0) 6 (2.5) 6 (2.5) 2 (4.5) 1 (7.0)

10 1 (5.0) 1 (5.0) 5 (1.0) 1 (5.0) 0 (8.0) 2 (2.0) 1 (5.0) 1 (5.0)

11 0 (7.5) 1 (4.5) 4 (1.5) 0 (7.5) 4 (1.5) 1 (4.5) 1 (4.5) 1 (4.5)

12 2 (3.5) 8 (1.0) 7 (2.0) 0 (7.5) 2 (3.5) 0 (7.5) 1 (5.5) 1 (5.5)

13 0 (7.0) 3 (1.5) 3 (1.5) 0 (7.0) 2 (3.5) 0 (7.0) 2 (3.5) 1 (5.0)

14 2 (4.5) 3 (2.5) 1 (6.5) 0 (8.0) 2 (4.5) 10 (1.0) 3 (2.5) 1 (6.5)

15 3 (2.0) 3 (2.0) 2 (4.5) 0 (8.0) 3 (2.0) 2 (4.5) 1 (6.5) 1 (6.5)

16 1 (5.5) 8 (1.5) 8 (1.5) 0 (7.5) 4 (3.0) 0 (7.5) 2 (4.0) 1 (5.5)

17 0 (7.0) 3 (2.0) 1 (4.5) 0 (7.0) 3 (2.0) 0 (7.0) 3 (2.0) 1 (4.5)

18 2 (2.0) 1 (4.0) 3 (1.0) 0 (7.0) 1 (4.0) 0 (7.0) 0 (7.0) 1 (4.0)

19 8 (2.5) 0 (7.0) 9 (1.0) 6 (4.0) 8 (2.5) 0 (7.0) 0 (7.0) 1 (5.0)

20 6 (2.0) 3 (4.5) 10 (1.0) 3 (4.5) 4 (3.0) 0 (8.0) 2 (6.0) 1 (7.0)

21 2 (4.0) 1 (6.5) 8 (1.0) 4 (2.0) 2 (4.0) 0 (8.0) 2 (4.0) 1 (6.5)

22 6 (2.0) 1 (6.5) 8 (1.0) 0 (8.0) 3 (4.5) 5 (3.0) 3 (4.5) 1 (6.5)

23 2 (2.5) 0 (7.0) 4 (1.0) 0 (7.0) 2 (2.5) 0 (7.0) 1 (4.5) 1 (4.5)

24 4 (1.5) 0 (6.5) 4 (1.5) 0 (6.5) 0 (6.5) 0 (6.5) 1 (3.5) 1 (3.5)

25 5 (1.5) 0 (7.0) 5 (1.5) 3 (3.0) 0 (7.0) 0 (7.0) 1 (4.5) 1 (4.5)

26 4 (1.5) 0 (7.5) 4 (1.5) 2 (4.5) 2 (4.5) 0 (7.5) 3 (3.0) 1 (6.0)

27 4 (1.0) 1 (6.5) 3 (2.0) 2 (4.0) 2 (4.0) 0 (8.0) 2 (4.0) 1 (6.5)

28 5 (1.0) 0 (7.0) 4 (2.0) 2 (3.5) 2 (3.5) 0 (7.0) 0 (7.0) 1 (5.0)

29 3 (3.5) 1 (6.0) 6 (1.0) 3 (3.5) 4 (2.0) 0 (8.0) 1 (6.0) 1 (6.0)

30 5 (1.0) 0 (7.5) 2 (2.5) 1 (5.0) 1 (5.0) 0 (7.5) 2 (2.5) 1 (5.0)

31 4 (2.5) 1 (5.5) 5 (1.0) 4 (2.5) 1 (5.5) 0 (8.0) 1 (5.5) 1 (5.5)

32 8 (1.5) 0 (7.5) 5 (4.5) 7 (3.0) 8 (1.5) 0 (7.5) 5 (4.5) 1 (6.0)

33 6 (3.0) 0 (8.0) 7 (2.0) 3 (4.0) 9 (1.0) 1 (6.0) 1 (6.0) 1 (6.0)

34 6 (2.0) 0 (7.5) 4 (3.0) 3 (4.5) 7 (1.0) 0 (7.5) 3 (4.5) 1 (6.0)

