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Objectives. 18F-FDG PET scan is one of the most frequently used neural imaging scans. However, the influence of age has proven
to be the greatest interfering factor for many clinical dementia diagnoses when analyzing 18F-FDG PET images, since radiologists
encounter difficulties when deciding whether the abnormalities in specific regions correlate with normal aging, disease, or both. In
the present paper, the authors aimed to define specific brain regions and determine an age-correctionmathematicalmodel.Methods.
A data-driven approach was used based on 255 healthy subjects. Results.The inferior frontal gyrus, the left medial part and the left
medial orbital part of superior frontal gyrus, the right insula, the left anterior cingulate, the leftmedian cingulate, and paracingulate
gyri, and bilateral superior temporal gyri were found to have a strong negative correlationwith age. For evaluation, an age-correction
model was applied to 262 healthy subjects and 50 AD subjects selected from the ADNI database, and partial correlations between
SUVRmean and three clinical results were carried out before and after age correction. Conclusion.All correlation coefficients were
significantly improved after the age correction. The proposed model was effective in the age correction of both healthy and AD
subjects.

1. Introduction

The influence of age has been proven to be the greatest
interfering factor for many clinical dementia diagnoses [1].
For Alzheimer’s disease (AD), the most common (60%–70%)
form of chronic neurodegenerative dementia in the elderly
[2], advanced age is commonly associated with adverse
changes in the brain that are reflected in different imaging
modalities such as magnetic resonance imaging (MRI), func-
tionalMRI (fMRI), and positron emission tomography (PET)
[3–6]. Thus, it is important for clinics to eliminate the influ-
ence of age in order to determine whether the abnormalities
in specific regions correlate with normal aging, disease or
both. For instance, several research studies have reported
that the grey matter volume and cortical thickness within

certain regions-of-interest (ROIs) such as the hippocampus,
the inferior frontal, superior frontal, middle frontal, and
temporal cortices decreasedwith aging, based on the findings
of structural magnetic resonance imaging (MRI) [7–10]. The
amyloid 𝛽 level, as measured by the standardized uptake
value ratio (SUVR) in 11C-Pittsburgh Compound B (PiB)
PET scans was found to increase abnormally after the age of
70 in apolipoprotein E (APOE) 𝜀4Genotype carriers [11].The
important parameter of fractional anisotropy (FA, a measure
of the degree of anisotropy of a diffusion process) was found
to exhibit a negative linear correlation with age in most white
matter regions, in particular in the superior corona radiata
[7].

Currently, 18F-Fluorodeoxyglucose (FDG) PET is regard-
ed as a “Gold Standard” for AD diagnosis, since its predictive
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value enables detection of abnormal cerebral metabolism
during the earliest stages of dementia or even before the
dementia is present [4, 12–14]. It is a major challenge for
radiologists to eliminate the influence of age from 18F-
FDG PET images. For this purpose, a few research groups
have investigated the manner in which age-influenced brain
metabolism occurs and within which brain regions. For
example, strong negative correlations were found between
metabolism and normal aging mainly in the frontal and
temporal lobes [15–22], suggesting that tissue shrinkage or
loss and glucose metabolism reduction could be accelerated
by normal aging. In other studies [23–25], regions within
a default mode network (DMN) including the temporal,
parietal, and prefrontal areas and the posterior cingulate
cortex were found to be significantly reduced with age. In
view of these findings, it is reasonable to suggest that image
intensity of certain regions, especially the prefrontal and
temporal areas,may exhibit double the effect of normal aging.

More specifically, in [26], the authors applied an age-
correction criterion [27] based on the results of the Montreal
Cognitive Assessment (MoCA) according to the circum-
stance that predetermined the age range of the patient. Sim-
ilar criteria can be found in [28]. Although these corrections
were not based directly on brain images, the line of thought
was illuminating. Subsequently, [29] using MRI, a simple
linear model was proposed to correct the effect of age on
grey matter (GM) voxel values by determining a regression
coefficient 𝛽

𝐶
between age and each voxel coordinate of the

separate healthy control group. This 𝛽
𝐶
value indicated the

declination speed of the corresponding voxel with increasing
age. The same model was used for the MRI GM voxel values
and the 18F-FDG PET intensity values by [14]. Moreover, as
proposed in previous studies, it was unnecessary to apply
the linear correction model to all the voxels within the
images, because not all regions correlated significantly with
age [17, 19–21]. However, there have been a lack of studies
investigating the exact brain regions in 18F-FDG PET images
that have negative relationships with age, and these have
defined any age-correction mathematical models.

