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Abstract 
The era of targeted cancer therapies has arrived. However, due to the complexity of biological 

systems, the current progress is far from enough. From biological network modeling to structural/dynamic 
network analysis, network systems biology provides unique insight into the potential mechanisms 
underlying the growth and progression of cancer cells. It has also introduced great changes into the 
research paradigm of cancer鄄  associated drug discovery and drug resistance. 
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Review 

Targeted cancer therapies refer to a new generation 
of anti­cancer drugs designed to interfere with specific 
molecular targets (typically proteins) that are believed to 
be critical in tumor growth or progression [1] . By precisely 
attacking these cancer­causing molecules, targeted 
cancer therapies can slow down the growth and 
proliferation of tumor cells, induce apoptosis in these 
cells or trigger the immune system to recognize and 
destroy these cells. Due to their fantastic efficacy, 
targeted cancer therapies have been accepted as a great 
success in treating many types of cancer [2] . However, 
along with the deepening of our comprehension of 
cancer as well as the soaring amount of the available 
high­throughput 野­omics冶 data, the development of 
targeted cancer therapies is facing great challenges. The 
major challenges are the drug target prediction and the 
solution for drug resistance. 

To a great extent, the efficacy of targeted cancer 
therapies depends on the molecules selected as drug 
targets. The molecules execute their function through 
various types of interactions. Considering that biological 
systems are intrinsically complex and that our knowledge 
on how tumor cells grow and proliferate is limited, the 
development of targeted cancer therapies, especially the 

identification of potential drug targets, therefore requires 
a more detailed understanding of how the modification of 
molecules and the transduction of biological signal flows 
drive the disease. 

Another problem is drug resistance in cells. The 
resistance mechanisms are pleiotropic but analogous to 
those with whom 野classical冶 cytotoxic anti­cancer drugs 
have struggled, including enhanced activity of drug 
pumps [3,4] , modulation of cell death pathways [5,6] , alteration 
and repair of target molecules [7] , redundancy of 
biological regulations [8] , and other various, less common 
mechanisms [9]  (detailed overviews in Reference [10]). 
Together, these mechanisms form a complex network of 
cellular pathways that mediate an individual multi­drug 
resistance (MDR) phenotype. 

The widespread emergence of systems biology 
meets timely with the increasing urge for developing 
targeted therapies. Using the overwhelming 耶­omics爷 
data, systems biology manages to quantify all the 
molecular elements of biological systems, healthy or 
diseased, to assess their interactions and integrate them 
into various graphical network models, and then to 
explore these networks to reveal the underlying biological 
mechanisms [11­14] . In systems biology, not only are 
miscellaneous databases (Table 1) and platforms (such 
as Cytoscape [15]  and its plug­in corps) developed to pave 
the way for network modeling, but network analysis 
algorithms are also proposed to study the disease­ 
associated molecules and pathways from a systematic 
and network­based view. The concept of 野network冶 plays 
an irreplaceable role in the systems biology in the 
post­genomic era. To highlight this, we denominate the 
network­based part of systems biology as 野network 
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systems biology冶 in the remainder of this review. 
Herein, we first present an outline of network 

systems biology, focusing on the expatiation of the two 
types of network analysis strategies that are often used. 
Then, in the next two sections, we review how drug 
target prediction and drug resistance prevention, the two 
points of interest in the research of targeted therapies, 
respectively benefit from network systems biology. 
Finally, we conclude with a summary and a brief outlook. 

Network Systems Biology 
In network systems biology, biological systems are 

first modeled into networks for different research 
purposes and then are explored with the use of 
network­based strategies. 

In the network modeling stage, protein­protein 
interaction networks, transcriptional regulatory networks [16] , 
signaling transduction networks [17­19] , and metabolic 
networks [20]  are often used. In protein­protein interaction 
networks, nodes represent proteins and edges represent 
associations between proteins. The protein associations 
can be abstract relations between proteins rather than 
concrete and direct/indirect protein interactions, such as 
protein binding. For example, the polypharmacology 
relationships, that is, the links between a pair of proteins 
that share a certain number of compounds, can be 
regarded as the edges, and with this assumption the 
drug­associated protein system can be modeled into the 
protein­protein interaction network [21] . In different research 
contexts, chemokine networks [22] , drug­target networks [23] , 
disease­gene networks [24] , and others are also frequently 
used. 

Network systems biology for targeted cancer therapies 

Category Contents 

Protein 
databases 

Protein鄄  
protein 
interaction 
databases 

Pathway 
databases 

Drug鄄  target 
databases 

UniProtKB 

Nextprot 

STRING 

DIP 

KEGG 

Reactome 

Drugbank 

STITCH 

PROMISCUOUS 

Database Reference(s) 

http://www.uniprot.org/ 

http://www.nextprot.org/ 

http://string鄄  db.org/ 

http://dip.doe鄄  mbi.ucla.edu/ 

http://www.kegg.com/ 

http://www.reactome.org/ 

http://www.drugbank.ca/ 

http://stitch.embl.de/ 

http://bioinformatics.charite. 
de/promiscuous 

[67,68] 

[69,70] 

[71] 

[72] 

[73,74] 

[75-77] 

[78,79] 

[80] 

More databases are summarized in References [45,81,82]. 

