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Abstract

Support vector machine (SVM)-based multivariate pattern analysis (MVPA) has deliv-

ered promising performance in decoding specific task states based on functional mag-

netic resonance imaging (fMRI) of the human brain. Conventionally, the SVM-MVPA

requires careful feature selection/extraction according to expert knowledge. In this

study, we propose a deep neural network (DNN) for directly decoding multiple brain

task states from fMRI signals of the brain without any burden for feature handcrafts.

We trained and tested the DNN classifier using task fMRI data from the Human

Connectome Project's S1200 dataset (N = 1,034). In tests to verify its performance,

the proposed classification method identified seven tasks with an average accuracy

of 93.7%. We also showed the general applicability of the DNN for transfer learning

to small datasets (N = 43), a situation encountered in typical neuroscience research.

The proposed method achieved an average accuracy of 89.0 and 94.7% on a working

memory task and a motor classification task, respectively, higher than the accuracy of

69.2 and 68.6% obtained by the SVM-MVPA. A network visualization analysis

showed that the DNN automatically detected features from areas of the brain related

to each task. Without incurring the burden of handcrafting the features, the proposed

deep decoding method can classify brain task states highly accurately, and is a power-

ful tool for fMRI researchers.
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1 | INTRODUCTION

For years, researchers have been attempting to decode and identify

functions of the human brain based on functional brain imaging data

(Dehaene et al., 1998; Haynes & Rees, 2006; Jang, Plis, Calhoun, & Lee,

2017; Poldrack, Halchenko, & Hanson, 2009; Rubin et al., 2017). The

most popular among these brain-decoding methods is the support vec-

tor machine (SVM)-based multi-voxel pattern analysis (MVPA), a super-

vised technology that incorporates information from multiple variables

at the same time (Kim & Oertzen, 2018; Kriegeskorte & Bandettini,

2007; Kriegeskorte, Goebel, & Bandettini, 2006; Norman, Polyn,

Detre, & Haxby, 2006). Despite its popularity, the SVM struggles to

perform well on high-dimensional raw data, and requires the expert use

of design techniques for feature selection/extraction (LeCun, Bengio, &

Hinton, 2015; Vieira, Pinaya, & Mechelli, 2017). Thus, we explore in this

study an open-ended brain decoder that uses whole-brain neuroimag-

ing data on humans.

In recent years, the deep neural network (DNN), a series of

model-free machine learning methods, has performed well in

abstracting representations of high-dimensional data (LeCun et al.,

2015). The hierarchical structure of a DNN with a nonlinear activation

function enables the learning of a more complex output function than

those that can be learned using traditional machine learning methods,

and one that can be trained end to end. DNNs have already yielded

remarkable results in medical image analyses (Cichy & Kaiser, 2019;

Shen, Wu, & Suk, 2017; Vieira et al., 2017). Considering these charac-

teristics, a DNN classifier may be suited for classifying brain states

directly from a massive whole-brain fMRI time series without requir-

ing feature selection.

Deep learning methods are effective if massive amounts of data

are available for training. However, under controlled conditions, most

typical neuroimaging studies have collected data from only tens to

hundreds of subjects, with the purpose of identifying minor differ-

ences between different states (Horikawa & Kamitani, 2017) or

groups thereof (Vieira et al., 2017). An applicable brain decoder is sup-

posed to be able to identify these differences even with a limited

amount of data. Transfer learning is widely used for training DNNs

with limited medical data (Sharif Razavian, Azizpour, Sullivan, & Carls-

son, 2014). It takes advantage of similar data within big datasets

(Ciompi et al., 2015; Kermany et al., 2018; Wen, Shi, Chen, & Liu,

2018). Recent large fMRI projects, such as the Human Connectome

Project (HCP; Van Essen, et al., 2013) and BioBank (Miller et al.,

2016), allow us to access massive amounts of fMRI data. It is, there-

fore, now possible to directly train a DNN decoder by means of big

fMRI data and generalize the DNN decoder for common fMRI studies.

In this study, we propose a DNN classifier that effectively

decodes and maps an individual's ongoing brain task state by reading

4D fMRI signals related to the task. We illustrate the generalizability

of this DNN for typical neuroimaging studies by testing the decoder

on the classification of task sub-types.

2 | METHODS

2.1 | HCP datasets

The HCP S1200 minimally preprocessed 3T data release, which con-

tains imaging and behavioral data from a large population of young

healthy adults (Van Essen, et al., 2013), was used in this study. We

employed data of 1,034 participants of the HCP who had performed

seven tasks: emotion, gambling, language, motor, relational, social, and

working memory (WM). Further details of the recruitment process,

imaging data acquisition, behavior collection, and MRI preprocessing

can be found in previous papers (Barch, et al., 2013; Van Essen, et al.,

2012; Van Essen, et al., 2013).