35 7 (1.0) 0 (6.5) 5 (2.0) 2 (3.0) 0 (6.5) 0 (6.5) 0 (6.5) 1 (4.0)

avg. rank 3.7 4.5 2.1 5.4 3.9 6.2 4.7 5.6

Numbers in parentheses are the associated ranks. In case of ties, average ranks are assigned. The last row corresponds to the algorithm ranks averaged over the 35 datasets.
Best performances are highlighted in bold. It is observed that all enriched biclusters have different GO enrichment. Note that CPGC is the original algorithm identifying a
single submatrix of maximal sum per dataset

terms (see Fig. 4a). Such a per dataset analysis further
supports the benefits of our proposed method.
We further analyze the actual gene subsets identified by

K-CPGC from Saccharomyces cerevisae samples to check
whether the 20 most significantly enriched GO terms it

identifies in each dataset are consistent with the con-
trolled conditions under which these experiments were
conducted. The full analysis is detailed in the supple-
mentary materials associated with this manuscript [see
Additional file 1]. It shows that the GO terms identified
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Fig. 2 Critical difference of ranks. Comparison between the average
rank of each algorithm over N = 35 datasets, with a 5% level of
significance and Hochberg’s correction for multiple testing

in the first four datasets, representative of cell cycles,
are associated with some form of biogenesis, including
ribosome, RNA, peptide and macromolecules synthe-
sis. The GO terms identified in the next 12 datasets
are indeed associated with various forms of response to
stress-induced environments, including many representa-
tives of the response to the stimulus, oxidation-reduction
processes, and cellular responses to stress. Some GO
terms also refer to generic responses to stress which are
less specific to the controlled condition. For example, in
the complete DTT dataset, many GO terms relate to alter-
ation in the general patterns of protein biosyntheses as
reported by Miller et al. [17]. The last experiment related
to yeast sporulation includes GO terms referring to cell
cycle, sporulation, and reproductive processes.

While this work focuses on the biological relevance of
identified submatrices, it must be stressed that K-CPGC
usually finds the best solutions in less than a minute1. On
average, K-CPGC requires 14.7 s, the median being equal
to 1.7 s. The longest run is performed within 195.7 s on
dataset 18 (Yeoh-v1).

Discussion
The experiments and results reported in this work show
that the K-CPGC method outperforms six well-known
biclustering algorithms to identify biologically relevant
gene subsets among subgroups of samples. The various
algorithms are compared essentially based on their ability
to return gene subsets which are associated with signifi-
cantly enriched GO terms. One could consider that such a
performance assessment validates only part of the results
as it focuses on the genes (rows) and does not validate a
posteriori the identified subgroups of samples (columns).
This is actually a common limitation of the assessment of
biclustering methods from gene expression data [6]. For
the Saccharomyces cerevisae experiments reported here,
there is no gold standard in terms of subgroups of sam-
ples to be identified. Yet, these subgroups of samples
are, at least indirectly, validated because their compo-
nents directly influence the subsets of genes which are
returned. This is particularly clear for the CPGC approach
as one looks for a rectangular submatrix of maximal sum
and the returned genes are directly constrained by the
selected samples in such a submatrix. This is also true
for biclustering algorithms since, for instance, they look

Fig. 3 Comparison of K-CPGC and CCA p-values for enriched GO terms. This figure presents the (logarithmic) ratio of corrected p-values associated
to each GO term identified by both K-CPGC and CCA on all the 35 datasets. Positive values (638 GO terms) are in favor of K-CPGC
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Fig. 4 Comparison of terms enriched by K-CPGC and CCA for each of the 35 datasets. a Number of terms enriched by K-CPGC and CCA for each
of the 35 datasets. The horizontal line reports the number of terms that are enriched by both approaches. b Number of times that the adjusted
p-value of a term found by an algorithm is smaller than the adjusted p-value of the term found by the other algorithm. Only terms enriched by both
algorithms are considered

for homogeneous expression patterns both across rows
and columns. Notwithstanding, in a medical context, for
example, the actual samples are typically associated with
specific patients. In such a case, direct validation of the
identified subgroups of samples could be performed by
comparing these subgroups with actual clinical annota-
tions. Interpreting the evaluation of unsupervised method
on their ability to recover an expected structure is diffi-
cult, however. As an illustrative example, Padilha et al. [6]
evaluated the ability of several biclustering algorithms to
recover the predefined sample classes. They showed that
the best methods are biased towards methods that force
every row and every column to be biclustered.
The proposed K-CPGC method could be considered as

