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A B S T R A C T

Aquatic invasive weeds affect hydrological, ecological, and socio-economic activities on freshwater ecosystems.
On the Lower Volta River (LVR) of Ghana, invasive aquatic weeds have been known to be nuisance to fishing,
navigation, aquaculture, hydropower production and other agricultural practices in the area. While information
on the spatial and temporal distribution of aquatic weeds would be beneficial in improving weed management
and control measures on the river, such information is very scanty. Also, these aquatic weeds are also biomass
resources, that can be transformed to bioenergy. Thus, this study evaluated the spatial and temporal variations of
aquatic weeds on the Lower Volta River, and assessed their potential biomass for bioenergy production.

Random Forest (RF) algorithm and Landsat images were used to map the distribution of the weeds in 1975,
2003, and 2020, respectively. Accuracy assessment results showed mean Overall Accuracy (OA) of 83.44% and
mean User Accuracy (UA) of 79.24%. The results indicated that as of 1975, aquatic weeds covered only 1495 ha
and appeared in some specific locations such as Kpong and Ada. However, by 2003, the weeds had spread to most
parts of the river covering 5600 ha, which was an increase of approximately 4-fold within a period of 28 years.
The area covered by the weeds, however declined by 1505 ha between 2003 and 2020. Thus, in 2020, water
hyacinth covered about 36% of the aquatic weeds relative to 28% in 2003. The results showed that, the quantity
of the water hyacinth biomass per unit area was 21.5 kg/m2. This result can also be used as the basis for resource
assessment as well as determination of its viability for bioenergy production and strategies for its modern uti-
lisation. The conversion of water hyacinth into bioenergy remains one of the best aquatic weed management
strategies that must be adopted in LVR.
1. Introduction

Freshwater covers only about 3% of the earth's surface (Central Cal-
ifornia Area Office, 2020), yet remains one of the most important re-
sources, providing numerous socio-economic and ecological benefits for
households, farms, and industries (Thamaga and Dube, 2018). The Volta
River system is the biggest freshwater systems in Ghana. It supplies water
for domestic, agricultural, and industrial uses, serves as habitat for
rthur).
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diverse aquatic species, a recreational area, navigable waterway between
the northern and southern parts of the country, and a climate modulator
for the tropical region (Ghansah et al., 2016). Among the recent eco-
nomic activity on the river is aquaculture in small units along the banks
of the river (Ainoo-Ansah, 2013).

The Akosombo and Kpong hydroelectric dams are, by far, the most
significant economic project constructed on the river, producing elec-
tricity for many parts of Ghana and some neighbouring Countries (Andah
y 2021
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et al., 2003). The constructions of the dams, however brought about
hydrological and ecological changes on the Volta Lake, especially along
the Lower Volta River (LVR) stretch. Hydrologically, the flow of the river
is regulated throughout the year, curtailing flooding, resulting in high
loads of sediments during the rainy season (Pabi and Akpabey, 2017).
Ecologically, the dams promote the growth of native aquatic weeds and
infestation of highly invasive aquatic weeds particularly, water hyacinth
(Pierce and Opoku, 1971; Pabi and Akpabey, 2017). These aquatic weeds
have been known to be nuisance to fishing, navigation, aquaculture, and
other farming activities. The weeds also harbour reptiles, serve as
breeding ground for mosquitoes, induced eutrophication, and other
water quality deterioration concerns (Pabi and Akpabey, 2017). While
some aquatic weeds control measures and management practices have
been rolled out by the Volta River Authority (VRA) and other agencies
(“Volta River Authority | News,” April, 2015), the weeds are still in
abundance, mainly due to their high re-infestation rate, as well as inad-
equate knowledge of their spatial and temporal variations. Although,
there have been calls for the intensification and effective management
efforts in curtailing the spread of the aquatic weeds, information about
the spatial and temporal variations would be useful in order to fully
understand and appreciate the evolution as well as other infestation
behaviour of the weeds. Such information can also be used to estimate
the quantity of weeds, as a potential biomass resource, for other eco-
nomic purposes. However, there are scanty information about the spatial
and temporal variations of the aquatic weeds on the LVR, due to the few
studies that have been conducted about the weeds in this area.