2.2 | Preparation of fMRI time series for deep
learning

We analyzed the HCP volume-based preprocessed fMRI data, which

had already been normalized to the Montreal Neurological Institute's

(MNI) 152 space. Most of the seven tasks were constituted by control

conditions (e.g., 0-back places in the WM task and shape stimuli in the

emotion task) and task conditions (e.g., 2-back in the WM task and

fear stimuli in the emotion task). In each task, only one condition was

selected for the next step. For tasks (emotion, language, gambling,

social, and relational tasks) with only two conditions, the condition

that showed a greater association with the task had priority over the

other. WM and motor tasks contained more than one task condition,

and we randomly chose one (2-back body for WM and right hand for

motor) from the list (Table 1).

For each task, an input sample was a continuous BOLD series that

covered the entire block and 8 s past the block, including the post-

signal of the hemodynamic response function (HRF). Furthermore,

each BOLD volume was cropped from 91 × 109 × 91 to 75 × 93 × 81

to exclude the area that was not part of the brain. Thus, the input data

varied from 27 × 75 × 93 × 81 to 50 × 75 × 93 × 81 (time-

× x × y × z, TR = 0.72 s). A total of 34,938 fMRI 4D data items were

obtained across all tasks and subjects.
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2.3 | The DNN

Figure 1 shows a flow diagram of our proposed network that consists

of five convolutional layers and two fully connected layers. In this

experiment, 27 × 75 × 93 × 81 data were generated via the afore-

mentioned preprocessing and data augmentation steps. In the first

layer, we used 1 × 1 × 1 convolutional filters, which have been widely

used in recent structural designs of convolutional neural networks

(CNNs) because these filters increase nonlinearity without changing

the receptive fields of the convolutional layer (Hu, Shen, & Sun, 2017;

Iandola et al., 2016; Simonyan & Zisserman, 2014). These filters can

generate temporal descriptors for each voxel of the volume of the

fMRI, and their weights can be easily learnt by DNNs during training.

Therefore, after adopting this type of filter, the time dimension of the

data was reduced from 27 to 3. Following this, a convolutional layer

and four residual blocks were stacked to extract the high-level fea-

tures. Our residual block is formed by replacing the 2D convolutional

layer in the original residual block (He, Zhang, Ren, & Sun, 2016) with

a 3D convolutional layer (Maturana & Scherer, 2015). The output

channels of the four residual blocks are in multiples of two—32, 64, 64,

and 128, respectively. We adopted a stride of two in the second con-

volutional layer and the last three residual blocks. These layers were

designed in such a way that their dimensions could be quickly reduced

to balance the consumption of GPU memory. For ease of network

visualization analysis, we used a full convolution in the last con-

volutional layer instead of the pooling operation in CNNs used in

common. Two fully connected layers were used after a stack of con-

volutional layers; the first had 64 channels and the second performed

seven-way classification (one for each class). In our models, the recti-

fied linear unit (ReLU) function (Krizhevsky, Sutskever, & Hinton,

2012) and batch normalization (BN) layer (Ioffe & Szegedy, 2015)

were applied after each convolutional layer, whereas the softmax

function was employed in the last fully connected layer.

Big data played an important role in training the DNNs. Despite

the remarkable success of DNNs, their application to a limited

amount of data is still a problem. Data augmentation is an efficient

way to generate more samples, and has been widely used in appli-

cations (Ciompi et al., 2015; Donahue et al., 2014; Wachinger,

Reuter, & Klein, 2018). The main purpose of data augmentation is

to increase variations in the data where this can prevent overfitting

and improve the invariance of the neural network. Contrary to tradi-

tional images, the input images in this experiment were already

aligned with the standard MNI152 template; therefore, performing

data augmentation in the spatial domain was considered redundant.

Considering the varied durations of the input data, we applied data

augmentation in the temporal domain to improve the generalizability

of the neural networks in this situation. A fragment of k continuous

TRs (k = 27 in our experiments) was randomly split from each input

data item in every epoch of the training stage (Figure 2a). To avoid

fluctuations in the reported accuracy, only the fragment consisting

of the first k TRs of each data was used in validation and testing

stages.

TABLE 1 Details of the selected BOLD time series for each task

Task Candidate conditions Selected condition

Duration

of the block (s)

Emotion Fear, shape Fear 18

Gambling Reward, loss Loss 28

Language Story, math Present story 20

Motor Right hand, left hand, right foot, left loot, tongue Right hand 12

Relational Relational, match Relational 16

Social Mental, random Mental 23

Working memory (WM) 2-back places, 0-back places,

2-back body, 0-back body, 2-back tools,

0-back tools, 2-back faces, 0-back faces

2-back places 27.5

Emotion

Gambling

Language

Motor

Relational

Social

WM

27@75x93x81

3@75x93x81 24@38x47x41
32@38x47x41

128@5x6x6

64 64

Fully connected 
layers

R R

1x1x1 kernels

3x3x3 kernels

Residual BlockR

x3
F IGURE 1 The proposed deep neural

network. The network consists of five
convolutional layers and two fully
connected layers. The model takes fMRI
scans as input and provides labeled task
classes as output
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The implementation of our proposed network was based on the

PyTorch framework (https://github.com/pytorch/pytorch). The design

was constructed from scratch but initially utilized weights suggested by

He, Zhang, Ren, and Sun (2015). To guarantee effectiveness, we used

Adam with the standard parameters (β1 = 0.9 and β2 = 0.999) (Kingma &

Ba, 2014). Due to memory constraints on the graphics board, the batch

size was set to 32. The initial learning rate was set to 0.001, and gradually

decayed by a factor of 10 each time the validation loss plateaued after

15 epochs. To avoid overfitting, we used the early stopping approach,

and stopped training when the validation loss reached a minimum.