including two control parameters: the numberK of biclus-
ters one looks for and the threshold θ defining the level of
expression above which interesting patterns are searched.
In the present work, we fix θ to the 75th percentile of
expression values and we argue that this is a reasonable
choice to find high expression patterns. Yet, the user may

be interested to play with this parameter as it influences
indirectly the sizes of the biclusters found. In the limit, if
θ is set below the minimal expression value, all entries of
the normalized matrix will be positive and the solution
to the maximal sum problem is trivially identified as the
full matrix. Similarly, if θ is set above the maximal expres-
sion value, all entries of the normalized matrix become
negative and the optimal solution is the empty matrix. An
intermediate θ value between these extreme cases is typ-
ically chosen. For a fixed data matrix increasing θ tends
to produce smaller biclusters. The actual bicluster sizes
found is difficult to predict exactly, as it also depends on
the actual distribution of expression value in the matrix,
but the analyst may easily play with θ to find biclusters of
interest.
In the present study, for a fair comparison between all

algorithms, we fix the maximal number of biclusters to be
found to K = 10. In practice, however, this is not a criti-
cal choice since the analyst can start with K = 1 and use
the proposed gene enrichment analysis to check whether
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the successive biclusters returned by increasing K are still
significantly enriched [see Additional file 2]. This could
even be automated in a script and the actual value of K
automatically determined in this way.
As already mentioned in the “Interpretation” section,

the K-CPGC approach can also be used to find low expres-
sion patterns instead of high-level ones simply by consid-
ering the opposite of the normalized data matrix. These
are two obvious possibilities but it is straightforward to
generalize this approach. For instance, if one would be
interested in finding patterns of average expression values
(neither over-expressed nor under-expressed), one can
easily transform the original matrix to a new one, e.g.
according to a Gaussian or RBF kernel, in which a higher
value would represent an original entry closer to the aver-
age expression value. This average (or median) value can
be computed overall, row-wise or column-wise. Countless
variants are easy to define and illustrate the flexibility of
this approach.

Conclusions
We propose a novel algorithm, K-CPGC, to find K non-
redundant and possibly overlapping submatrices of max-
imal sum from a large gene expression matrix. The
returned solutions have the same bi-dimensional struc-
ture as biclusters produced by existing biclustering algo-
rithms. Yet, the mathematical objective is different and
more explicitly optimized with the proposed methodol-
ogy. Indeed, the role of a matrix entryMi,j in a submatrix
is clear: its contribution to the decision of including gene
i and sample j in the submatrix is Mi,j. It follows that the
contribution of each gene in the definition of a gene sub-
set, respectively each sample, can be easily computed as
the sum of matrix entries for each of the selected samples,
respectively genes.
Through enrichment analysis performed on 35 gene

expression datasets from human tissues and Saccha-
romyces cerevisae samples, we show that K-CPGC out-
performs biclustering algorithms when looking for bio-
logically relevant gene subsets. Not only is our approach
efficient, but it also identifies more enriched biclusters
than other biclustering methods. The K-CPGC approach
provides stronger results (lower p-values of gene subsets
or GO terms) than these alternative algorithms. These
results illustrate the benefits of the proposed approach in
terms of biological enrichments and biological relevance.
The K-CPGC is, however, not limited to gene expression

analysis. For example, Liu andWang [18] use a drug activ-
ity dataset consisting of a matrix of 10,000 compounds
with 30 features for each compound. The K-CPGC algo-
rithm could be used to identify subsets of compounds
presenting highly valued entries in subsets of features.
This method has the potential to find relevant gene

subsets across various -omics technologies since, unlike

biclustering algorithms, it does not look for homoge-
neous gene expression values. The specific search order
it follows could also be easily adapted to discover small
relevant submatrices rather than large biclusters, hence
focusing on rare but relevant expression patterns.
The K-CPGC method and the biclustering algorithms

it is compared to are unsupervised methods since they
do not require any particular annotation of the ana-
lyzed samples. A different and interesting setting arises
when the samples, or at least a fraction of them, are
labeled according to various conditions or clinical vari-
ables. In such a context, a new objective would be to
identify subsets of genes that are maximally relevant to
discriminate between subsets of samples from different
conditions.

