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A B S T R A C T   

Objective: Neuroblastoma is a life-threatening pediatric solid tumor whose etiology remains un-
clear. N7-methylguanosine (m7G) is one of the most important epigenetic modifications of RNA, 
which plays a crucial role in tumorigenesis. The m7G-mediated genes METTL1 and WDR4 also 
have been reported to be dysregulated in various cancers. However, the implications of METTL1 
and WDR4 in neuroblastoma have not been clarified. 
Methods: Given the oncogenic potential of m7G modification, we performed a case-control study 
to assess the association of METTL1 and WDR4 genes polymorphisms with neuroblastoma risk in a 
Chinese population consisting of 402 cases and 473 controls. Odds ratios (ORs) and 95 % con-
fidence intervals (CIs) were applied to evaluate the associations between studied polymorphisms 
and neuroblastoma risk. The adjusted odds ratio (AOR) was adjusted for age and gender. 
Results: Overall, four polymorphisms were significantly associated with neuroblastoma risk, 
including METTL1 rs2291617 (recessive model: adjusted OR = 1.59, 95 % CI = 1.08–2.34, P =
0.019), WDR4 rs2156316 (dominant model: adjusted OR = 0.74, 95 % CI = 0.57–0.97, P =
0.028), WDR4 rs6586250 (dominant model: adjusted OR = 0.59, 95 % CI = 0.42–0.84, P =
0.004) and WDR4 rs15736 (dominant model: adjusted OR = 0.60, 95 % CI = 0.42–0.85, P =
0.004). Stratified analysis showed stronger correlations between significant polymorphisms and 
neuroblastoma risk among subgroups divided by age, gender, tumor origin, and clinical stage. 
Furthermore, expression quantitative trait loci (eQTL) analysis revealed that significant poly-
morphisms were associated with the expression of the adjacent genes. 
Conclusions: Our study indicated that four polymorphisms in m7G-mediated genes contribute to 
neuroblastoma susceptibility in the eastern Chinese population. However, our findings should be 
verified further by large-scale and well-designed studies.  
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1. Introduction 

Neuroblastoma is the most common extracranial pediatric malignancy originating from embryonic sympathetic crest progenitor 
and composes about 10 % of all pediatric malignancies [1]. It ranks third leading cause of neoplastic death in children, accounting for 
almost 15 % of all cases [2]. The incidence of neuroblastoma is approximately 7.7/106 in China, being considered the fourth most 
prevalent pediatric tumor [3]. Neuroblastoma is a highly heterogeneous disorder with diverse clinical manifestations, which can be 
divided into low-, intermediate- and high-risk subgroups according to the clinical symptoms, pathological characteristics, and prog-
nosis [4]. Some low-risk patients can spontaneously recover from the disease without radiotherapy and chemotherapy. However, the 
prognosis of high-risk patients remains unsatisfactory, even after having undergone multiple combined therapies. In recent years, great 
progress has been made in treating neuroblastoma, following intensive investigations, with a five-year survival of nearly 70 %. 
However, its survival rate also shows a sharp downward trend with the malignant progress of neuroblastoma. The five-year survival 
rates of patients in stages III and IV drop to 60 % and 20 %, respectively. In addition, about half of the patients were diagnosed as 
high-risk patients, and their five-year survival rate was less than 40 % [2]. The widespread metastasis at the diagnosis may explain this 
poor prognosis [5]. Therefore, it is urgent to explore the genetic variants associated with neuroblastoma susceptibility for its early 
diagnosis and risk assessment to improve the therapeutic efficacy and survival rate. 