Our validation strategy employed a fivefold cross-validation across

subjects. Prior to training, the subjects' data were categorized into sub-

sets as follows: training set (70%), validating set (10%), and testing set

(20%; Figure 2a). The sample of training/validation/testing was later

altered for each of fivefolds. Applying the SVM-MVPA to tens of thou-

sands of data items is time consuming. A comparison between the SVM-

MVPA and the proposed method was thus not applied to the entire

dataset, but to the Test–Retest task-fMRI group data in Section 2.4.

2.4 | Transfer learning

An important advantage of deep learning methods, CNNs in particular,

compared with traditional methods, is their reusability, which means

that the trained CNN can be directly reused on similar tasks. We used

a transfer learning strategy for the trained CNN to validate the gen-

eral use characteristics of the proposed model. The workflow of trans-

fer training is largely similar to that of the initial training (Figure 2a),

except that it starts with a model where the first four layers are

trained and the output layer is untrained. We employed the TEST

dataset of the TEST–RETEST task-fMRI group from the HCP (N = 43).

We trained the deep model to classify two WM task sub-states—0bk-

body and 2bk-body. A subject-wise fivefold cross validation was

applied with 60% (100 samples of 25 subjects) used for training, 20%

(36 samples of nine subjects) for validation, and 20% (36 samples of

nine subjects) for testing (172 samples in total are comparable in size

to commonly used fMRI research datasets). For further validation, we

trained the deep model to classify four motor task sub-states—left

foot, left hand, right foot, and tongue movement—using fivefold cross

validation with 60% (400 samples of 25 subjects) used for training,

20% (144 samples of nine subjects) for validation, and 20% (144 sam-

ples of nine subjects) for testing (688 samples altogether). As in the

previous scheme, an input sample was a continuous BOLD series that

covered the entire block and 8 s past the block, including the post-

signal of the HRF.

For a comparison with the proposed deep learning method, the

SVM-MVPA method was also used to analyze the TEST–RETEST

dataset using The Decoding Toolbox (Hebart, Gorgen, & Haynes,

Task1_1 Task1_2 TaskX_X

…
…

Subj0001

…

…

Subj0002

… 

SubjXXXX

SubjXXXX

… 

… 

…Subj0002

Split and Labelled fMRI Data Data Augment

Validation
loss reach
minima?

Untrained Model

Training

Trained Model

Results

Trained ModelOne Input Data
Emotion

Gambling

Language

Motor

Relational

Social

WMGuided

Backpropagation

Normalized

Absolute Maximum
with Sign

Map to Fsaverage
Surface

(a) Workflow of the model training

(b) Workflow of the network visualization

Output Label

A

Train

Validation

Test

Task1_1 Task1_2 TaskX_X

…
…

Subj0001

…

…

Subj0002

… 

SubjXXXX

SubjXXXX

… 

… 

…Subj0002

Train

Validation

Test

F IGURE 2 Workflows of model training and network visualization. (a) The proposed model automatically learns features of the labeled fMRI
time series and stops training when the loss of validation reaches a minimum. Thus, no feature handcrafting is required for model training. The
workflow of transfer learning is similar, except that the untrained model is replaced by the trained model. (b) The classification of each data item is
back propagated to the network layers to obtain a visualization of parts important to the classification. The visualized data, which have the same size
as the input data, are then reduced in the time dimension and mapped into the fsaverage surface. A motor task data is chosen for the illustration
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2014) in MATLAB (MathWorks, Natick, MA). The run-wise beta

images of each subject were obtained through a GLM with separate

regressors embedded in the HCP standard FEAT scripts for each task

condition. The resulting beta images were then taken as inputs to the

SVM-MVPA. A searchlight analysis was also applied: A sphere with a

radius of three voxels “searchlight” moved through each brain using a

multi-class classification SVM function (fitcecoc, the Statistics and

Machine Learning Toolbox of MATLAB) with a linear kernel. The F1

score (see Section “2.6 Assessments”) for each condition was calcu-

lated as the resulting map. Fivefold cross-validation was also

employed. The classifier was trained on data from four-fifths of the

subjects and tested on data from the remaining one-fifth.

To evaluate the applicability of the DNN of fMRI studies using

small sample sizes, we trained the deep classifiers on data from the

43 subjects of the HCP TEST scans: N = 1, 2, 4, 8, 17, 25, 34. To avoid

variance in accuracy, all tests were applied to the RETEST data of all

43 subjects in the HCP Test–Retest dataset. The deep learning was

stopped after 120 epochs. Searchlight and whole-brain SVM-MVPA

methods were also used for comparison.