Methods
This section briefly presents six biclustering algorithms
frequently cited in the literature and for which software
implementations are publicly available [6, 7, 19–22]. Next,
we present our own constraint programming approach,
CPGC, to identify a submatrix of maximal sum and its
extension to extract K submatrices. Our evaluation proto-
col, including the data collection and experimental setup,
is also detailed.

Biclustering algorithms
Cheng and Church’s Algorithm (CCA) is based on itera-
tively adding or removing rows and columns to a current
bicluster in order to minimize the variance within it [4].
The variance in a bicluster (I; J) is evaluated as a mean
squared residue MSR = 1

|I||J|
∑

i∈I,j∈J(Mij −MiJ −MIj +
MIJ )2, where Mi,J is the average of the ith row in the
bicluster, MI,j the average of the jth column, and MI,J
the average of all elements in the bicluster. A parameter
δ defines a threshold of maximum MSR for a bicluster
to be accepted. The identification of multiple biclusters is
achieved iteratively by replacing all entries of the previ-
ously identified bicluster(s) by random values within the
range of the original data matrix.
Conserved Gene Expression Motifs (xMOTIFs) finds

biclusters with simultaneously conserved genes in sub-
sets of samples in a discretized data matrix [23]. Each
discretized entry corresponds to a continuous range
of expression values from the original matrix. Genes
are considered conserved across a subset of samples
if the discretized expression values are identical. This
approach greedily searches for a largest xMOTIF start-
ing from various random seeds. When such an xMO-
TIF is found, the corresponding samples are removed
from the original matrix and the whole process is iter-
ated. This approach is thus constrained to return biclus-
ters without overlap between the respective samples they
contain.
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Iterative Signature Algorithm (ISA) starts from a ran-
domly selected bicluster and greedily adds or removes
columns and rows till reaching some prescribed minimal
average value TC (TR) across the selected columns (rows)
[24]. Several biclusters can be found by restarting from
another randomly selected bicluster.
QUalitative BIClustering (QUBIC) discretizes the orig-

inal matrix and builds a graph where each node corre-
sponds to a gene, and each edge weight is the number
of samples for which two genes have the same nonzero
discretized value. It then searches for biclusters corre-
sponding to heavy subgraphs [19].
Plaid fits a generative statistical model with K compo-

nents from which each entryMij of the original matrix is
assumed to have been generated [25].
Mij = B + ∑K

k=1(μk + αik + βjk)ρikκjk + εij where B is a
background level, μk is a specific bicluster effect, αik and
βjk are row and column effects, ρ and κ are cluster mem-
berships respectively along the rows and the columns, ε is
a random noise. The Plaid algorithm fits such an addi-
tive model by minimizing a mean square error between
the modeled and observed data [26]. This algorithm may
actually return less than K biclusters because a specific
bicluster is returned only if it offers a better fit (= a lower
residue) than biclusters found from random permutations
of the original matrix.
Spectral relies on singular value decomposition to clus-

ter genes and samples simultaneously after a specific
normalization of rows and columns [27]. It looks for
distinctive checkerboard patterns which form biclusters
including contiguous rows and contiguous columns. The
net result is a set of biclusters of low variance such that
each gene and each sample exactly belong to a single
bicluster.

The CPGCmethod
The CPGC method has been introduced in [8] to solve
the Max-Sum Submatrix Problem (1) through constraint
programming (CP). A solution to the MSSM problem is
represented by two vectors of boolean decision variables
R = (R1, . . . ,Rm) for the rows and C = (C1, . . . ,Cn)
for the columns, with Ri ∈ {0, 1} and Cj ∈ {0, 1}. When
a decision variable is equal to 1, its corresponding row
or column is selected in the solution. When it is equal
to 0, its corresponding row or column is not part of the
selected submatrix. The algorithm searches through the
space of possible variable assignments in the form of a
tree as depicted in Fig. 5. Initially, at the root, all deci-
sions variables are unbound and the algorithm explores
such a tree in a depth-first fashion. Any configuration
with no unbound variable defines a specific submatrix and
is called a feasible solution. The goal is to find an opti-
mal solution, i.e. a solution of maximal sum, among the
feasible solutions.