To date, the etiology of neuroblastoma is not fully understood. Studies showed that the genetic variations in the PHOX2B [6] and 
ALK [7] genes are associated with familial neuroblastoma. However, familial neuroblastoma is rare, making up roughly 1–2% of all 
cases [8]. The genetic mechanisms regarding sporadic neuroblastoma remain poorly understood. Although some environmental 
factors such as wood dust, diesel oil, paint thinner, turpentine, and welding flux have been suggested as potential risk factors pre-
disposing individuals to neuroblastoma [9,10], no direct evidence indicates exposure to these factors leads to neuroblastoma ulti-
mately. And only a few offspring developed neuroblastoma after their parents were exposed to the environmental risk factors [11]. 
These hint to us that genetic factors, not only environmental factors, may play a decisive role in the occurrence and progression of 
neuroblastoma. Growing evidence showed that genetic polymorphisms might predispose individuals to neuroblastoma. In other 
words, the acquisition of genetic susceptibility largely determines whether the offspring suffers from neuroblastoma [8,12]. 

Single nucleotide polymorphism (SNP) is the most common genetic variation which may affect the genes expression or protein 
structure and activity, thus leading to individual differences in disease susceptibility and prognosis. With the rapid development of 
high-throughput sequencing technology and bioinformatic analysis, the genome-wide association study (GWAS) has become a 
powerful tool for studying human diseases’ genetic mechanisms, including neuroblastoma. Increasing studies reported the close 
relationship between SNP and neuroblastoma susceptibility. Over the recent ten years, six GWASs have identified a series of neuro-
blastoma susceptibility SNPs in the following genes, CASC15 [13], BARD1 [14], DDX4, DUSP12, HSD17B12, IL31RA [15], LMO1 [16], 
HACE1, LIN28B [17], MLF1, CPZ [18]. Furthermore, using candidate gene approaches, many other potential susceptibility SNPs have 
also been discovered in some vital functional genes, such as FAS, FASL [19], NEFL [20], XPG [21], ALKBH5 [22], and CDKN1B [23]. In 
brief, SNP plays a key role in neuroblastoma susceptibility, and it should be one of the entry points to explore the genetic etiology of 
neuroblastoma. 

N7-methylguanosine (m7G) is the most conservative and common modification of tRNA in prokaryotes and eukaryotes [24]. In 
addition, studies have found that m7G also widely exists in mRNA, miRNA, and 18 S rRNA. The m7G is referred to as methylated 
modification at the N7 position of guanine within various RNAs, which is catalyzed by the METTL1/WDR4 methyltransferase complex. 
In this process, S-adenosylmethionine acts as the methyl donor. Methyltransferase METTL1 and the cofactor WDR4 transfer the methyl 
to the 7th N of guanine. Lin et al. found that m7G modification is widespread in mammals. Knockout of METTL1 or WDR4 in mouse 
embryonic stem cells caused the absence of tRNA m7G modifications, which decreased mRNA translation [25]. Zhang et al. revealed 
that m7G modifications lead to local structure recombination of mRNA, which changed the interaction between regulatory protein and 
mRNA, thereby regulating the processing, splicing, translation, transport, and stability of mRNA [26]. In addition, Pandolfini et al. 
discovered that METTL1-mediated pri-miRNA m7G modification promotes miRNA maturation by destroying an inhibitory secondary 
structure [27]. Increasingly studies have proved that m7G modification is critical in oncogenesis. Pandolfini et al. reported that 
METTL1-mediated m7G modification is involved in the processing and maturation of mi-RNA let-7, inhibiting lung cancer cell 
migration [27]. Dai et al. demonstrated that METTL1/WDR4-mediated m7G modification of tRNA could increase the translation of 
downstream oncogenes CCNA2 and EGFR, thus promoting the progression of intrahepatic cholangiocarcinoma [28]. Similarly, Ma 
et al. also demonstrated that METTL1/WDR4-mediated tRNA m7G modification improves the translation efficiency of downstream 
oncogenes CCND3 and CCNE1, thus promoting lung cancer cell proliferation, migration, and invasion [29]. However, no study has 
reported the role of m7G modification in neuroblastoma. Considering the importance of RNA m7G modification and SNPs in 
tumorigenesis, it is reasonable to speculate that functional SNPs in METTL1/WDR4 genes may change the expression or structure of 
their protein, then deregulate downstream target genes, leading to cell dysfunction and eventually carcinogenesis. We conducted this 
case-control study to assess the association between SNPs in the METTL1/WDR4 genes and neuroblastoma risk in Chinese children. 