2.5 | Performance evaluation

To assess the performance of the model in classifying different tasks,

some useful parameters were computed. The F1 score was computed

for each task condition as a function of the TP, FP, and FN:

F1 = (2 × TP)/(2 × TP + FP + FN). Here, TP is the true positive, FP is

the false positive, and FN is the false negative for each label. The

receiver operating characteristic (ROC) curve was also calculated for

each label by the one-versus-rest approach, with the parameter sensi-

tivity and specificity denoted by: sensitivity = TP/(TP + FN) and speci-

ficity = TN/(TN + FP), where TN is the true negative equal to the sum

of the TPs of the rest of the labels. Accuracy was defined as the ratio

of the correct predictions to the total number of classifications: accu-

racy = (TP + TN)/(TP + FP + TN + FN).

2.6 | Network visualization analysis

Guided back-propagation (Springenberg, Dosovitskiy, Brox, &

Riedmiller, 2014), a widely used deep network visualization

method, was applied to produce pattern maps of each classifica-

tion and task-weighted representation of the input fMRI 4D time

series. During standard back-propagation, the partial derivative of

a ReLU unit is copied backward if the input to it is positive, and is

otherwise set to zero. In guided-back-propagation, the partial

derivative of a ReLU unit is copied backward if both the input to it

and the partial derivative are positive. Thus, guided back-

propagation maintain paths that have a positive influence on the

class score and outputs data features that the CNN detects rather

than those it does not. As shown in Figure 2b, after feeding data

to the trained networks, 27 × 75 × 93 × 81 prediction gradients

were produced with respect to the input data. Then, the signed

value with an absolute maximum in the time domain for each

voxel was drawn out and built up in a 3D task pattern map, which

was then normalized to its maximum value. Finally, the pattern

map was mapped into the fsaverage surface. In addition, Cohen's

d effect for the normalized pattern maps of the test group was
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F IGURE 3 Results of deep learning classification on the HCP S1200 task fMRI dataset. (a) The average confusion matrix normalized to the
number of labels in the fivefold cross-validation, with the top two confusions caused by gambling vs. relational and relational versus WM. The
mean (±SD) accuracy of classification on the seven tasks was 93.7% (±1.9%) with a chance level of 14.29%. (b) The mean (solid lines) and SD
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the seven tasks. (c) The classification performance (accuracy in %) of the proposed network following various settings of the number of channels
in the first layer (NCh1), which was three in the proposed model. The model failed to converge within 30 epochs when NCh1 = 1
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calculated as the mean of the pattern maps of each task divided

by their SD (Cohen, 1998). Analysis was conducted in AFNI (Cox,

1996), Freesurfer (Fischl, 2012), HCP Connectome Workbench

(https://www.humanconnectome.org/software/connectome-workbench),

and MATLAB (MathWorks, Natick, MA). For a comparison between

the traditional GLM map and the pattern map, we also obtained the

Cohen's effect of contrast of parameter estimate (COPE) from the fMRI

analysis package of the HCP task.

3 | RESULTS

3.1 | The deep model's performance in general
task classification

The training session required approximately 72 hr for the 30 epochs

with an NVIDIA GTX 1080Ti board, and the proposed model success-

fully distinguished seven tasks with an accuracy of 93.7 ± 1.9%

Fear vs. baseline

GLM

(a)

EMOTION

Cohen's D
Fear heatmap

DNN

(h)
Cohen's D

Loss vs. baseline(b)

GAMBLING

Loss heatmap(i)

Present story vs. baseline(c)

LANGUAGE

Present story heatmap(j)

Right hand vs. baseline(d)

MOTOR

Right hand heatmap(k)

Relation vs. baseline(e)

RELATIONAL

Relation heatmap(l)

Mental vs. baseline(f)

SOCIAL

Mental heatmap(m)

2bk places vs. baseline(g)

WM

2bk-places heatmap(n)

F IGURE 4 Cohen's d effect size for the HCP group average (left column) and DNN heatmaps (right column) on the HCP S1200 dataset
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(mean ± SD). An analysis of F1 scores showed that the classifier per-

formed differently across the seven tasks: emotion (94.0 ± 1.6%),

gambling (83.7 ± 4.6%), language (97.6 ± 1.1%), motor (97.3 ± 1.6%),

relational (89.8 ± 3.2%), social (96.4 ± 1.0%), and WM (91.9 ± 2.3%,

mean ± SD). The average confusion matrix showed that the top two

confusions were caused by gambling versus relational and WM versus

relational (Figure 3a). Figure 3b illustrates the ROC curves, according

to which the motor, language, and social task have the largest area

under the curve (AUC), while gambling has the smallest.

Upon validation of the choice of key hyper-parameter—the num-

ber of 1x1x1 kernel channels (NCh1)––the model recorded accuracy

values of 93.2, 91.5, and 92.7% with NCh1 = 3, 9, and 27, respectively

(Figure 3c). With NCh1 = 1, the model could not converge within

30 epochs.