Implicit search space
Any feasible solution to the problem is defined by a com-
plete assignment of the selected rows and columns. Such
a complete assignment defines a specific rectangular sub-
matrix (I ⊆ R; J ⊆ C) of the original matrix. The
full search space includes

(
2|R| − 1

) × (
2|C| − 1

)
non-

empty feasible solutions. Yet, for any full assignment of
the columns (no unbound Cj variable), the optimal assign-
ment of the rows can be directly computed. Indeed, for
any of the two dimensions being fixed, optimization along
the other dimension is straightforward since it amounts
to select only the subset of entries whose contribution is
positive. For a fixed subset of columns J ⊆ C, the optimal
subset of rows I∗J ⊆ R that maximizes the objective value
is identified as I∗J = {i ∈ R | ∑

j∈J Mi,j ≥ 0}.
In the gene expression analysis context, with order(s)

of magnitude more rows (genes) than columns (samples),
the actual search space is explored only over the column
assignments. For each of the O(2|C|) column assignments,
the optimal subset of rows can then be computed in
linear time.

Efficient search and filtering
The CPGC algorithm includes several refinements to
speed up the search for an optimal solution. It uses
a branch and bound strategy to avoid the exploration
of proven suboptimal solutions. A CP algorithm usu-
ally updates a best so far lower bound to the objective
whenever it reaches a leaf of its search tree, that is
when every decision variable is bound. For the MSSM
problem, any partial assignment of the decision variables
can be extended as a complete solution for which the
unbound variables are set to 0. It is thus possible to
update the best lower bound so far at each node of the
search tree, which can improve the filtering of suboptimal
solutions.
The complexity of this approach is defined by the num-

ber of nodes explored and the complexity of the methods
executed at each node. The CPGC approach explores
O

(
2|C|) nodes, or possible assignments of column vari-

ables. The time complexity of the methods performed
at each node of the search tree is in O(|R| × |C|).
The global time complexity of CPGC is therefore in
O

(
2|C| × |R| × |C|).
The space complexity of the nodes is in O(|R| + |C|).

The number of nodes to maintain effectively is in O(|C|),
by virtue of the depth-first search exploration strategy.
The global space complexity of CPGC is therefore in
O (|C| × (|R| + |C|)).
These bounds on the space and time complexities do not

take into account the substantial reduction of the search
space induced by the filtering procedures. In experiments
with instance matrices of 10,000 rows by 1000 columns,
the best solutions are found within short periods of time,
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Fig. 5 Search tree. This figure illustrates the search tree defined on the set of possible submatrices. A question mark refers to an unbound variable
that can be equal to 0 or 1

usually less than 10 s1. Moreover, providing more time (up
to 1000 s) never improves the objective value.
These results suggest that CPGC is scalable to tackle

reasonably large problems from biological to biomedical
domains. The interested reader is invited to consult [8] for
further technical details about this approach.

Identification of K biclusters
The CPGC algorithm looks for a single submatrix of max-
imal sum from an original data matrix while there might
be several biclusters to be identified. In gene expres-
sion analysis, the same gene may indeed participate in
multiple pathways. Hence one would like to identify K
biclusters with possible overlaps between them. The con-
trol parameter K must be chosen by the data analyst
(e.g. K = 10) but, as illustrated in the “Results” section,
a biological interpretation of the biclusters found may
help in this regard. Formally, any row and any column
of the original data matrix may belong to zero, one up
to K biclusters. Hence, each decision variable can now
take 2K values. The extension of the MSSM problem to
identifyK solutions would thus lead to a search space con-
taining O

(
2K |R| × 2K |C|) feasible solutions. A completed

assignment of the column variables does not help as in
the “Implicit search space” section. Indeed, each decision
for row i in submatrix k depends on the decisions on row
i for the K − 1 other submatrices. Consequently, one can
no longer hope to find optimal solutions in a reasonable
time from real gene expression datasets. Instead, we pro-
pose to follow a greedy strategy as commonly adopted in
several biclustering algorithms [1, 4, 5].
A first submatrix is found by solving the optimization

problem (1) with CPGC. Next, the values of the selected

1All reports of time in the present work are computed from experiments on a
MacBook Pro (OS version 10.10.5) laptop (Intel i7-2720 CPU 2.20-3.30GHz,
1GB RAM per run) with a single thread.