2. Materials and methods 

2.1. Study subjects 

This case-control study involved a total of 402 histopathologically and clinically diagnosed neuroblastoma cases and 473 cancer- 
free controls [30,31]. All the subjects were recruited from the Jiangsu province of Eastern China. The criteria of acceptability for the 
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Table 1 
Association of m7G modification genes and neuroblastoma risk in children from Jiangsu province.  

Gene Polymorphism Allele Case (N = 401) Control (N = 473) AOR (95 % CI)a Pa AOR (95 % CI)b Pb HWE   

A B AA AB BB AA AB BB      

METTL1 rs2291617 G T 176 157 68 206 213 54 0.99 (0.76–1.29) 0.923 1.59 (1.08–2.34) 0.019 0.925 
METTL1 rs10877013 T C 179 169 53 212 210 51 1.01 (0.77–1.32) 0.954 1.26 (0.84–1.90) 0.267 0.925 
METTL1 rs10877012 T G 178 159 64 203 211 59 0.94 (0.72–1.23) 0.664 1.34 (0.91–1.96) 0.137 0.717 
WDR4 rs2156315 C T 246 125 30 276 173 24 0.88 (0.67–1.16) 0.370 1.52 (0.87–2.65) 0.141 0.641 
WDR4 rs2156316 C G 202 154 45 203 219 51 0.74 (0.57–0.97) 0.028 1.05 (0.68–1.60) 0.833 0.478 
WDR4 rs6586250 C T 343 48 10 368 97 8 0.59 (0.42–0.84) 0.004 1.49 (0.58–3.81) 0.407 0.584 
WDR4 rs15736 G A 342 51 8 367 98 8 0.60 (0.42–0.85) 0.004 1.18 (0.44–3.19) 0.737 0.624 
WDR4 rs2248490 C G 198 162 41 207 216 50 0.80 (0.61–1.04) 0.098 0.96 (0.62–1.49) 0.869 0.566 

AOR, adjusted odds ratio; CI, confidence interval; HWE, Hardy-Weinberg equilibrium. 
Values were in bold if the P-values less than 0.05 or the 95 % CIs excluding 1.00. 

a Adjusted for age and gender for dominant model. 
b Adjusted for age and gender for recessive model. 
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study subjects were described previously [21]. The demographic characteristics of participants are shown in Table S1. Before the 
study, participants or their guardians signed the written informed consent. Moreover, the study protocol was authorized by the 
institutional review boards of the participating institution (Approval No: 202112141–1). 

2.2. Polymorphism selection and genotyping 

The potential functional SNPs in METTL1/WDR4 genes were identified by applying the dbSNP database (http://www.ncbi.nlm.nih. 
gov/) and SNPinfo (http://snpinfo.niehs.nih.gov/). The selection criteria referred to previous publications [32]. In brief, all the 
functional SNPs were selected from the two terminals, 5ʹ untranslated regions (5ʹ UTR), 3ʹ UTR, or exon of the METTL1/WDR4 genes. 
Ultimately, eight potential functional SNPs in METTL1/WDR4 genes were identified for the final study. In genotyping, we used the 
TIANamp Blood DNA Kit (TianGen Biotech, Beijing, China) for extracting the genomic DNA from the peripheral blood of the study 
population. The purified DNA samples were diluted to 5 ng/μL in 96-well plates, and all DNA samples were genotyped for the 8 SNPs in 
the 384-well format by the TaqMan real-time PCR method [33]. To ensure the authenticity and reliability of the results, we conducted 
a second-time genotyping in 10 % of the DNA samples chosen randomly. Two genotyping results were 100 % consistent. 