Odei (1987) assessed the proliferation of aquatic weeds as well as
other ecological changes due to the construction of the dams on the
Volta River. However, this study (Odei, 1987) was limited to only the
Ada area of the river and thus, did not provide information about the
spatial and temporal trends of the weeds. The study also used traditional
field surveying methods in mapping the proliferation of the weeds. This
method is laborious, time consuming and expensive if a complete
variation of the weeds on the Lower Volta River needs to be mapped.
Also, Pabi and Akpabey (2017) used high resolution satellite images to
map the extent of aquatic weeds at the LVR area, the results provided a
baseline information about the spatial extent of the weeds at that time.
However, no study has mapped the variations in the distribution of the
aquatic weeds at different points in time. Thus, a good understanding of
the evolution of aquatic weeds in the LVR is still lacking. Also, infor-
mation about the impact of weeds control and management practices is
still inadequate. Access to timely data that can provide information
about the spatial and temporal variations of the weeds is therefore
imperative.

Satellite sensors with high spectral and spatial resolution provide data
to monitor aquatic weeds variations and spread, thus enabling an
assessment of areas of severe infestation and allow for timely in-
terventions (Shekede et al., 2008). In respect of this, studies that assessed
the spatial and temporal variations of aquatic weeds have found satellites
with long temporal coverage particularly useful, as sensors onboard these
satellites offer opportunity to combine images captured at different times
to assess the evolution of weeds. For example, Shekede et al. (2008)
combined the Landsat Multispectral Scanner (MSS), Thematic Mapper
(TM) and Enhanced Thematic Mapper (ETM) to map the spatial and
temporal variations of aquatic weeds on Lake Chivero in Zimbabwe. The
study noted that the availability of a long period of satellite data helped
to assess information about the variations, infestation level and rate of
spread of aquatic weeds in the 1970s and 1980s when ground informa-
tion were not available. Other studies have assessed the capabilities of
newer sensors to mapping water weeds, to the extent of assessing the
abilities of these sensors to specific species of aquatic weeds. For example
(Dube et al., 2017), and (Thamaga and Dube, 2018) used Landsat 8
Operational Land Imager (OLI) and Sentinel-2 Multispectral Instrument
(MSI) respectively, to map water hyacinth species. Thus, these presents
opportunity to use remotely sensed images for mapping the spatial and
temporal trends of the aquatic weeds on the Lower Volta.
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In addition to satellite data, the development of machine learning
(ML) algorithms and evolution of personal computers with high pro-
cessing capacities offers opportunity for accurate and improved mapping
of water weeds. Recent studies that utilized ML to classify aquatic weeds
have reported high accuracies of the maps produced. For example, when
(Dube et al., 2017) used Discriminant Analysis (DA) and Partial Least
Squares Discriminant Analysis (PLS-DA) ML algorithms to map water
hyacinth, both algorithms obtained Overall Accuracy (OA) and User
Accuracy (UA) over water hyacinth of 90% and above. Similarly, when
Chabot et al. (2018) used the Random Forest (RF) ML algorithm to map
emergent and submerged invasive water soldier (Stratiotes aloides), the
algorithm produced UAs of 84% and above over all the different species
of the aquatic weeds. There is an added opportunity to explore the use of
machine learning in mapping aquatic weeds on the Lower Volta. Thus,
this study evaluated the spatial and temporal variations of aquatic weeds
on the LVR, over a 45-year period. This study further classified 1975
Landsat MSS, 2003 Enhanced Thematic Mapper Plus (ETMþ) and 2020
OLI images with RF ML algorithm to produce Land Use and Land Change
(LULC) maps for the respective years. There was an evaluation of the
gains and losses within the time intervals. Also, there was an assessment
of the spatial and temporal changes of the aquatic weeds as well as the
amount of the other LULCs that contributed to net changes in aquatic
weeds. The study further estimated the current biomass potential of
water hyacinth in the area using pre-determined wet weight and surface
area covered by the weeds on the 2020 Landsat image. The results pro-
vided further understanding of the evolution of aquatic weeds and
impact of weeds control practices on the Lower Volta River.