Website 

The central collection of functional information on proteins, 
with accurate, consistent, and rich annotation. It has 
tremendous and extensive influence in the post鄄  genomic era. 
A very novel but promising knowledge resource centered on 
human proteins. Incorporates all human鄄  centric protein data 
in UniProtKB/Swiss鄄  Prot as well as carefully selected and 
filtered high鄄  throughput data pertinent to human proteins. 
Contains known and predicted physical and functional protein 
interactions derived from different sources. It currently 
covers 5 214 234 proteins from 1133 organisms. 
Contains protein interactions derived from a variety of 
sources but curated both manually and automatically using 
computational approaches. It supports search by proteins, 
sequences, motifs, articles, and pathways. 
Integrates genomic, chemical, and systemic functional 
information. Gene catalogs in the completely sequenced 
genomes are particularly linked to higher 鄄  level systemic 
functions of the cell, the organism, and the ecosystem. 
Comprises 4166 human reactions organized into 1131 
pathways involving 5503 proteins encoded by 5078 human 
genes. Data is manually curated and peer鄄  reviewed by 
biologists. 
Combines detailed drug data with comprehensive drug 
targets. To date, it contains 6829 drug entries and supports 
search by pathway. 
Designed to explore known and predicted interactions of 
chemicals and proteins. It contains interactions for over 74 000 
small molecules and over 2.5 million proteins in 630 
organisms. 
Contains data of drugs, proteins, and side effects, as well as 
relations between them. It has three search methods: by 
drug, by target, and by pathway. 
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Figure 1. ODE, ordinary differential equations; FBA, flux balance analysis; SPN, 
signaling Petri net; CPN, colored Petri net. 

The modeled networks are normally analyzed using 
two types of strategies [18] : static network analyses and 
dynamic network analyses (Figure 1). Static network 
analyses, also known as structural network analyses, are 
often used to explore network properties by computing 
the time­invariant topological properties of the network. 
These topological properties can be divided into two 
categories: global topological properties and individual 
topological properties (Table 2). Global topological 
properties include node degree distribution, path length, 
clustering coefficient, network diameter, and others. 
From different angles, these properties help to 
understand how the modeled biological system behaves 
as a whole when random errors (e.g. gene mutation) or 
malicious attacks (e.g. targeted treatment) happen in 
either a provisional or a persistent way [25,26] . Individual 
topological properties refer to how important the 
individual elements, such as specific nodes, edges, 
network motifs [27] , and network modules [28] , are in the 
current network context. These properties are presented 
as different topological centralities, such as degree 
centrality, closeness centrality, betweenness centrality, 
bridging centrality, and the like. They respectively reveal 
distinct importance the elements manifest and the 
different ways in which they participate in maintaining the 
network stability. 

Compared to static network analyses, dynamic 
network analyses are considered to be able to reveal the 
time­variant properties or predict the dynamic changes of 
the network [18] . Depending on whether the associated 

kinetic parameters are known or not, dynamic network 
analysis approaches can also be classified into two 
groups. In the case that the parameters are sufficient 
and known, approaches such as ordinary differential 
equations (ODE) [29] , flux balance analysis (FBA) [30] , and 
those based on the control theory [31]  can be carried out. 
For example, with the obtained timescales and kinetic 
parameters, the response of special signaling activities 
can be estimated using ODE, beginning with listing all 
biochemical transformations and thereby providing a 
kinetic scheme of signaling pathways [32] . 

Typically, numerical values for kinetic parameters 
are difficult to obtain, so ODE and control theory­based 
dynamic analyses are limited to stoichiometric 
reconstructions of small­scale cellular networks. Thus, 
when a priori kinetics are insufficient, logic­based models 
and Petri net­based models [33­37]  are normally used. 
Logic­based models include Boolean logic models, 
multi­state discrete models, and fuzzy logic models [38,39] . 
Boolean logic models assume that all agents in a 
signaling network are either 野on冶 (state 1) or 野off冶 (state 
0), whereas multi­state discrete models specify additional 
levels between 0 and 1, and fuzzy logic models allow for 
continuous agent states. With these assumptions, 
logic­based models have been widely used in estimating 
the dynamic characteristics of biological networks  [40­42] . 
Petri net­based models, such as the signaling Petri net 
(SPN) [37]  and the colored Petri net  (CPN) [33] , simulate the 
network dynamic behavior based on the Petri net theory. 
Compared to logic­based  models, Petri net­based 
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models are  more flexible on the definition of system 
state and the description of signaling transmission, and 
have also been very successful in dynamically simulating 
signaling mechanisms and transcriptional activities [43] . 