3.2 | Visualization of learnt patterns

To identify the voxels contributing most to each classification, we pro-

duced pattern maps by using guided back-propagation (Springenberg

et al., 2014). Figure 4 shows group statistical maps of the effect size

of Cohen's d for the GLM analysis on the task COPE (Figure 4a–g),

and the Cohen's d on the DNN pattern maps (Figure 4h–n). As shown

in the illustrations, the Cohen's d on the DNN pattern maps was simi-

lar to that on the GLM COPEs for emotion, language, motor, social,

and WM tasks. For example, with the language condition, a large

effect size was aberrant in the bilateral Brodmann 22 area in the GLM

COPEs (Figure 4c) and DNN pattern maps (Figure 4j). In the same

fashion, both maps (Figure 4d,k) revealed similar effects in the

Brodmann 4 and bilateral Brodmann 18 areas following the right-hand

movement condition in the motor task. For further details on annota-

tions, see Table S1.

3.3 | Transfer learning of WM task sub-types on
small datasets

Following fivefold cross-validation, the proposed DNN reached an

average accuracy of 89.0 ± 2.0% (Figure 5a) and an average AUC of

ROC 0.931 ± 0.032 (Figure 5b) in the tests. As shown in Figure 5c,

the accuracy of the DNN was significantly higher than that of SVM-

MVPA whole-brain (t[8] = 9.14, p = .000017; mean ± SD = 55.6
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F IGURE 5 Results of transfer learning for classification of the working memory task (0bk-body vs. 2bk-body). (a) The average confusion

matrix normalized to the number of instances of each label in fivefold cross-validations. This yielded an average accuracy of 89.0 ± 2.0% (mean
± SD) in terms of classifying the two tasks (chance level = 50%). (b) The mean (solid lines) and SD (shadow envelopes) of the ROC curves for each
label in fivefold cross validation. The mean ROC area and SD are labeled in the legend. (c) Accuracy of fivefold cross-validation classification on
the working memory task on a small dataset. The accuracy of the DNN (89% ± 2%) was significantly higher than that of the SVM-MVPA whole-
brain (t[8] = 9.14, p = .000017; mean ± SD = 55.6 ± 7.9%) and SVM-MVPA ROI (t[8] = 7.59, p = .000064; mean ± SD = 69.2 ± 5.4%) method.
(d) The performance of the three methods across different numbers of subjects for training (NSubj). NSubj = 2 was enough for the DNN to learn the
classification, whereas the SVM-MVPA whole-brain and SVM-MVPA ROI methods needed NSubj = 34
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± 7.9%) and SVM-MVPA ROI (t[8] = 7.59, p = .000064; mean

± SD = 69.2 ± 5.4%) through a two sample t test.

We then validated the amount of data needed for learning. The

results showed that NSubj = 2 was enough for the DNN to learn the

classification (accuracy = 67.4%), whereas SVM-MVPA whole-brain

and SVM-MVPA ROI needed NSubj = 34, yielding accuracy

values = 91.9, 78.5, and 57.6%, respectively (Figure 5d).

Finally, we visualized the DNN pattern maps and found that the

Cohen's d reached its highest value in the Brodmann area 38 (fusiform)

and Brodmann area 18/19 (extrastriate visual areas) (Figure 6c,d),

which were similar to the results of the GLM COPEs (Figure 6a,b).

Moreover, the SVM-MVPA searchlight method reported widespread

activity scatters, rather than activity clusters, all over the brain

(Figure 6e,f). Refer to Table S2 for further details on the annotations

of the maps.

3.4 | Transfer learning multiple sub-types of motor
task using small datasets

Following fivefold cross-validation, the proposed DNN reached an

average accuracy of 94.7 ± 1.7% (Figure 7a) and an average AUC of

ROC 0.996 ± 0.005 (Figure 7b). The average confusion matrix showed

that the top confusion was caused by left foot versus right foot

(Figure 7a). Figure 7c shows that the accuracy of the DNN (94.7

± 1.7%) was significantly higher than that of SVM-MVPA whole-brain

(t[8] = 3.59, p = .0071; mean ± SD = 81.6 ± 7.1%) and SVM-MVPA

ROI (t[8] = 8.77, p = .000022; mean ± SD = 68.6 ± 5.7%) through a

two sample t test.

We then validated the amount of data needed for learning. All

three methods reported higher than chance-level accuracy across all

NSubj. NSubj = 8 was enough for the DNN (80.3%) to outperform the

ordinary SVM-MVPA whole-brain (41.7%) and SVM-MVPA ROI

(56.3%) methods in terms of accuracy (Figure 7d).

Finally, we visualized the DNN pattern maps and found that

Cohen's d reached the highest values in the corresponding motor

topological areas, which was similar to the results of the GLM COPEs

and the SVM-MVPA searchlight method (Figure 8). Refer to Table S2

for further details on the annotations of the maps.