2. Materials and method

2.1. Study area

The Lower Volta River is a part of the Volta River Basin in Ghana. The
study areas stretch from Akosombo dam to the Kpong dam which is
located about 25 km downstream of the Akosombo dam, extending to the
estuary where it joins the sea (Gulf of Guinea). It is located between
Latitudes 5� 470 and 6� 180, and Longitudes 0� 030 and 0� 5'. The course of
the river passes through 7 districts in the Volta Region of Ghana, from
Asuogyman through North and Central Tongu, to Lower Manya, Shai-
Osudoku and Ada East districts (GOG, 2019), as shown in Figure 1.
There are several notable communities located along the river including
Atimpoku, Senchi, Kpong, Akuse, Torgome, Asutsure, Sogakopke, Ago-
rdome, Big Ada and Ada Foah. Major occupations of the people in the
area fishing and farming. The Lower Volta river, which is one of the
largest man-made lake in the world and has the Akosombo dam as the
most important structure built on the basin. The river is located in the
Southern Savannah climatic zone of Ghana and the area experience
bi-modal rainy seasons from March to November with peaks in May/-
June. The area records a mean annual rainfall of 870.4 mm and mean
annual potential evapotranspiration of 1600 mm. Additionally, the mean
annual temperature for the area is about 27.9 �C with the relative hu-
midity ranging between 74 % and 94 %. The major source of water
supply for the people in the area is mostly from the streams and ground
water. The Dahomian describes the geological formation (Okra et al.,
2016) with gneiss as the major rock type in the area. However, the for-
mation has a low groundwater potential of about 36 % (Dapaah-Siakwan
and Gyau-Boakye, 2000). The vegetation in the area is dominated by
grassland and shrub with scrubby mangrove vegetation along the coastal
fringes (Logah et al., 2017).

2.2. Data sets

2.2.1. Field survey
Before the field survey, existing literature and Google Earth images

were used to conduct a desktop study to learn about the LULC, of the
area. Dominant LULC of the area included water weeds (such as Vossia sp.



Figure 1. Map of the Lower Volta and riparian districts.
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association, Vallisneria sp. and Ceratophyllum sp., and the invasive species,
water hyacinth - Eichhornia crassipes), water, settlement and farmlands,
the latter which comprised of different cropland types and gallery
vegetation. Some of the aquatic weeds management projects and recent
economic activities such as aquaculture have taken place. Field survey
was conducted to confirm and obtain GPS locations of the different
aquatic species and other LULC of the area. The field survey took place
between 6th and 19th December 2020. Two teams used canoes to navigate
the course of the river, with one heading downstream and the other
upstream from the Kpong fishing market, thereby covering the whole
stretch of the river (Figure 1). Each team used a Garmin handheld GPS of
accuracy between 0.3-3 m to record point locations of aquatic weeds.
Also, other LULC including farmlands, settlements, water were collected.
In all, a total of 3601 points locations were collected using the handheld
GPS devices, which were used as training samples to classify the 2020
image.

Simultaneously, the field teams recorded extra 804 GPS coordinates
of the water hyacinth. These coordinates were used to determine the
range of NDVI values of water hyacinth. Training data for the other
remaining years, 2003 and 1975 were selected through visual in-
terpretations of Google Earth images and on the individual Landsat
images.

The description of the LULC identified in the area and data used for
the classification have been shown in Table 1.
Table 1. Types of the LULC classes and the number of training samples per class
used the classification.

LULC 1975 2003 2020

Farmland/gallery
vegetation

242 1355 1354

Aquatic weeds 155 1584 1585

Settlement 382 685 1212

Water 405 450 450
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2.2.2. Landsat images and pre-processing
Three dry season Landsat images that covered the study area were