Network鄄  based Drug Target Prediction 
One main application of network analyses is to 

predict or identify potential targets for the development of 
targeted therapies. The general workflow begins from 
integrating the available 野­omic冶 data into some specific 
network models, and then using proper network analysis 
strategies, especially static network analyses, to explore 
the properties of the modeled network to identify proteins 
with the potential to be candidate drug targets. 

A very comprehensive and successful example of 
this process has been described by Pujana  . [44] . They 
used the network strategy in cancer­associated gene 
prediction and identified one gene that encodes 
hyaluronan­mediated motility receptor (HMMR) and 
directly interacts with the well­known breast 
cancer­associated gene breast cancer 1, early onset 
(  ). Their work started from collecting the data 
around four known breast cancer­associated genes: 

; breast cancer 2, early onset (  ); ataxia 
telangiectasia mutated (  ); and checkpoint kinase 2 
(  ). Then, they combined gene expression profiling 

data with functional genomics and proteomics data 
derived from various species to model the 
heterogeneous protein network. From this network, they 
野extracted冶 a BRCA1­centred network (BCN) and 
compared it with a same­scale random network. The 
comparison indicated the potential function of the 
clustered BCN components. After that, they looked for 
new potential connections among different functional 
components of the BCN. According to the computed 
co­expression correlation value (inversely proportional to 
the edge length) of the nodes in the BCN, they focused 
the prediction on HMMR, the gene that is relative to 

but plays an important role in linking together the 
different functional parts of the BCN. These findings 
have since been validated, with two case­control studies 
of incident breast cancer suggesting that HMMR could 
indicate susceptibility for breast cancer within diverse 
human populations [44] . 

This work is a remarkable demonstration of the use 
of network­based strategies for drug target prediction. 
This approach not only identifies cancer­associated 
genes that have the potential to be drug targets of the 
next generation, but also provides a detailed roadmap of 
how to predict and identify  cancer­associated genes or 
proteins in the network context. Moreover, this work 
provides a successful strategy for integrating a vast 
variety of 野­omics冶 data to reconstruct disease­ 
associated protein networks, and it supports the 

Category Significance 

Global 

Individual 

Degree distribution 

Average path length 
Clustering coefficient 
Network diameter 
Degree centrality 

Closeness centrality 

Betweenness centrality 

Bridging centrality 

Property Reference(s) 

[83,84] 

[83] 
[83] 
[83] 
[84] 

[84] 

[84] 

[85] 

More databases are summarized in References [45,81,82]. 

Defined as the probability distribution of degree of all the nodes. Networks with 
power-law degree distribution are supposed to be scale-free. 
Defined as the arithmetic mean of all the path lengths in the network. 
Defined as the arithmetic mean of clustering coefficients of all individual nodes. 
Defined as the maximum path required to connect any two nodes. 
Mathematically equals the node degree, which is defined as the number of links 
incident upon the given node. The higher the degree centrality of the given node, 
the more associated nodes are influenced by the change of this node and thus, 
the more critical it is. 
Defined as the mean length of all the shortest paths between the given node and 
all the other nodes reachable from it. The lower the closeness centrality of the 
given node, the sooner the influence that arises from the change of the given 
node can spread to all the reachable nodes and thus, the more critical it is. 
Defined as the proportion of all shortest paths between node pairs in a network 
passing through the measured node. The higher the betweenness centrality of the 
given node is, the higher the number of pairs of nodes it mediates and thus, the 
more critical it is. 
Defined as the product of the rank of the given node in random betweenness and 
the rank in bridging coefficient. The nodes with high bridging centrality are critical 
because they locate between and connect modular subregions in the network. 
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feasibility of using gene homology and gene ontology to 
mine proteins and protein associations that are unclear 
in humans but have been well studied in other model 
organisms. 

In addition to protein networks, other types of 
biological networks, such as metabolic networks, 
transcriptional regulation networks, and signaling 
networks, are also frequently used to model the 
disease­associated  environment and contribute to 
the network­based drug target prediction [45] . 

Metabolic networks focus on the intricate exchange 
of chemical groups and redox potentials through a set of 
carrier molecules, a process in which enzymes play the 
leading role. For this type of network, mathematical 
analyses are suitable to be carried out in a relatively 
precise way, in line with the stoichiometric matrix. 
Therefore, in addition to the general topological static 
analyses that indicate the error and attack tolerance of 
metabolic networks from a global view [25] , powerful kinetic 
models such as ODE or FBA can be set up to trace the 
network response against changes in enzyme activity 
and compound concentration. Examples include the 
model developed for predicting the onset of avascular 
tumor growth among cells in response to the loss of p53 
function [46] , as well as the model for developing hypoxia­ 
inducible factor­1琢 (HIF­1琢  )­based therapies [47] . 