4 | DISCUSSION

4.1 | Summary

In this study, we proposed a general deep learning framework for

decoding and mapping ongoing brain task states from whole-brain

fMRI signals of humans. After training and testing it using data from

0bk-body vs. baseline

GLM

(a)
Cohen's D

0bk-body heatmap

DNN

(c)
Cohen's D

0bk-body F1 Score

SVM-MVPA

(e)
F1 Score (%)

LH           RH         

2bk-body vs. baseline(b)

LH           RH         

2bk-body heatmap(d)

LH           RH         

2bk-body F1 Score(f)

F IGURE 6 Visualization of brain task-related maps during the working memory task via GLM, DNN, and SVM-MVPA. (a, b) Cohen's d for the
GLM beta maps. (c, d) Cohen's d for the DNN pattern maps, which showed similar localizations of the fusiform and lateral occipital areas, and
dissimilar localizations of lateral and medial orbitofrontal areas, compared with those of the GLM beta maps. (e, f) The F1 score of the SVM-
MVPA searchlight method. It shows that the searchlight failed to localize any functional cluster related to the task but reported widespread
scatters all over the brain
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the HCP, the proposed DNN classifier achieved an average accuracy

of 93.7% and an average area under the ROC curve of 0.996 on a

seven-class classification task. The DNN was able to transfer-learn a

new classification task using small fMRI datasets and yielded higher

accuracy than SVM-MVPA methods. Moreover, a network visualiza-

tion analysis showed that the DNN automatically detected and

located features in areas of the brain that have been reported to have

significant effects in the traditional GLM method.

4.2 | Deep learning as a research tool

Deep learning is capable of automatic data-driven feature learning

and has deeper models than earlier methods. Analogous to the brain's

sensory network, DNNs perform complex computations through deep

stacks of simple intra-layer neural circuits. Thus, researchers have

widely used DNN models to understand the human brain network,

especially sensory brain networks (Eickenberg, Gramfort, Varoquaux, &

Thirion, 2017; Guclu & van Gerven, 2015; Horikawa & Kamitani,

2017; Rajalingham et al., 2018; Yamins & DiCarlo, 2016). At the same

time, DNNs are capable of discovering complex structures within

high-dimensional input data, and can transform these structures into

abstract levels (LeCun et al., 2015). These important features allow

researchers to efficiently model complex systems without the burden

of model/prior knowledge selection, especially in cases where too

many features exist, as when analyzing medical images (Shen et al.,

2017). Thus, DNNs are widely used by researchers for medical image

analysis, such as brain image segmentation (Havaei et al., 2017;

Wachinger et al., 2018; Zhang et al., 2015), neurology and psychiatric

diagnostics (Hosseini-Asl, Keynton, & El-Baz, 2016; Meszlenyi, Buza, &

Vidnyanszky, 2017; Plis et al., 2014; Vieira et al., 2017), brain state

decoding (Jang et al., 2017), and brain computer interfaces

(Schirrmeister et al., 2017).

A variety of deep methods have been applied to fMRI data, such

as the autoencoder (Kim, Calhoun, Shim, & Lee, 2016), deep belief

network (DBN; Jang et al., 2017; Plis et al., 2014), long short-term

memory (LSTM) recurrent neural network (RNN; Li & Fan, 2019), and

2D CNN (Meszlenyi et al., 2017). Although the autoencoder is known

to be efficient, especially when the dataset is small, it over-

emphasizes some relationships while neglecting others, that is, it loses

information. DBNs have been criticized for a number of shortcomings,

such as the computational cost associated with training and loss of
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F IGURE 7 Results of transfer learning of classification on motor tasks (left foot, left hand, right foot, and tongue). (a) The average confusion
matrices normalized to the number of instances of each label in the fivefold cross-validation, with the top confusion caused by left foot vs. right
foot. It reported an average accuracy of 94.7 ± 1.7% (mean ± SD) on the four tasks (chance level = 25%). (b) The mean (solid lines) and SD
(shadow envelopes) of ROC curves for each label in the fivefold cross validation. The mean ROC area and SD are labeled in the legend.
(c) Accuracy of fivefold cross-validation classification on the motor task on a small dataset. The accuracy of the DNN (94.7 ± 1.7%) was
significantly higher than that of SVM-MVPA whole-brain (t[8] = 3.59, p = .0071; mean ± SD = 81.6 ± 7.1%) and SVM-MVPA ROI (t[8] = 8.77,
p = .000022; mean ± SD = 68.6 ± 5.7%) methods. (d) The performance of the three methods across different numbers of subjects for training
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spatial information in learning, which may significantly affect their

performance and interpretability in medical image analysis

(Voulodimos, Doulamis, Doulamis, & Protopapadakis, 2018). The RNN

with LSTM, a deep learning method for sequence modeling, ignores

spatial information within the input data (Hochreiter & Schmidhuber,

1997). The 2D CNN cannot encode the 3D nature of fMRI data. Thus,

both Li and Fan (2019) and Meszlenyi et al. (2017) methods require

functional network-based features as inputs. Our study represents a
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Left foot heatmap
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(e)
Cohen's D

Left foot F1 Score
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F IGURE 8 Visualization of brain task-related maps during motor tasks via GLM, DNN, and SVM-MVPA. (a–d) Cohen's d effect sizes for the
GLM beta maps. (e–h) Cohen's d effect sizes for DNN pattern maps. (i–l) The F1 score of the SVM-MVPA searchlight method. Collectively, the
three methods identified similar brain activity maps
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significant departure from these studies, however, by directly

targeting fMRI volume through the 3D CNN. The proposed 3D CNN,

which makes use of the spatial structure of the input data, is efficient

in capturing spatial relationships of the brain activity. As end-to-end

learning methods, CNNs have the unique capability of learning fea-

tures automatically and avoids the design of a feature extractor. On

the contrary, CNNs heavily rely on manually labeled training data, but

this is not a problem for neuroimaging research because almost all

neuroimaging data are carefully labeled with diagnostics, task states,

and questionnaires. Moreover, because the CNN requires scant hand-

crafting of features by experts, it is easily usable by data scientists on

neuroimaging data.