downloaded from the Earth Explorer website (https://earthexplorer.
usgs.gov/). They are 1975 Landsat Multispectral Scanner (MSS) image,
a 2003 Landsat 7 Enhanced Thematic Mapper Plus (ETMþ) image and a
2020 image from the Landsat 8 Operational Land Imager (OLI). Four
main pre-processing steps were undertaken, namely: atmospheric
correction, resampling, image registration, and normalization. The first
was atmospheric correction, which sought to remove haze, non-target
effects as well as convert the Top-of-Atmosphere (TOA) spectral radi-
ances to Bottom-of Atmosphere (BOA) to spectral reflectance. This was
performed using the Dark Object Subtraction (DOS1) technique in the
Semi-Automatic Classification tool in the QGIS software 3.14. The second
pre-processing step, resampling, was done using the bilinear interpola-
tion method. This algorithm was chosen because it produces smoother
interpolation and enhances image quality compared to nearest neighbour
which is commonly used (Bovik, 2009; Stam and Fung, 2011). All the
image pixels were resampled to 30 m at this stage. The third step was
image-to-image registration using the OLI image as the reference image.
The process was undertaken using 18 coordinate points selected from a
topographical map. The OLI image was used as reference to reorient the
other two images. This step ensured that pixels in each image geomet-
rically matches with the corresponding pixel in the other images. The
fourth pre-processing step was normalization of the images pixels and
was executed using the norm function in R software. Normalization aided
the reduction of in-between scene variability as a result of potential
differences in atmospheric conditions during satellite scene acquisition
(Shekede et al., 2008). The corrected images were clipped to the
boundary polygon of the Lower Volta River. The characteristics of the
images used are shown in Table 2.

2.3. Method

This study used multi-sensor Landsat images and field training sam-
ples to produce LULC maps for the three years. The current surface area
covered by water hyacinth was extracted from NDVI from the 2020
image. The quantity of water hyacinth was then estimated by multiplying
the estimated area by the biomass per square meter, which was collected

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/


Table 2. Characteristics of Landsat images used in the study.

Sensor Date Path Row Resolution
(m)

Landsat 1 MSS 28-12-1975 207 56 60

Landsat 8 OLI 12-02-2003 193 56 30

Landsat 8 OLI 02-01-2020 193 56 30
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in-situ. The general approaches used in this study have been summarized
and shown in Figure 2. Furthermore, the detailed description of the
methods, which were applied, have been presented in the subsequent
sub-sections.

2.3.1. LULC classification with Random Forest
Random Forest (RF) supervised image classifications were performed

on the pre-processed Landsat images to map the spatial and temporal
variations of aquatic weeds on the Lower Volta from 1975 to 2020. RF is
an ensemble learning method for classification and regression that works
by creating a number of decision trees during training time and output-
ting the class that is the mode of the classes (classification) or mean
prediction (regression) of the individual trees (Ho, 1995). Each tree in
the forest is independently constructed using a unique bootstrap sample
of the training data (Breiman, 2001). Additionally, RF predicts a response
from a set of predictors by creating multiple decision trees and aggre-
gating their results (Forkuor et al., 2017). They are non-parametric
models that do not require variables to be normally distributed (Mul-
lainathan and Spiess, 2017).

The model was built and trained with the train function in the caret
package (Kuhn, 2015). The field samples were split into training set
(66%) and test set (44%) using the sample.split function in the caTools
package. Tuning of the data was done by growing a number of trees
(ntrees) in the forest and setting the number of variables randomly
sampled at each stage (mtry) (Janitza and Hornung, 2018; Probst and
Boulesteix, 2017). Cross validation, which determines how the model
will generalize to an independent dataset, was performed using K-fold
cross-validation. After building the model, classification was executed on
the pre-processed images. Accuracy assessments were performed on the
classified images to assess the results of the classification. A confusion
matrix was used to compute the Overall Accuracy (OA), Producer's Ac-
curacy (PA), User Accuracy (UA) and Kappa coefficient.

2.3.2. Estimation of water hyacinth biomass
A Field survey was carried out on the Volta lake to collect samples of

water hyacinth. An in-situ destruction measurement and inference from
remote sensing was applied in the estimation of the biomass. In all, 20
sample plots were randomly selected on the volta lake to collect the water
hyacinth. The point intercept method was used to acquire water hyacinth
samples from the study site and measure them in the field. The impor-
tance of the point intercept is to take measurements at regular intervals
or defined locations and avoid subjective selection of locations in the
field (Madsen, 1999). The points were generated at 300 m interval and a
Germain GPS was use to locate the points on the lake. Quadrants made
from polyvinyl chloride (PVC) measuring 1 m by 1 m summing up to an
area of 1 m2 was used, from which the water hyacinth was collected. The
wet weight of the water hyacinth for each plot was weighed with a mass
scale and the average biomass from the 20 plots were determined. The
Normalized Difference Vegetation Index (NDVI) is one of vegetation
indices that are used to identify physiological characteristics of vegeta-
tion and has been used to estimate vegetation parameters such as
chlorophyl content, biomass, and canopy cover (Frampton et al., 2013).
NDVI is a non-linear function which varies from -1 to 1, depending on
amount of greenness (chlorophyl) in the surface/feature.