Regulatory networks, especially transcriptional 
regulatory networks, are usually concerned with the 
interplay of transcription factors. Abnormal activity of 
transcription factors is associated with the change of 
critical gene expression or the redirection of signaling 
cascades [16] . Modeling regulatory networks and recognizing 
their structures help to clarify the functional position of 
target­associated transcription factors and yield 
candidates for potential drug targets [48­50] . As a successful 
example, Bai  . [49]  used differentially expressed gene 
data and transcription factor­gene relationship data to 
construct gene regulatory networks, and then executed a 
transcriptome network analysis method to select 
candidate genes for squamous lung cancer. The results 
showed that 5 out of 6 selected candidates were 
purportedly involved in lung cancer. 

Signal transduction networks model the transduction 
process of signals in pathways. Signals are not only 
linearly transmitted, but also processed through signal 
integration, cross­activation, and positive or negative 
feedback in a time sequence. Based on this knowledge, 
overall static analyses that shed light on the importance 
of different molecules in signal transduction networks are 
often used. In addition, ODEs, logic­based models, and 
Petri net­based approaches are also often exploited to 
represent concrete signaling systems because they 
enable prediction of the effects of, for  example, 
apoptosis and DNA damage [51]  as well as various ligand 
stimulations [41] . 

Network鄄  based Research on Drug 
Resistance 

In a biological system, the roles even a single 
molecule plays in different contexts can be complex, and 
this is one primary reason for drug resistance. For 
example, the inappropriate expression of the multidrug 
resistance (  ) gene  encoding P­glycoprotein (P­gp) 
is reported to cause a drug resistant phenotype in an 
imatinib­treated leukemia cell line [52] . Because imatinib is 
a substrate for breast cancer resistance protein (BCRP) 
but not for multidrug resistance­associated protein 1 
(MRP1) and because it has also been demonstrated to 
be an inhibitor of BCRP, imatinib has the potential to 
modulate the pharmacology of other drugs that are 
BCRP substrates [53] . Figure 2 displays the network 
constructed from these drug resistance­associated 
proteins. This network not only  illustrates the interactions 
among these drug resistance­associated proteins, but 
also shows how the network facilitates the process of 
hunting for the proteins  that are possibly involved in this 
MDR phenotype and how important they could be. 

Other causes of drug resistance include redundant 
signaling pathways and compensatory pathways, as well 
as loss of feedback loops that are critical to the 
stabilization of signaling systems. Most instances of drug 
resistance against targeted therapies are associated with 
the cell signaling process [54] , thus signaling networks or 
protein­protein interaction networks that model signaling 
pathways are often adopted. Disease­perturbed signaling 
networks can be either reconstructed from the available 
public pathway databases such as KEGG and Reactome 
or reversely engineered from gene expression data [55] . 
The former reconstruction method is limited by a small 
amount of pathway data, whereas the latter bears a 
considerable computational complexity. 

With reconstructed disease­associated signaling 
networks, both static and dynamic network analysis 
strategies can be applied to explore the details of how 
the resistance is developed by the cells. For example, 
resistance to trastuzumab is observed in treating 
receptor tyrosine­protein kinase erbB­2 (ERBB2)­ 
overexpressed breast cancer patients [56] . The major cause 
is purportedly that cancer cells engage compensatory 
pathways to overcome cell cycle arrest despite 
inactivation of the ERBB2 receptor. To gain insight into 
the potential mechanisms underlying this process, Sahin 

. [40]  employed a Boolean logic model to represent the 
regulatory interactions of G 1 /S transition of the cell cycle, 
and simulated the loss of  function of one or multiple 
proteins. Tested experimentally, these  simulation results 
show that combinatorial targeting of  ERBB receptors or 
of key signaling intermediates has no potential for 
treatment of  trastuzumab­resistant cells. 
Instead, c­MYC perturbation might be responsible for cell 

Network systems biology for targeted cancer therapies Ting鄄  Ting Zhou 

138



www.cjcsysu.com Chin J Cancer; 2012; Vol. 31 Issue 3 

sensitivity or resistance to trastuzumab. 
According to differential expression profile analysis, 

therapy resistance is associated with over­expression of 
a unique set of proteins, which reflect potential 
mechanisms of reactivation [57] . These proteins (or protein 
families) can be 野switches冶 that divert the signal to 
compensatory pathways [58] . In the context of protein­ 
protein interaction or signaling networks, the proteins 
acting as switches are possibly the highly important 
nodes, such as the 野party冶 or 野date冶 hubs that have 
pleiotropic functions across the network, or the bridging 
nodes that help in exchanging signals among network 
modules [59,60] . Therefore, computational static network 
analyses, such as ranking nodes by their importance, 
decomposing the network into functional modules, and 
comparing networks of the same system but in different 
states [61]  (for example, pre­ or post­resistance), can 
suggest the potential factors that perturb the efficacy of 
targeted therapies. These analyses can lead to more 
reasonable cancer treatments, like combination thera鄄  
pies [62] , to help to eliminate acquired drug resistance. 