2.3. Statistical analysis 

We assessed the deviation from the Hardy-Weinberg equilibrium (HWE) of the selected SNPs among control subjects by a goodness- 
of-fit χ2 test. The two-sided chi-square test was applied to evaluate the differences in demographics and genotype frequency distri-
butions between cases and control subjects. The associations between the studied SNPs and neuroblastoma risk were assessed by the 
odds ratios (ORs) and 95 % confidence intervals (CIs) calculated in the unconditional logistic regression model. Moreover, the un-
conditional multivariate logistic regression analysis was used for calculating the adjusted ORs and corresponding 95 % CIs, which were 
adjusted for age and sex. Furthermore, the stratification analysis was carried out according to age, gender, sites of origin, and clinical 
stage. Moreover, we conducted the eQTL (Expression Quantitative Trait Loci) analysis from the GTEx (Genotype-Tissue Expression) 
platform to assess the potential effects of the significant SNPs on the expressions of neighboring genes in normal human cells or tissue. 
The detail of the analysis referred to previous studies [34,35]. All statistic analyses were conducted by applying version 9.4 SAS 
software (SAS Institute, NC, USA). The results with a P value less than 0.05 was considered statistically significant. 

3. Results 

3.1. Associations between SNPs in METTL1/WDR4 genes and neuroblastoma risk 

In this case-control study, 402 neuroblastoma cases and 473 healthy controls were included, and 401 cases and 473 controls were 
successfully genotyped for analyzing the associations between 8 candidate SNPs and neuroblastoma risk. As shown in Table 1, the 
genotype frequencies of all the SNPs among the controls were coincident with Hardy-Weinberg equilibrium (HWE) (P > 0.05). Four 
SNPs (1 in the METTL1 gene and 3 in the WDR4 gene) were related to neuroblastoma risk significantly. For METTL1 rs2291617 G > T, 
we found that subjects with rs2291617 TT genotype had significantly increased neuroblastoma risk compared to subjects with GG/GT 
genotype in the recessive mode (AOR = 1.59, 95 % CI = 1.08–2.34, P = 0.019). Moreover, all other three SNPs (rs2156316 C > G, 

Table 2 
Stratification analysis for the association between METTL1 genotypes and neuroblastoma risk.  

Variables rs2291617 AOR (95 % CI)a Pa Risk genotypesb AOR (95 % CI)a Pa  

(cases/controls)   (cases/controls)    

GG/GT TT   0 1–3   

Age, month 
≤18 111/127 28/12 2.70 (1.31–5.58) 0.007 108/125 31/14 2.60 (1.31–5.16) 0.006 
>18 222/292 40/42 1.25 (0.79–2.00) 0.345 215/283 47/51 1.21 (0.79–1.87) 0.384 
Gender 
Females 153/195 37/30 1.58 (0.93–2.68) 0.091 147/189 43/36 1.54 (0.94–2.52) 0.087 
Males 180/224 31/24 1.61 (0.91–2.84) 0.102 176/219 35/29 1.50 (0.88–2.55) 0.134 
Subtypes 
Adrenal gland 81/419 12/54 1.17 (0.60–2.29) 0.647 79/408 14/65 1.13 (0.60–2.12) 0.703 
Retroperitoneal 134/419 32/54 1.85 (1.15–2.99) 0.012 132/408 34/65 1.62 (1.02–2.56) 0.040 
Mediastinum 99/419 21/54 1.66 (0.96–2.88) 0.072 93/408 27/65 1.84 (1.11–3.05) 0.018 
Others 16/419 2/54 0.96 (0.21–4.30) 0.957 16/408 2/65 0.78 (0.18–3.48) 0.744 
Clinical stages 
I + II+4s 147/419 26/54 1.36 (0.82–2.26) 0.230 145/408 28/65 1.20 (0.74–1.94) 0.467 
III + IV 135/419 27/54 1.60 (0.97–2.65) 0.068 133/408 29/65 1.40 (0.87–2.27) 0.169 