Typical NDVI values for vegetation ranges from 0.1 to 7. According to
Pabi andAkpabey (2017),water hyacinthon theVoltaRiverhas thehighest
NDVI compared to the other floating and submerged aquatic weeds. In this
4

study, the NDVIwas used to calculate the amount of water hyacinth in each
of the images. The range of NDVI values for water hyacinth was first iden-
tified by superimposing the representative sample points of the water hy-
acinthon theNDVI of the 2020 image. The correspondingNDVI values from
the Landsat pixels were then computed. The pixels within this range were
then separated and the surface area covered by water hyacinth was
computed from the total count of the number of pixels.

3. Results

3.1. Accuracy assessment of LULC classification

Tables 3, 4, and 5 show the accuracy matrix for the three classifica-
tions. Among the three classifications, the 1975 classification results
produced an OA of 86.54%, being the highest among the three classifi-
cations. The 2003 and 2020 classifications hadOAs of 79.08%and 84.7%,
respectively. The highest PA (96.09%) was produced from water class on
the 2020 image, while water produced the highest UA of 100% on the
1975 image. Farmland/gallery vegetation had the lowest PA (66.67%)
and lowest UA (73.33%) from all the three classifications. Within the in-
dividual years, PAs and UA were generally moderate in the 2003. The
water class had the highest performance, across the three classifications.
The classifications showed moderate UAs for aquatic weeds between
76.19 from the 1975 image to 83.82% from the 2020 image. PAs for
aquatic weeds were relatively higher than the UAs ranging between
81.15% from the 2003 image to 89.38% from the 2020 image. In general,
the 2020 image had the highest performance in terms of UA and PA.

3.2. Changes in LULC in the Volta River

The Figure 3 shows the area of coverage of each LULC for the periods
of study; 1975, 2003 and 2020. Water was the most dominant class of the
study area throughout the years of study. It covered a surface area of
11122 ha (45%) in 1975, 7906 ha (32%) in 2003 and 8809 (40%) ha in
2020. This shows a decrease of 13% in water surface area between 1975
and 2003 and slight increase of about 8% between 2003 and 2020. The
farmland/gallery vegetation formed the second dominant LULC in area,
occupying a surface area of 9940 ha (40%) in 1975, 7368 ha (30%) in
2003 and then 7109 ha (29%) in 2020. The trend of changes in surface
area of farmland/gallery vegetation was somehow different from that of
water since there was a slight decrease in area between 2003 and 2020
for the farmland/gallery vegetation, while water area increased within
this period. However, the extent of changes between 1975 and 2003were
larger than those between 2003 and 2020 for both LULC classes. Set-
tlement showed progressive increase in area throughout the years of
study. It changed from a coverage of 1,829 ha (7%) in 1975 to 3,590 ha
(14%) in 2003 to 4,452 ha (18%) in 2020, corresponding to an increase
of 2,623 ha, which was almost 45% increase within the 45 years of study.
Aquatic weeds also showed considerable changes during the years of
study, increasing in surface area between 1975 and 2003, but decreasing
between 2003 and 2020.

The gains and losses of each LULC are also shown in Figures 4a and 5a.
Between1975and2003, farmland/gallery vegetation lost 7767haof their
original areabut gain3518haofnewareas.Water also lost6321haof their
original area but gained 3156 ha of new areas. Settlements and aquatic
weeds had the least losses, of 1400 and 944 ha respectively, but then
gainednewareaswhichwereabout 2-folds and7-folds respectivelyhigher
than their loses. Aquatic weeds on the other hand had the highest loss of
area between 2003 and 2020, losing 2931 ha of area but gaining 1426 ha,
that is 50% net loss. Farmland/water weeds had the second largest loss
among the classes but also made the largest gain. The loss was however
larger than the gain, resulting in a net loss of 259 ha. Both settlement and
water had net gains between the time interval, with settlements gaining
862 ha additional area whiles water gained 903 ha additional area.
Figures 4b and 5b, c show the gains and losses (transitions) of the LULC for
the periods 1975–2003, 2003–2020 and 1975 to 2020.