Outlook 
For many years, clinical biologists have suffered 

from not having a comprehensive roadmap on the 
underlying and complex mechanisms of cancer. Now, 

however, thanks to the emergence of high­throughput 
野­omics冶 data and the rapid advances of systems 
biology in this post­genomic era, researchers have 
started to consider cancer treatment from a global 
perspective. The concept of network systems biology not 
only enables the discovery of potential drug targets by 
making the most of known information on cancer, but 
also explicates why current targeted therapies, the 
so­called 野magic bullets冶, cannot bypass the various 
kinds of resistance developed by cells. 

As discussed in previous sections, network 
systems biology has greatly changed the paradigm of 
developing targeted cancer therapies. It continues 
making our understanding of cancer multi­dimentional 
and more comprehensive. It also changes the traditional 
experiential medical treatment into the so­called 
野network pharmacology冶 [63] . In addition to more 
reasonable molecule­targeted therapies, multi­target 
drugs [64] , personalized bespoke medicines [65] , pathway­ 
targeted therapies [66] , and so on, whatever network 
systems biology is dedicated to bringing us in  the way of 
fighting cancer, we look forward to, with hope. 

Acknowledgment 
The author thanks Prof. Jian鄄  Nan Feng, Dr. Jing 

Geng, and especially Prof. Hui Peng for the help on this 

Figure 2. 

This 
demonstration was run using 
MDR1/P鄄  gp (ABCB1), MRP1 
(ABCC1), BCRP (ABCG2), and 
EGFR as the input to search the 
STRING database for protein 
associations. The results were 
expanded to the current network 
by setting the required 
confidence score as 0.400. 
Different types of protein 
associations are marked in 
different colors, and the 
directions of directed 
associations are marked with 
different arrow shape. Uncertain 
associations according to 
STRING are shown in gray. From 
this network, one could roughly 
tell the importance of these 
proteins from the degree they 
possess. 

Network systems biology for targeted cancer therapies Ting鄄  Ting Zhou 

139



Chin J Cancer; 2012; Vol. 31 Issue 3 Chinese Journal of Cancer 

咱1暂 
咱2暂 
咱3暂 

咱4暂 

咱5暂 
咱6暂 

咱7暂 

咱8暂 

咱9暂 
咱10暂 
咱11暂 

咱12暂 
咱13暂 
咱14暂 

咱15暂 

咱16暂 
咱17暂 

咱18暂 

咱19暂 
咱20暂 

咱21暂 

咱22暂 

咱23暂 
咱24暂 
咱25暂 
咱26暂 

咱27暂 
咱28暂 
咱29暂 
咱30暂 

咱31暂 

咱32暂 
咱33暂 

咱34暂 

咱35暂 

咱36暂 

咱37暂 

咱38暂 

咱39暂 

咱40暂 

咱41暂 

咱42暂 

咱43暂 

paper. The author also thanks the anonymous reviewers 
for their valuable comments and  revision to improve the 
manuscript. This work is funded  by the National Natural 
Science Foundation of China  (31100961, 81173082, and 

30873083). 

Received: 2011­07­12; revised: 2011­09­30; 
accepted: 2011­10­10. 