AOR, adjusted odds ratio; CI, confidence interval. 
Values were in bold if the P-values less than 0.05 or the 95 % CIs excluding 1.00. 

a Adjusted for age and gender, omitting the corresponding stratify factor. 
b Risk genotypes were carriers with rs2291617 TT, rs10877013 CC and rs10877012 GG genotypes. 
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Table 3 
Stratification analysis for the association between WDR4 gene polymorphisms and neuroblastoma susceptibility.  

Variables rs2156316 (cases/controls) AOR (95 % CI)a Pa rs6586250 (cases/controls) AOR (95 % CI)a Pa rs15736 (cases/controls) AOR (95 % CI)a Pa  

CC CG/GG   CC CT/TT   GG GA/AA   

Age, month 
≤18 70/62 69/77 0.80 (0.50–1.28) 0.341 122/112 17/27 0.57 (0.30–1.11) 0.098 122/110 17/29 0.52 (0.27–1.01) 0.053 
>18 132/141 130/193 0.72 (0.52–0.996) 0.047 221/256 41/78 0.61 (0.40–0.93) 0.020 220/257 42/77 0.64 (0.42–0.97) 0.034 
Gender 
Females 97/92 93/133 0.66 (0.45–0.98) 0.038 167/181 23/44 0.57 (0.33–0.98) 0.042 167/179 23/46 0.54 (0.31–0.92) 0.024 
Males 105/111 106/137 0.82 (0.57–1.18) 0.285 176/187 35/61 0.61 (0.38–0.97) 0.037 175/188 36/60 0.65 (0.41–1.02) 0.063 
Sites of origin 
Adrenal gland 54/203 39/270 0.55 (0.35–0.86) 0.009 86/368 7/105 0.28 (0.13–0.63) 0.002 84/367 9/106 0.37 (0.18–0.76) 0.007 
Retroperitoneal 80/203 86/270 0.81 (0.57–1.15) 0.236 139/368 27/105 0.68 (0.43–1.09) 0.107 139/367 27/106 0.67 (0.42–1.07) 0.096 
Mediastinum 57/203 63/270 0.83 (0.56–1.24) 0.369 99/368 21/105 0.74 (0.44–1.25) 0.257 101/367 19/106 0.65 (0.38–1.11) 0.115 
Others 8/203 10/270 0.93 (0.36–2.39) 0.874 15/368 3/105 0.70 (0.20–2.48) 0.583 14/367 4/106 0.99 (0.32–3.06) 0.981 
Clinical stages 
I + II+4s 83/203 90/270 0.83 (0.58–1.17) 0.284 146/368 27/105 0.66 (0.41–1.05) 0.080 145/367 28/106 0.68 (0.43–1.08) 0.101 
III + IV 89/203 73/270 0.62 (0.44–0.89) 0.010 142/368 20/105 0.49 (0.29–0.82) 0.007 141/367 21/106 0.51 (0.31–0.85) 0.010 

AOR, adjusted odds ratio; CI, confidence interval. 
Values were in bold if the P-values less than 0.05 or the 95 % CIs excluding 1.00. 

a Adjusted for age and gender, omitting the correspondence factor. 
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rs6586250 C > T, rs15736 G > A) in the WDR4 gene were demonstrated to be associated with reduced neuroblastoma risk in the 
dominant model. Detailedly, carriers with rs2156316 CG/GG genotype have a lower neuroblastoma risk than those with rs2156316 CC 
genotype (AOR = 0.74, 95 % CI = 0.57–0.97, P = 0.028); rs6586250 CT/TT genotype decreased neuroblastoma risk significantly when 
compared with CC genotype (AOR = 0.59, 95 % CI = 0.42–0.84, P = 0.004); rs15736 GA/AA genotype also reduced neuroblastoma 
risk significantly compared to GG genotype (AOR = 0.60, 95 % CI = 0.42–0.85, P = 0.004). No significant association with neuro-
blastoma risk was found for the rest SNPs (P > 0.05). 