entries in this solution are replaced in the original matrix
by zeros. A zero value is indeed neutral with respect to
the maximal sum objective. In other words, any particular
entry that has already been selected can again be selected
but without any benefit nor loss in the objective value.
Such a strategy allows for a possible overlap between sev-
eral biclusters, neither forcing such overlap nor discarding
it a priori. This process can be iterated till producing K
biclusters.
The time complexity of the method is computed as K

times the complexity of the CPGC subroutine. The greedy
procedure does not alter the space complexity. Identifying
K submatrices with a large total sum is performed within a
reasonable time (in the order of a minute), which is unsur-
prising given the performances of the CPGC subroutine.
An implementation of this greedy algorithm, called

K-CPGC, is freely available as an R package from https://
github.com/vbranders/mssm.

An evaluation study on human tissues and on
Saccharomyces cerevisiae
In this study, we look for biologically relevant biclus-
ters computed from thirty-five publicly available gene
expression microarray datasets. The first 18 datasets
were obtained from human tissues using single-channel
Affymetrix chips (Affy), proposed and preprocessed by
de Souto et al. [28]. Similarly to the latter work, expres-
sion values are transformed prior to further analyzes:
M∗

i,j ← log2(Mi,j/mi) where mi is the median of row i
and M∗

i,j is the value in row i and column j after trans-
formation. The subsequent 17 datasets, proposed and
preprocessed by [29], were obtained from Saccharomyces
cerevisiae samples under various controlled conditions
using double-channel cDNA (cDNA) technology. These
expression values are left unaltered. Table 3 summarizes
this collection by reporting the number of genes and
samples measurements in each dataset.

https://github.com/vbranders/mssm
https://github.com/vbranders/mssm
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Table 3 Data collection summary

Name Chip Genes Samples Organism Tissue/Condition

1 armstrong-v1 Affy 1081 72 Human Blood

2 armstrong-v2 Affy 2194 72 Human Blood

3 bhattacharjee Affy 1543 203 Human Lung

4 chowdary Affy 182 104 Human Breast, Colon

5 dyrskjot Affy 1203 40 Human Bladder

6 gordon Affy 1626 181 Human Lung

7 laiho Affy 2202 37 Human Colon

8 nutt-v1 Affy 1377 50 Human Brain

9 nutt-v2 Affy 1070 28 Human Brain

10 nutt-v3 Affy 1152 22 Human Brain

11 pomeroy-v1 Affy 857 34 Human Brain

12 pomeroy-v2 Affy 1379 42 Human Brain

13 ramaswamy Affy 1363 190 Human Multi-tissue

14 shipp Affy 798 77 Human Blood

15 singh Affy 339 102 Human Prostate

16 su Affy 1571 174 Human Multi-tissue

17 west Affy 1198 49 Human Breast

18 yeoh-v1 Affy 2526 248 Human Bone marrow

19 alpha factor cDNA 1099 18 Yeast Cell cycle synchronisation

20 cdc 15 cDNA 1086 24 Yeast Cell cycle synchronisation

21 cdc 28 cDNA 1044 17 Yeast Cell cycle synchronisation

22 elutriation cDNA 935 14 Yeast Cell cycle synchronisation

23 1mMmenadione cDNA 1050 9 Yeast Environmental modifications

24 1M sorbitol cDNA 1030 7 Yeast Environmental modifications

25 15mM diamide cDNA 1038 8 Yeast Environmental modifications

26 25mM DTT cDNA 991 8 Yeast Environmental modifications

27 constant 32nM H2O2 cDNA 976 10 Yeast Environmental modifications

28 diauxic shift cDNA 1016 7 Yeast Environmental modifications

29 complete DTT cDNA 962 7 Yeast Environmental modifications

30 heat shock 1 cDNA 988 8 Yeast Environmental modifications

31 heat shock 2 cDNA 999 7 Yeast Environmental modifications

32 nitrogen depletion cDNA 1011 10 Yeast Environmental modifications

33 YPD 1 cDNA 1011 12 Yeast Environmental modifications

34 YPD 2 cDNA 1022 10 Yeast Environmental modifications

35 Yeast sporulation cDNA 1006 7 Yeast Sporulation

Experimental setup
Our objective is to assess to which extent biclustering
algorithms and our own K-CPGC approach are able to find
biclusters representative of the controlled conditions in
our evaluation study. To do so, we analyze the gene sub-
sets found by each approach and we check which of them
are significantly enriched.