References 

Sawyers C. Targeted cancer therapy. Nature, 2004,432:294 - 
297. 
Gerber DE. Targeted therapies: a new generation of cancer 
treatments. Am Fam Physician, 2008,77:311-319. 
Gottesman MM, Fojo T, Bates SE. Multidrug resistance in 
cancer: role of ATP鄄  dependent transporters. Nat Rev Cancer, 
2002,2:48-58. 
Khan S, Elshaer A, Rahman AS, et al. Genomic evaluation 
during permeability of indomethacin and its solid dispersion. J 
Drug Target, 2011,19:615-623. 
Okada H, Mak TW. Pathways of apoptotic and non鄄  apoptotic 
death in tumour cells. Nat Rev Cancer, 2004,4:592-603. 
Brown JM, Attardi LD. The role of apoptosis in cancer 
development and treatment response. Nat Rev Cancer, 2005,5: 
231-237. 
Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung 
adenocarcinomas to gefitinib or erlotinib is associated with a 
second mutation in the EGFR kinase domain. PLoS Med, 
2005,2:e73. 
Shtil AA, Azare J. Redundancy of biological regulation as the 
basis of emergence of multidrug resistance. Int Rev Cytol, 
2005,246:1-29. 
Kellner U, Sehested M, Jensen PB, et al. Culprit and victim要 
DNA topoisomerase II. Lancet Oncol, 2002,3:235-243. 
Lage H. An overview of cancer multidrug resistance: a still 
unsolved problem. Cell Mol Life Sci, 2008,65:3145-3167. 
Hood L, Heath JR, Phelps ME, et al. Systems biology and new 
technologies enable predictive and preventative medicine. 
Science, 2004,306:640-643. 
Kitano H. Systems biology: a brief overview. Science, 
2002,295:1662-1664. 
Palsson B. Systems biology: properties of reconstructed 
networks. Cambridge: Cambridge University Press, 2006. 
Patel VN, Bebek G, Mariadason JM, et al. Prediction and 
testing of biological networks underlying intestinal cancer. PLoS 
One, 2010,5:e12497. 
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software 
environment for integrated models of biomolecular interaction 
networks. Genome Res, 2003,13:2498-2504. 
Petricka JJ, Benfey PN. Reconstructing regulatory network 
transitions. Trends Cell Biol, 2011,21:442-451. 
Friedman A, Perrimon N. Genetic screening for signal 
transduction in the era of network biology. Cell, 2007,128:225- 
231. 
Papin JA, Hunter T, Palsson BO, et al. Reconstruction of 
cellular signalling networks and analysis of their properties. Nat 
Rev Mol Cell Biol, 2005,6:99-111. 
Hyduke DR, Palsson B. Towards genome鄄  scale signalling鄄  
network reconstructions. Nat Rev Gen, 2010,11:297-307. 
Folger O, Jerby L, Frezza C, et al. Predicting selective drug 
targets in cancer through metabolic networks. Mol Syst Biol, 
2011,7:1-10. 
Paolini GV, Shapland RH, van Hoorn WP, et al. Global 
mapping of pharmacological space. Nat Biotechnol, 2006,24: 
805-815. 
Balkwill F. Cancer and the chemokine network. Nat Rev 
Cancer, 2004,4:540-550. 

Vogt I, Mestres J. Drug鄄  target networks. Mol Inform, 2010,29: 
10-14. 
Goh KI, Cusick ME, Valle D, et al. The human disease 
network. Proc Natl Acad Sci U S A, 2007,104:8685-8690. 
Albert R, Jeong H, Barabasi AL. Error and attack tolerance of 
complex networks. Nature, 2000,406:378-382. 
Kurant M, Thiran P, Hagmann P. Error and attack tolerance of 
layered complex networks. Phys Rev E Stat Nonlin Soft Matter 
Phys, 2007,76:026103. 
Shoval O, Alon U. Snapshot: network motifs. Cell, 2010,143: 
326-326.e321. 
Barabasi AL, Oltvai ZN. Network biology: understanding the 
cell爷s functional organization. Nat Rev Genet, 2004,5:101-113. 
Tyson JJ, Chen K, Novak B. Network dynamics and cell 
physiology. Nat Rev Mol Cell Biol, 2001,2:908-916. 
Raman K, Chandra N. Flux balance analysis of biological 
systems: applications and challenges. Brief Bioinform, 2009,10: 
435-449. 
LeDuc PR, Messner WC, Wikswo JP. How do control鄄  based 
approaches enter into biology? Annu Rev Biomed Eng, 
2011,13:369-396. 
Kholodenko BN. Cell鄄  signalling dynamics in time and space. 
Nat Rev Mol Cell Biol, 2006,7:165-176. 
Lee DY, Zimmer R, Lee SY, et al. Colored petri net modeling 
and simulation of signal transduction pathways. Metab Eng, 
2006,8:112-122. 
Materi W, Wishart DS. Computational systems biology in drug 
discovery and development: methods and applications. Drug 
Discov Today, 2007,12:295-303. 
Hardy S, Robillard PN. Petri net鄄  based method for the analysis 
of the dynamics of signal propagation in signaling pathways. 
Bioinformatics, 2008,24:209-217. 
Steggles LJ, Banks R, Shaw O, et al. Qualitatively modelling 
and analysing genetic regulatory networks: a petri net 
approach. Bioinformatics, 2007,23:336-343. 
Ruths D, Muller M, Tseng JT, et al. The signaling petri net鄄  
based simulator: a non鄄  parametric strategy for characterizing 
the dynamics of cell鄄  specific signaling networks. PLoS Comput 
Biol, 2008,4:e1000005. 
Morris MK, Saez鄄  Rodriguez J, Sorger PK, et al. Logic鄄  based 
models for the analysis of cell signaling networks. Biochemistry, 
2010,49:3216-3224. 
Schlatter R, Schmich K, Avalos Vizcarra I, et al. On/off and 
beyond要a boolean model of apoptosis. PLoS Comput Biol, 
2009,5:e1000595. 
Sahin O, Frohlich H, Lobke C, et al. Modeling ERBB receptor鄄  
regulated G1/S transition to find novel targets for de novo 
trastuzumab resistance. BMC Syst Biol, 2009,3:1-20. 
Samaga R, Saez鄄  Rodriguez J, Alexopoulos LG, et al. The logic 
of EGFR/ERBB signaling: theoretical properties and analysis of 
high鄄  throughput data. PLoS Comput Biol, 2009,5:e1000438. 
Saez鄄  Rodriguez J, Simeoni L, Lindquist JA, et al. A logical 
model provides insights into T cell receptor signaling. PLoS 
Comput Biol, 2007,3:e163. 
Doi A, Nagasaki M, Matsuno H, et al. Simulation鄄  based 
validation of the p53 transcriptional activity with hybrid 
functional petri net. Stud Health Technol Inform, 2011,162:130- 