Figure 2. Flowchart of methodology used in producing LULC maps and estimation of the quantity of water hyacinth.

Table 3. Accuracy assessment results for the 1975 classification.

OA ¼ 86.54% Kappa ¼ 0.8128

Aquatic weeds Farmland/gallery
vegetation

Settlement Water Total User
Accuracy (%)

Aquatic weeds 32 9 1 0 42 76.19

Farmland/gallery
vegetation

7 44 9 0 60 73.33

Settlement 0 13 88 3 104 84.62

Water 0 0 0 106 106 100.00

Total 39 66 98 109 312

Producer Accuracy (%) 82.05 66.67 89.80 97.25
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3.3. Spatial temporal variations of aquatic weeds

The 1975 classification (Figure 6) showed that, indeed aquatic weeds
have existed in the Lower Volta even before 1975, occurring around
some defined areas of the river, mostly close to the communities along
5

the river. The weeds occurred near the Akuse section of the river, close to
the location where the facade of the Kpong dam is currently situated. It is
however worth noting, that the Kpong reservoir did not exist around this
time. The water and farmland/gallery vegetation classes were dominant
in this area as compared with the aquatic weeds. Another area where the



Table 4. Accuracy assessment results for the 2003 image classification.

OA ¼ 79.08 Kappa ¼ 0.7097

Aquatic weeds Farmland/gallery
vegetation

Settlement Water Total User
Accuracy (%)

Aquatic weeds 366 77 2 26 471 77.71

Farmland/gallery
vegetation

61 295 37 1 394 74.87

Settlement 6 13 154 1 174 88.51

Water 18 0 0 100 118 84.75

Total 451 385 193 128

Producer Accuracy (%) 81.15 76.62 79.79 78.13

Table 5. Accuracy assessment results for the 2020 image classification.

OA ¼ 84.7 Kappa ¼ 0.7856

Aquatic weed Farmland/gallery
vegetation

Settlement Water Total User
accuracy (%)

Aquatic weed 404 66 8 4 482 83.82

Farmland/gallery
vegetation

42 291 45 0 378 76.98

Settlement 3 28 289 1 321 90.03

Water 3 0 0 123 126 97.62

Total 452 385 342 128

Producer accuracy (%) 89.38 75.58 84.50 96.09

Figure 3. Area covered by each LULC within the study years.

C. Nyamekye et al. Heliyon 7 (2021) e07080
weeds existed was near the Adidome community, almost midway along
the stretch of the river. Aquatic weeds also occurred around Ada and Ada
Foah, within the delta. Aquatic weeds were however, less conspicuous
around the Atimpoku community, and most of the other sections of the
river. Water and farmland/gallery weeds were however dominant along
these other sections.

The 2003 classification (Figure 7) had a different narrative of the
weeds, in terms of the spatial variations. From the results of the classi-
fication, aquatic weeds were present along the whole stretch of the river
and conspicuous near major communities. Cluster of the weeds appeared
at Atimpoku section of the river, where they were distributed at both
sides of the river as well as around the islets. Compared to the 1975
image (Figure 6), the weeds covered most of the smaller channels of the
6

river at this section, with the water only visible along the central course.
Cluster of aquatic weeds also appeared in Kpong, covering some distance
from the bank into the river. Additionally, aquatic weeds had spread
along the stretch between the Kpong township and the river, reaching the
point where the intake of the GhanaWater Company is currently located,
and has also spread to the other bank of the river. Other new area
location of the weeds included Agordome and Agotaga communities. The
weeds also became widespread within the delta, covering most of the
islets. The results also showed an expansion of the Kpong, Big Ada and
the Ada Foah communities (Figure 7).