We used an NVIDIA GTX 1080Ti GPU in our experiments. The

initial training took a long time (72 hr for 30 epochs) while transfer

learning took much less time (9 hr for 120 epochs on the two-class

classification task, and 21 hr for 120 epochs in the four-class classifi-

cation task). The proposed CNN was composed of three convolutional

layers and two fully connected layers with 3,981,852 parameters.

Given these layers and their hyperparameters, we could make count-

less possible combinations of network architectures. We evaluated

the impact of the number of 1 × 1 × 1 channels (Figure 3c), and found

that three channels provided enough information to distinguish

between task states. The proposed model was implemented on the

PyTorch library: a free and open-source software and among the most

popular deep learning platforms. Researchers interested in reusing the

proposed model on other platforms can refer to the Open Neural Net-

work Exchange created by Facebook and Microsoft.

4.3 | Visualization of learnt patterns

The proposed method also offers researchers the opportunity to inves-

tigate decisions of the neural network. A challenge of applying deep

models to neuroimaging research is the black-box characteristic of this

approach: No one knows exactly what the deep network is doing. In

recent years, a method for tracing consecutive layers of weights back

to the original image inputs has been proposed, and has achieved good

performance in natural image recognition (Springenberg et al., 2014).

Researchers have employed various methods for the analysis of the

processes of DNNs (Bach et al., 2015; Yamins & DiCarlo, 2016). Guclu

and van Gerven (2015) employed a DNN model to predict the

responses of each voxel and found a gradient in the feature complexity

aligning with the ventral pathway. Through linear predictive models,

Eickenberg et al. (2017) generalized human visual cortical activity maps

elicited by visual stimulation. Jang et al. (2017) proposed a ROI-wise

task-specific activity map by extracting the weights of the nodes in the

output layer of a deep network.

We employed guided back-propagation, a widely used network

visualization method, to visualize features of the data detected by the

CNN for the classification of each entered data item. The visualized

voxels with values other than zero comprised features important for

classification. There is a criticism where good decoding performance is

not a guarantee that patterns of brain activity are learned (Ritchie,

Kaplan, & Klein, 2019), for a decoder may learn from nuisance or latent

variables (Riley, 2019)—for example, the different visual responses to

different stimulus images or patterns of response key-pressing across

the seven tasks. The guided back-propagation allows scientists to intui-

tively locate and investigate features the DNN detected in every

entered fMRI data item. In this work, the similarity between the pattern

maps and the GLM maps (Figures 4, 6, and 8) suggest that the proposed

DNN decoded states from task-related brain activity patterns, not from

nuisance variables. Furthermore, correlated with the β maps of the

GLM, the pattern maps showed potential for localizing state-related

areas of the brain. However, the statistical property of guided back-

propagation remains unclear, and we should be cautious until further

investigations on its reliability and statistical properties.

4.4 | Transfer learning helps model construction
with small samples

Transfer learning is a machine learning method that learns from net-

works trained on a related but different task from the given one. By

taking advantage of transferred knowledge, it eliminates the need for

big training data (Rawat & Wang, 2017). Hosseini-Asl et al. (2018)

pre-trained a 3D convolutional autoencoder to capture anatomical

shape variations in brain MRI scans and fine-tuned it for AD classifica-

tion on images from 210 subjects. Gao et al. (2019) pre-trained a 2D-

CNN for classification on ImageNet, a database containing >14 million

natural images, and fine-tuned it to decode 2D fMRI slices. The pro-

posed method transfer-learns in a more direct way—transferring

knowledge learnt from a big fMRI dataset to limited fMRI datasets.

We believe that the proposed DNN can transfer-learn a related but

different decoding task using fMRI data from as few as four subjects

(Figure 5d). Although our deep learning framework was trained and

validated using the HCP S1200 dataset, the consistent internal prop-

erties of human hemodynamic responses make fMRI data reasonably

consistent across scanners and sites. Nowadays big datasets, such as

BioBank, HCP, and OpenfMRI, provide comprehensive neuroimaging

scans across a wide range of ages and diseases, and provide the

opportunity for pretraining on big data and transfer learning on small

fMRI datasets.