3.2. SNPs in METTL1/WDR4 genes are associated with neuroblastoma risk among different subgroups 

To evaluate the risk or protective effects of associated SNPs on neuroblastoma susceptibility among different subgroups, we per-
formed the stratification analysis according to age, gender, sites of origin, and clinical stages. We found that the effect of rs2291617 TT 
genotype on neuroblastoma risk was more evident in the following subgroup: age ≤18 months (AOR = 2.70, 95 % CI = 1.31–5.58, P =
0.007) and those with a tumor of retroperitoneal origin (AOR = 1.85, 95 % CI = 1.15–2.99, P = 0.012). Moreover, subjects with 1–3 
risk genotypes have a higher neuroblastoma risk than those without risk genotype among the following subgroups: age ≤18 months 
(AOR = 2.60, 95 % CI = 1.31–5.16, P = 0.006), those with a tumor of retroperitoneal (AOR = 1.62, 95 % CI = 1.02–2.56, P = 0.040) 
and mediastinum (AOR = 1.84, 95 % CI = 1.11–3.05, P = 0.018) origin (Table 2). 

As shown in Table 3, WDR4 rs2156316 C > G decreased the neuroblastoma risk among the following subgroups: age >18 months 
(AOR = 0.72, 95 % CI = 0.52–0.996, P = 0.047), females (AOR = 0.66, 95 % CI = 0.45–0.98, P = 0.038), neuroblastoma of adrenal 
origin (AOR = 0.55, 95 % CI = 0.35–0.86, P = 0.009), patients of III + IV stage (AOR = 0.62, 95 % CI = 0.44–0.89, P = 0.010). Similar 
results were observed for rs6586250 C > T and rs15736 G > A in the same subgroups. In addition, rs6586250 C > T was also associated 
with decreased neuroblastoma risk in the male subgroup (AOR = 0.61, 95 % CI = 0.38–0.97, P = 0.037). 

3.3. Associated SNPs influence the expressions of the host and adjacent genes 

To further assess the potential effects of the associated SNPs on the adjacent gene expressions and explore the possible mechanism 
by which these significant SNPs modify neuroblastoma susceptibility, we carried out the eQTL analysis applying the GTEx platform. 
We found that the METTL1 rs2291617 G allele was associated with lower mRNA levels of METTL1 in the thyroid (Fig. 1A) and TSFM in 
the adrenal gland (Fig. 1B). However, it was related to higher mRNA levels of METTL21B in the adrenal gland (Fig. 1C). We also 
observed that the WDR4 mRNA levels in whole blood with the WDR4 rs6586250 T allele were significantly higher than those with the 
WDR4 rs6586250 C allele (Fig. S1A). The WDR4 rs6586250 T allele also increased the CBS mRNA compared to the WDR4 rs6586250 C 
allele in cultured fibroblasts (Fig. S1B). In addition, the WDR4 rs15736 A allele was related to higher WDR4 mRNA in whole blood 
(Fig. 2A) and increased NDUFV3 mRNA in cultured fibroblasts (Fig. 2B) and adrenal gland (Fig. 2C) than the rs15736 G allele. 