Network systems biology for targeted cancer therapies Network systems biology for targeted cancer therapies Ting鄄  Ting Zhou 

140



www.cjcsysu.com Chin J Cancer; 2012; Vol. 31 Issue 3 

咱65暂 
咱66暂 
咱67暂 
咱68暂 
咱69暂 

咱70暂 

咱71暂 
咱72暂 

咱73暂 

咱74暂 

咱75暂 

咱76暂 

咱77暂 

咱78暂 

咱79暂 

咱80暂 

咱81暂 
咱82暂 

咱83暂 
咱84暂 

咱85暂 

咱44暂 

咱45暂 
咱46暂 

咱47暂 

咱48暂 

咱49暂 

咱50暂 

咱51暂 

咱52暂 

咱53暂 
咱54暂 

咱55暂 

咱56暂 

咱57暂 

咱58暂 
咱59暂 

咱60暂 
咱61暂 
咱62暂 

咱63暂 
咱64暂 

142. 
Pujana M, Han J, Starita L, et al. Network modeling links 
breast cancer susceptibility and centrosome dysfunction. Nat 
Gen, 2007,39:1338-1349. 
Klipp E, Wade RC, Kummer U. Biochemical network鄄  based 
drug鄄  target prediction. Curr Opin Biotechnol, 2010,21:511-516. 
Levine HA, Smiley MW, Tucker AL, et al. A mathematical 
model for the onset of avascular tumor growth in response to 
the loss of p53 function. Cancer Inform, 2007,2:163-188. 
Kim BJ, Forbes NS. Flux analysis shows that hypoxia鄄  inducible鄄  
factor鄄  1鄄  alpha minimally affects intracellular metabolism in 
tumor spheroids. Biotechnol Bioeng, 2007,96:1167-1182. 
Drozdov I, Svejda B, Gustafsson BI, et al. Gene network 
inference and biochemical assessment delineates GPCR 
pathways and CREB targets in small intestinal neuroendocrine 
neoplasia. PLoS One, 2011,6:e22457. 
Bai J, Hu S. Transcriptome network analysis reveals potential 
candidate genes for squamous lung cancer. Int J Mol Med, 
2011, 29:95-101. 
Penrod NM, Cowper鄄  Sal鄄  Lari R, Moore JH. Systems genetics 
for drug target discovery. Trends Pharmacol Sci, 2011,32:623- 
630. 
Zhang T, Brazhnik P, Tyson JJ. Computational analysis of 
dynamical responses to the intrinsic pathway of programmed 
cell death. Biophys J, 2009,97:415-434. 
Mahon FX, Belloc F, Lagarde V, et al. MDR1 gene 
overexpression confers resistance to imatinib mesylate in 
leukemia cell line models. Blood, 2003,101:2368-2373. 
Apperley JF. Part I: mechanisms of resistance to imatinib in 
chronic myeloid leukaemia. Lancet Oncol, 2007,8:1018-1029. 
Gioeli D. The dynamics of the cell signaling network; 
implications for targeted therapies. Gioeli D, ed. Targeted 
therapies. Humana Press, 2011:33-53. 
Shimoni Y, Fink MY, Choi SG, et al. Plato's cave algorithm: 
inferring functional signaling networks from early gene 
expression shadows. PLoS Comput Biol, 2010,6:e1000828. 
Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus 
adjuvant chemotherapy for operable HER2鄄  positive breast 
cancer. N Engl J Med, 2005,353:1673-1684. 
Holzbeierlein J, Lal P, LaTulippe E, et al. Gene expression 
analysis of human prostate carcinoma during hormonal therapy 
identifies androgen鄄  responsive genes and mechanisms of 
therapy resistance. Am J Pathol, 2004,164:217-227. 
Citri A, Yarden Y. EGF鄄  ERBB signalling: towards the systems 
level. Nat Rev Mol Cell Biol, 2006,7:505-516. 
Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in 
signalling pathways: insights into insulin action. Nat Rev Mol 
Cell Biol, 2006,7:85-96. 
Przytycka TM, Singh M, Slonim DK. Toward the dynamic 
interactome: it爷s about time. Brief Bioinform, 2010,11:15-29. 
Sharan R, Ideker T. Modeling cellular machinery through 
biological network comparison. Nat Biotech, 2006,24:427-433. 
Fitzgerald JB, Schoeberl B, Nielsen UB, et al. Systems biology 
and combination therapy in the quest for clinical efficacy. Nat 
Chem Biol, 2006,2:458-466. 
Hopkins AL. Network pharmacology: the next paradigm in drug 
discovery. Nat Chem Biol, 2008,4:682-690. 
Csermely P, Agoston V, Pongor S. The efficiency of multi鄄  
target drugs: the network approach might help drug design. 
Trends Pharmacol Sci, 2005,26:178-182. 