4.5 | Transfer learning to the WM task

We evaluated the generalizability of our deep learning framework in

transfer learning to WM data of 43 subjects. WM refers to a brain

function for the temporary storage and manipulation of information

for cognitive processing (Baddeley, 1992). We chose the WM because

researches have shown that it is not processed in a single brain site,

but stored and processed in widely distributed brain regions

(Christophel, Klink, Spitzer, Roelfsema, & Haynes, 2017; Mencarelli

et al., 2019), ranging from the sensory (Pasternak, Lui, & Spinelli,

2015; Sreenivasan, Curtis, & D'Esposito, 2014) to prefrontal

(Durstewitz, Seamans, & Sejnowski, 2000; Riley & Constantinidis,
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2015) and parietal (Xu & Jeong, 2016) cortices. This distributed nature

of the WM makes it impossible to decode from a single ROI, as shown

in this work, and poses a major obstacle to ROI selection in the

MVPA. We proposed a machine-learning framework that automati-

cally abstracted the activity patterns of the brain, affording a powerful

tool to decode comprehensive brain functions. Moreover, by using

guided back-propagation, we showed that the proposed model

detected features from areas of the brain that have been reported to

be related to the WM function: BA 32 (anterior cingulate cortex,

Owen, McMillan, Laird, and Bullmore (2005)), BA 38 (fusiform, Down-

ing, Jiang, Shuman, and Kanwisher (2001); Kanwisher, McDermott,

and Chun (1997)), and BA 18/19 (extrastriate visual cortex, Grill-

Spector, Kourtzi, and Kanwisher (2001)). Its performance in classifying

two tasks provided more evidence that the model learnt from task-

related brain activity, rather than nuisance variables, because the stim-

uli were consistent, with merely the task altered, between 0-back and

2-back.

4.6 | Transfer learning to the motor task

We evaluated the generalizability of our deep learning framework in

transferring learning to multi-class motor data of 43 subjects. Motor-

related information was encoded in the primary motor cortex,

premotor cortex, and supplementary motor area around the central

sulcus. The topological nature of the motor area makes it the first cor-

tex to be decoded in the human brain (Dehaene et al., 1998). In our

experiment, the SVM-MVPA was good at single-label classification

(high F1 scores for each task in Figure 8) but delivered poor perfor-

mance at multi-class classification (low accuracy in Figure 7d). The

proposed method showed its potential in multi-class classification

over the SVM-MVPA method. Cognitive neuroscience has attended

to particular brain functions, but researchers are now calling for

models that generalize beyond specific tasks (Varoquaux & Poldrack,

2019; Yarkoni & Westfall, 2017). Brain systems are often engaged in

a variety of brain functions (Varoquaux et al., 2018), and predictive

investigations of general tasks can ultimately lead to a greater under-

standing of the human brain. The proposed method provides

researchers with the choice of decoding and interpreting brain func-

tions in an integrative way.

4.7 | Future work

Although we illustrated the deep model's ability to read the fMRI time

series, researchers can modify the input layer and take a volume of

brain features as input to the proposed deep model, such as the ampli-

tude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and

regional homogeneity (ReHo) of resting-state fMRI as well as the frac-

tional anisotropy (FA) and mean diffusivity (MD) of diffusion tensor

imaging (DTI). The model is also applicable to multi-modal inputs to

different channels, which are important for research in psychiatry and

neurology because most of the open datasets used, such as ADNI

(Alzheimer's Disease Neuroimaging Initiative), ABIDE (Autism Brain

Imaging Data Exchange), BioBank, and SchizConnect. The proposed

method can provide a basis for a brain-based information retrieval

systems by classifying brain activity into different categories: brain-

based disorder or psychiatric classification. Varieties of deep learning

methods have shown their power in searching for biomarkers of psy-

chiatric and neurologic diseases (Vieira et al., 2017), and the proposed

method provides one more choice.

Activity classification can also benefit real-time fMRI neurofeedback

(rt-fMRI-NF), a technology providing subjects with feedback stimuli from

ongoing brain activity collected by an MRI scanner (Cox, Jesmanowicz, &

Hyde, 1995; Sulzer et al., 2013). Recently, a data-driven and personal-

ized MVPA rt-fMRI-NF method (Shibata, Watanabe, Sasaki, & Kawato,

2011), decoded neurofeedback (DecNef), was proposed, and has shown

outstanding performance in both basic and clinical research (Thibault,

MacPherson, Lifshitz, Roth, & Raz, 2018; Watanabe, Sasaki, Shibata, &

Kawato, 2017). The proposed deep model has the potential to decode

multiple brain states from whole-brain fMRI time series and to output

these to feedback processing in real time. Moreover, the model can be

fine-tuned to individual brain activity through transfer learning to build

up a personalized rt-fMRI-NF.

4.8 | Conclusion

We proposed a method to classify and map an individual's ongoing

brain function directly from a 4D fMRI time series. Our approach

allows for the decoding of a subject's task state from a short fMRI

scan without the burden of feature selection. This flexible and effi-

cient brain-decoding method can be applied to both large-scale mas-

sive data and fine, small-scale data in neuroscience. Moreover, its

characteristics of facility, accuracy, and generalizability allow the

deep framework to be easily applied to a new population as well as

a wide range of neuroimaging research, including internal mental

state classification, psychiatric disease diagnosis, and real-time fMRI

neurofeedback.
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