The results of the 2020 classification (Figure 8) showed some simi-
larities in the distribution of weeds when compared with the 2003
classification (Figure 7). However, there were some reductions in the



Figure 4. a: Gains and Losses between the LULC between 1975 and 2003. b:
LULC change map between 1975 and 2003.
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cluster of the weeds along some of the locations. For example, the left
bank of the river at Atimpoku show less distribution of weeds on the
2020 image compared to the same area in the 2003 image. Also, isolated
weeds found on the main river course around the same area visibly dis-
appeared, uncovering the water beneath (Figure 8). A similar observation
can be found within the delta of the river, where some of the weeds gave
way to water. There was also reduction in weeds around Agordome and
Agotaga communities when the 2020 image is compared with 2003
image.
3.4. Net gains and loss in aquatic weeds

The results show that aquatic weeds had a net gain of 4122 ha be-
tween 1975 and 2003 (Figure 9) but a loss 505 ha between 2003 and
2020 (Figure 10). The gain in area can be attributed to the construction of
the Kpong dam, which caused a major ecological change in the LVR area.
Increased anthropogenic activities including settlements and markets
around the river have also been found to contribute to ecological changes
that favours the growth of the aquatic weeds (Andah et al., 2003). The
decrease in area of aquatic weeds can, however, be attributed to the
Weed Management Activities being undertaken on river. These opera-
tions of the weed managers reflected in the direct gain in area by water,
as the weeds were removed from some area of water they covered in the
previous image. From Figure 9, the farmland/gallery vegetation
7

contributed about 3500 ha in the net gain for aquatic weeds, while water
contributed 1925 ha and settlement 281 ha. The net loss of water needs
between 2003 and 2020 mostly transited to water (896 ha) and farm-
land/gallery vegetation (455 ha).

3.5. Coverage of water hyacinth biomass

Water hyacinth can grow up to a meter length and hold in sediment
making the plant static (Omondi et al., 2019). The reproduction rate is
rapid and the seeds are versatile, thus may remain dormant even in harsh
conditions up to about 20 years. Casco et al. (2014) found that, in a year,
a single plant can cover up to 0.06 ha. The assessment performed in this
study indicated that NDVI of water hyacinth ranged between 0.6259 and
0.7156, with a total count of 16610 pixels. This covers a total area of 1,
495 ha representing 36% of all the aquatic weeds in 2020. This repre-
sents a significant increase in the coverage of water hyacinth. Consid-
ering that Pabi and Akpabey (2017) found that water hyacinth covered
28% of all the floating water weeds when they used NDVI from high
resolution Geo-eye images to map aquatic weeds on the river. The
biomass estimated from water hyacinth in 2020 image was 21.5 kg/m2.
Management of the weeds has been somewhat successful but expensive,
considering the current methods and strategies being implemented.

Therefore, the management and control of the weeds can be com-
plemented by using sustainable approaches by first considering theweeds
as biomass resources and secondly, implementing modern techniques to
convert them to bioenergy. In view of the fact that water hyacinth cannot
be completely eradicated, the continuous bioenergy production from the
water hyacinth could reduce the over reliance on the use of fossil fuel
sources, reduce the high costs associated with the management of the
weeds and enhance other socio-economic activities in the communities
along the Volta river. This could therefore be achieved through anaerobic
degradationprocesses, coupledwithassociatedbenefits suchasutilization
of the digestate as biofertilizer to enhance crop production.

4. Discussion

The study utilized the RF machine learning algorithm and Landsat
images to map the spatial and temporal changes of aquatic weeds on the
Lower Volta River. The RF algorithm was consistent on all the images
from the three sensors, achieving OAs of 80% and above and kappa co-
efficients of 0.7 and above. These accuracies underscore the robustness of
RF in mapping aquatic weeds with RF as found by other studies. For
example, (Chabot et al. (2018) produced OA and kappa of 92% and 0.88
respectively, when they applied the RF algorithm on unmanned aerial
vehicle (UAV) images to monitor emergent and submerged invasive
aquatic weeds in shallow waters of the Trent-Severn Waterway in
Ontario, Canada. Similarly, Singh et al. (2020) produced OAs of above
80% when RF was used to map the variations of water hyacinth on
different water bodies in South Africa. The UAs of water weeds obtained
in this study (84–87%), were also within the range of accuracies obtained
by these studies (Chabot et al., 2018; Singh et al., 2020).

The successful discrimination of aquatic weeds from other vegetation
and different LULCs indicate the ability of the three Landsat sensors to
provide primary data for mapping aquatic weeds. Despite having only
four spectral bands, the MSS performed accurately in unison with the
performances ETMþ and OLI that have greater number of bands. This
shows the capabilities of the MSS as part of the continuity of the Landsat
programme. Other studies that used the ETMþ and OLI for mapping
aquatic weeds also mentioned the added advantage of the extra bands,
which helped to discriminate different species of aquatic weeds (Dube
et al., 2017).