4. Discussion 

The genetic predisposition of neuroblastoma still needs further elucidation. However, it is promising that identify genetic sus-
ceptibility locus and combine multiple loci for clinical diagnosis, grading, and prognosis of neuroblastoma. In this study, we 
comprehensively evaluated the associations between 8 functional SNPs in METTL1/WDR4 genes and neuroblastoma susceptibility for 
the first time. And we identified one SNP (rs2291617 G > T) in the METTL1 gene, and three SNPs (rs2156316 C > G, rs6586250 C > T, 

Fig. 1. eQTL analysis for METTL1 rs2291617 G > T. METTL1 rs2291617 G > T genotype-based mRNA expression alteration of METTL1 in thyroid 
(A), TSFM in adrenal gland (B), and METTL21B in adrenal gland (C). 
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rs15736 G > A) in the WDR4 gene are associated with neuroblastoma susceptibility significantly. Our findings may be conducive to 
identifying the high-risk population of neuroblastoma and practicing early intervention, which will be prospective to improve the cure 
rate. 

Neuroblastoma is a multifaceted disorder with a complicated etiology that involves the interaction of environmental and genetic 
factors. Although extensive studies have been conducted, little is known about the genetic etiology of neuroblastoma. However, 
accumulating evidence showed that genetic factors play a crucial role in the occurrence of neuroblastoma. Plenty of studies revealed 
that SNPs in some tumor-related genes are associated with increased or decreased neuroblastoma risk significantly, such as DNA repair 
[36] and N6-methyladenosine (m6A) [37] mediated genes. SNPs may modify the expression or activity of these genes, thus affecting 
the capability of DNA repair and m6A, which may cause disturbances in cell functions and downstream genes. For example, Vodicka 
et al. demonstrated that SNP rs1052133 G > C modified the DNA repair capacity of hOGG1, rs1052133 CC genotype contributed to 
2-fold higher DNA damage repair capacity of hOGG1 than rs1052133 GG genotype [38]. 

M7G is one of the most important epigenetic modifications of RNAs, which determines the fate of various RNAs, including the 
regulation of tRNA stability [39], enhancement of mRNA translation efficiency [40], promotion of mi-RNA maturation [27], There-
fore, m7G modifications have the potential to regulate the target RNAs and downstream signal pathways. Numerous studies have 
revealed that m7G modification is involved in the cancer-related genes and signal pathways, influencing cancer progress. For example, 
METTL1 knockdown augments the phosphorylation of eIF2α, which inhibits mRNA translation of downstream genes involved in the 
cell cycle and EGFR signal pathways, therefore causing the suppression of intrahepatic cholangiocarcinoma [41]. Chen et al. 
demonstrated that aberrant METTL1/WDR4-mediated tRNA m7G modification led to the abnormal translation of PIK3CA, PTEN, and 
EGFR, which drives the carcinogenesis and progression of head and neck squamous cell carcinoma by activating the PI3K/AKT/mTOR 
pathway [42]. Chen et al. also found that in nasopharyngeal carcinoma, m7G modification was involved in tumorigenesis and che-
moresistance through the WNT/β-catenin signal pathway [43]. SNP is the most common genetic variation in humans, which has 
specific effects on gene expression, structure, and activity depending on its position in the gene. Similarly, SNP in METTL1 and WDR4 
may cause the abnormity in gene expression, structure, and activity of the host genes, eventually leading to aberrant m7G modification 
and oncogenesis. However, few studies explored the associations between SNPs in the METTL1/WDR4 genes and disease, and only 
several studies found that the SNPs in METTL1/WDR4 genes were disease-causing. One SNP rs703842 A > C located in 3ʹ UTR of 
METTL1 gene was identified as associated with multiple sclerosis susceptibility by a GWAS performed in 2009 [44]. Furthermore, one 
more recent study conducted by Wang et al.showed that WDR4 rs465663 T > C was related to male fertility. Further GTEx analysis 
showed that the rs465663 TT/TC genotype was associated with a lower expression level of WDR4 than the CC genotype [45]. In 
addition, Our research group recently evaluated the association between the SNPs in METTL1/WDR4 genes and hepatoblastoma 
susceptibility. Although no significant association was found between the single SNP and hepatoblastoma risk, the combined effect of 
several risk genotypes was shown to confer significantly increased hepatoblastoma risk [46,47]. 