Collins I, Workman P. New approaches to molecular cancer 
therapeutics. Nat Chem Biol, 2006,2:689-700. 
Pawson T, Linding R. Network medicine. FEBS Lett, 2008,582: 
1266-1270. 
Magrane M, Consortium U. Uniprot knowledgebase: a hub of 
integrated protein data. Database (Oxford), 2011:1-13. 
Bairoch A, Apweiler R, Wu CH, et al. The Universal Protein 
Resource (UniProt). Nucleic Acids Res, 2005,33:D154-159. 
Szklarczyk D, Franceschini A, Kuhn M, et al. The string 
database in 2011: functional interaction networks of proteins, 
globally integrated and scored. Nucleic Acids Res, 2011,39: 
D561-568. 
Snel B, Lehmann G, Bork P, et al. String: a web鄄  server to 
retrieve and display the repeatedly occurring neighbourhood of 
a gene. Nucleic Acids Res, 2000,28:3442-3444. 
Salwinski L, Licata L, Winter A, et al. Recurated protein 
interaction datasets. Nat Methods, 2009,6:860-861. 
Kanehisa M, Goto S, Furumichi M, et al. KEGG for 
representation and analysis of molecular networks involving 
diseases and drugs. Nucleic Acids Res, 2010,38:D355-D360. 
Croft D, O爷Kelly G, Wu G, et al. Reactome: a database of 
reactions, pathways and biological processes. Nucleic Acids 
Res, 2011,39:D691-D697. 
Joshi鄄  Tope G, Gillespie M, Vastrik I, et al. Reactome: a 
knowledgebase of biological pathways. Nucleic Acids Res, 
2005,33:D428-D432. 
Knox C, Law V, Jewison T, et al. Drugbank 3.0: a 
comprehensive resource for 耶omics爷 research on drugs. 
Nucleic Acids Res, 2011,39:D1035-D1041. 
Wishart DS, Knox C, Guo AC, et al. Drugbank: a 
comprehensive resource for in silico drug discovery and 
exploration. Nucleic Acids Res, 2006,34:D668-D672. 
Wishart DS, Knox C, Guo AC, et al. Drugbank: a 
knowledgebase for drugs, drug actions and drug targets. 
Nucleic Acids Res, 2008,36:D901-D906. 
Zhu D, Vaishampayan PA, Venkateswaran K, et al. STITCH: 
algorithm to splice, trim, identify, track, and capture the 
uniqueness of 16s rRNAs sequence pairs using public or in鄄  
house database. Microb Ecol, 2011,61:669-675. 
Kuhn M, Szklarczyk D, Franceschini A, et al. STITCH 2: an 
interaction network database for small molecules and proteins. 
Nucleic Acids Res, 2010,38:D552-D556. 
von Eichborn J, Murgueitio MS, Dunkel M, et al. Promiscuous: 
a database for network鄄  based drug鄄  repositioning. Nucleic 
Acids Res, 2011,39:D1060-D1066. 
Ooi HS, Schneider G, Lim TT, et al. Biomolecular pathway 
databases. Methods Mol Biol, 2010,609:129-144. 
Sayers EW, Barrett T, Benson DA, et al. Database resources 
of the national center for biotechnology information. Nucleic 
Acids Res, 2011,39:D38-D51. 
Arrell DK, Terzic A. Network systems biology for drug 
discovery. Clin Pharmacol Ther, 2010,88:120-125. 
Ozgur A, Vu T, Erkan G, et al. Identifying gene鄄  disease 
associations using centrality on a literature mined gene鄄  
interaction network. Bioinformatics, 2008,24:i277-285. 
Hwang W, Zhang A, Ramanathan M. Identification of 
information flow鄄  modulating drug targets: a novel bridging 
paradigm for drug discovery. Clin Pharmacol Ther, 2008,84: 
563-572. 

Network systems biology for targeted cancer therapies Ting鄄  Ting Zhou 

141