In addition to the primary bands, derivatives of these sensors such as
NDVI have been successful in estimating vegetation parameters, partic-
ularly biomass as has been performed in this study. Shekede et al. (2008)
also utilized NDVI from different Landsat sensors to estimate biomass
over Lake Chivero in Zimbabwe.



Figure 5. a: Gains and Losses between the LULC between 2003 and 2020. b: LULC change map between 2003 and 2020. c: LULC change map between 1975 and 2020.

Figure 6. Spatial distribution of Aquatic weeds in 1975.
Figure 7. Spatial distribution of Aquatic weeds in 2003.
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Aquatic weeds started becoming dominant on the Volta River after
the construction of the Akosombo Dam in 1965 (Pierce and Opoku, 1971)
and this study indicated the weeds covered an area of about 1400 ha 10
years later. According to Odei (1987), the weeds were dominant at the
estuary at Ada, within the delta where the river meets the sea. This
observation was captured by the classification of the 1975 satellite image
which indicated clusters of aquatic weeds within the delta. VRA (2015)
indicated that, the problem of aquatic weeds became a menace around
1998, with the spread of water hyacinth around the Kpong reservoir and
other areas. This account was corroborated by findings from this study,
8

which showed that aquatic weeds had increased in area by 375% be-
tween 1975 and 2003 and 275% between 1975 and 2020.

Earlier studies that assessed the growth and spread of aquatic weeds
on the water indicated farming and expansion of settlements as some of
the LULC factors that contributed to the increase in the spread of water
weeds (Odei, 1987; Pabi and Akpabey, 2017).

On the other hand, analysis from this study showed that the coverage
of aquatic weeds had declined by 1500 ha (26%) between 2003 and
2020. This reduction could be attributed to the many aquatic weeds
management activities that have been rolled out in recent times. For
example, VRA (2015) indicated that glyphosate was being used as



Figure 8. Spatial distribution of Aquatic weeds in 2020.

Figure 9. Contribution of the net changes in aquatic weeds between 1975
and 2003.

Figure 10. Contribution of the net changes in aquatic weeds between 2003
and 2020.
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chemical control of water hyacinth in the Lower Volta, and expected to
reduce the intensity of infestation of water hyacinth. The VRA also
indicated the initiation of a mechanical dredging and harvesting system
to control the spread of weeds. Some observations made during the data
collection were that manual removal of aquatic weeds also do take place
regularly, especially around the Kpong area. These management
9

practices have accounted for the gradual decline in the aquatic weeds on
the water, although these methods appear to be unsustainable.

5. Conclusion

In summary, the study has demonstrated the capabilities of a com-
bined remote sensing data and machine learning in generating infor-
mation about the spatial and temporal distribution of aquatic weeds such
as water hyacinth on the Lower Volta River. The results show that, the
1975 classification produced the highest OA of 86.54 %, this was fol-
lowed by the 2020 classification attaining an OA of 84.7 % with 2003
being the least with an OA of 79.08 %. The water class attain the highest
PA and UA of 96.09 % and 100 % for 2020 and 1975 image respectively.
Additionally, the LULC classification show that water covers an area of
45 %, 32 % and 40% in 1975, 2003 and 2020 respectively. The aquatic
weed experienced a net gain of 4122 ha between 1975 and 2003 but net
loss of 505 ha between 2003 and 2020. Interestingly, the water hyacinth
represents 36 % of the total aquatic weeds in the study area and the
biomass estimated from the water hyacinth was 21.5 kg/m2. Such in-
formation will be beneficial to both ongoing and near future manage-
ment of the weeds by using sustainable strategies. The findings can be
used in planning out the scale of resources, such as estimation of biomass,
which will be required for the application of a specific control measure at
a given location and point in time as well as assessment of progress being
made by existing weeds management programs. It could consequently
help in time-based assessment with regards to the efficiency and effec-
tiveness of a control program. Furthermore, the results of this study, and
its methodological approach can be used to monitor LULC activities that
impact on the growth and variations of aquatic weeds such as water
hyacinth, especially crop farming, settlements and provide supporting
information related to activities of fish farming on the Volta river.
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