To compare all approaches on a fair basis, we look for
(up to) K = 10 biclusters for each controlled experi-
ment. As detailed below, some algorithms do not produce
so many solutions while others, including K-CPGC, could
be tuned to produce more solutions. Ten biclusters from
each data matrix are also considered as reasonable for the
subsequent biological interpretation of the results.
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All algorithms used in this work are available through
R packages: biclust [30], isa2 [31] and https://github.
com/vbranders/mssm for K-CPGC. By default, the con-
trol parameters of each biclustering algorithm are those
recommended by their original authors. For example, as
proposed by the authors of CCA, the original data matri-
ces are initially multiplied by 100 to match the range
of data values their control parameters are assuming.
The discretization step of xMOTIFs is performed with
10 equally spaced intervals from minimum to maximum.
The K-CPGC threshold θ (see Interpretation within Prob-
lem definition) is set to the 75th percentile of expression
values, specifically to each dataset. We consider such a
threshold as representative of the objective of capturing
high expression patterns. Given the performances of the
CPGC approach on larger datasets, the K-CPGC method
waits for convergence of the CPGC method. In other
words, each call to the CPGCmethod is interrupted when-
ever the solution is proved optimal, or the best solution
has not been improved for 10 s. We additionally compare
the performances of the CPGC subroutine to the other
approaches.

Evaluation
In order to evaluate the biological relevance of the biclus-
ters returned by the various algorithms in this study, a
gene enrichment analysis is performed from the selected
genes in each bicluster. Specifically, we perform an enrich-
ment step for the selected genes through the Gene Ontol-
ogy (GO; considering the Biological Process Ontology)
[32] using the clusterProfiler R package [22].
For each of the 35 datasets, each of the 8 algorithms pro-

duces up to 10 biclusters. For each bicluster, the enrich-
ment step provides a list of GO terms and FDR corrected
p-values [33]. This p-value refers to the probability of
selecting at random n genes out of the N genes from the
original expressionmatrix, with c out of n being associated
to the same functional class C. Let s be the true propor-
tion of the N genes associated to the functional class C,
the p-value associated to a GO term, or functional class C,
is computed as:

Pr(c|N , s, n) =
(sN
c
)(

(1−s)N
n−c

)
(N
n
) . (3)

For each GO term, or functional class C, we calculate
the p-value of the current submatrix enrichment as the
probability of selecting at random at least c genes of this
functional class C in the submatrix, where c is the actual
number of genes from this class present in the current
submatrix [19]. The smaller the p-values of the terms asso-
ciated with a submatrix, the more likely the selected genes
come from the same biological process.

According to the methodology proposed in [6, 7, 19, 20],
a specific bicluster is considered enriched if there is at
least one GO term with a FDR corrected p-value below
5%. An algorithm is considered better if it produces more
enriched biclusters.
A refined analysis has also been proposed in [6, 34]

through pairwise comparison of the smallest p-value
among the GO terms found from the selected genes
returned by each algorithm. Such a comparison could
be criticized as it is limited to a single p-value for each
algorithm, not necessarily computed for comparable GO
terms. Instead, when comparing two algorithms A1 and
A2, for any GO term considered significantly enriched
(FDR corrected p-value < 5%) by both algorithms, one
computes a performance difference as:

diff(A1,A2) = − log
(
pA1

pA2

)
(4)

The larger diff(A1, A2), the smaller the corrected p-value
of pA1 compared to pA2 with a positive difference when-
ever A1 outperforms A2.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3289-0.

Additional file 1: Gene subsets identified by K-CPGC.
Additional_file_1.pdf provides tables of the 20 most enriched
GO terms identified by K-CPGC on Saccharomyces cerevisiae samples from
17 different conditions. One table is provided per condition.

Additional file 2: Evolution of the number of gO terms identified.
Additional_file_2.pdf illustrates the evolution of the number of
enriched biclusters and enriched GO terms as K increases.
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