However, no study has reported the correlation between SNP in m7G-meditated genes and neuroblastoma susceptibility. In this 
present study, we comprehensively evaluated the effects of SNPs in METTL1/WDR4 genes on neuroblastoma risk. Our results revealed 
that METTL1 rs2291617 G > T was associated with an increased risk of neuroblastoma and WDR4 rs2156316 C > G, rs6586250 C > T, 
and rs15736 G > A related to a decreased risk of neuroblastoma. Stratification analysis showed that the risk effect of rs2291617 G > T 
and the protective effects of rs2156316 C > G, rs6586250 C > T, and rs15736 G > A were strengthened in the above different sub-
groups. Thus, the effects of SNP of m7G-meditated METTL1/WDR4 genes on neuroblastoma risk may be context-dependent on age, 
gender, sites of origin, and clinical stages. 

To further reveal the potential effects of the associated SNPs on gene expression and explore the possible mechanisms by which the 
associated SNPs affect the neuroblastoma risk, we conducted the eQTL analysis. The results showed that the METTL1 rs2291617 T 
allele was related to a higher mRNA level of METTL1, TSFM, and METTL21B genes when compared to the rs2291617 G allele. Maybe 

Fig. 2. eQTL analysis for WDR4 rs15736 G > A. WDR4 rs15736 G > A genotype-based mRNA expression alteration of WDR4 in whole blood(A), 
NDUFV3 in cells-cultured fibroblasts (B) and in adrenal gland (C). 
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the rs2291617 TT genotype increased neuroblastoma risk that was due to this genotype-base up-regulated of METTL1. Previous studies 
also indicated the oncogenicity of METTL1 and increased expression levels of METTL1 in numerous cancers. However, the associations 
of TSFM and METTL21B with neuroblastoma risk and the mechanism that rs2291617 G > T polymorphism affects the mRNA 
expression of TSFM and METTL21B remain to be further explored. However, WDR4 rs6586250 T and rs15736 A alleles were associated 
with higher mRNA of WDR4, although these two alleles were shown to be related to reduced risk of neuroblastoma. Numerous studies 
have shown the tumorigenicity and increased expression of WDR4 in various cancers, which seems to contradict our result. Maybe the 
role of WDR4 in oncogenesis differs based on the context. In addition, WDR4 rs6586250 C > T also related to the expressions of CBS, 
and rs15736 G > An also affected the expressions of NDUFV3. These SNP-base differential expressions of neighboring genes may 
contribute to rs6586250 C > T and rs15736 G > A genotype-base neuroblastoma risk. However, the results need further verification by 
well-designed studies and elucidate the potential mechanisms. Here, we offer new insights into how SNPs in m7G-mediated genes 
modify neuroblastoma susceptibility. 

Several accompanying shortcomings in this case-control study should be mentioned. First, the study subjects were collected from a 
single center, with poor representativeness, and the sample size was comparatively small, especially for stratification analysis. Second, 
other potential functional SNPs in the METTL1/WDR4 genes should be evaluated. Third, in addition to genetic analysis, environmental 
factors should be included because of neuroblastoma’s complicated etiology, which involves complex interactions between multiple 
genetic and environmental factors. Fourth, functional experiments should be designed to reveal the underlying mechanism that SNPs 
in METTL1/WDR4 genes modify the neuroblastoma susceptibility. 

5. Conclusion 

In summary, as the first case-control study to comprehensively assess the associations between SNPs in m7G-mediated METTL1/ 
WDR4 genes and neuroblastoma susceptibility, we identified 4 SNPs in METTL1/WDR4 genes that modified the neuroblastoma sus-
ceptibility significantly in eastern Chinese children. However, well-designed research with more samples collected from multiple 
centers should be performed to verify the conclusion. Moreover, a series of mechanism studies should be performed to elucidate the 
potential mechanisms by which METTL1/WDR4 genetic variants modify neuroblastoma susceptibility. 
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