Therefore, the present study aimed to (1) use a data-
driven method to explore brain regions that have a strong
negative linear relationship with age in 18F-FDG PET images
and to then define an age-correction mathematical model.
Subsequently, the intent was to (2) validate those brain
regions and the mathematical modal using statistical analysis
on both healthy and AD subjects.

2. Materials and Methods

2.1. Datasets. The two datasets used in this study were as
follows: (1) 255 healthy control 18F-FDG PET images were
from Huashan Hospital, Fudan University, Shanghai, China;
(2) 262 healthy control and 50 AD 18F-FDG PET images were
selected from Alzheimer’s Disease Neuroimaging Initiative
(ADNI).

For the first dataset, data collection was approved by
the Medical Ethics Committee of Huashan Hospital, Fudan
University, Shanghai, China. All subjects signed agreements

to participate in this study. The sample group was comprised
of 127 female and 128male healthy subjects (ages: 20–79), who
had no current axis 𝐼 psychiatric disorder, no psychotropic
medication use or hormone use within the prior 6 months,
and no history of head injury or alcohol abuse.These subjects
received brain 18F-FDG PET scans. No occult 18F-FDG-avid
carcinoma was determined in any of the included subjects,
based on the brain PET examination. Blood glucose levels
were monitored prior to 18F-FDG injection (5.5 ± 0.8mm for
males and 5.3 ± 0.9mm for females).

The 131 male and 131 female healthy subjects (age:
56.5–80) were selected from the ADNI database. Further-
more, the 25male and 25 female AD subjects (ages: 59.3–79.8)
were also selected from the ADNI database. Table 1 shows the
basic information for the datasets.

2.2. Image Acquisition. All subjects who underwent 18F-FDG
PET brain scans at Huashan Hospital were in a resting
state. The 18F-FDG PET whole-body scans followed the
brain scans in case of these subjects (1.5min/bed, 5 beds).
A 222–296MBq injection of 18F-FDG was administered
intravenously under standardized conditions (in a quiet,
dimly lit room with the patient’s eyes open). A 10min 3-
dimensional brain emission scan was acquired at 45min
after injection with a state-of-the-art PET scanner (Siemens
Biograph 64 HD PET/CT, Siemens, Germany). During the
scanning procedure, the subjects’ heads were immobilized
using a head holder. Attenuation correction was performed
using a low-dose CT (150mAs, 120 kV, Acq. 64 × 0.6mm)
prior to the emission scan. Following corrections for scatter,
dead time, and random coincidences, PET images were
reconstructed by 3-dimensional filtered backprojection and
a Gaussian Filter (FWHM 3.5mm), providing 64 contiguous
transaxial slices of 5mm thick spacing.

For images downloaded from the ADNI database,
detailed information regarding the data acquisition protocol
is publicly available on the LONI website (https://ida.loni.usc
.edu/login.jsp). Briefly, PET images from the ADNI database
were acquired from a variety of scanners nationwide using
either a 30-minute six frame scan or a static 30-minute single
frame scan, both acquired 30–60 minutes after injection. For
the former case, the dynamic scans were coregisteredwith the
first frame and averaged to create a single average image.

2.3. Image Preprocessing. The aim of preprocessing was
to remove unwanted distortions such as low-frequency
background noise, to spatially normalize the images into
a standard space defined by template images and to
enhance important image features prior to further compu-
tational processing. In the present study, all of the images
were preprocessed using Statistical Parametric Mapping 8
(SPM8), a Statistical Parametric Mapping software pack-
age designed for the analysis of brain imaging data se-
quences (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/),
implemented in MATLAB R2014a. The preprocessing was
mainly composed of normalization and smoothing. The
details of image preprocessing can be found in the following
paragraph.

https://ida.loni.usc.edu/login.jsp
https://ida.loni.usc.edu/login.jsp
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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Table 1: Demographic data and cognitive performance of the datasets.

Parameter Healthy (𝑛 = 255) ADNI healthy (𝑛 = 262) ADNI AD (𝑛 = 50)
Demographic data

Age (years) 49.2 ± 16.7 72.9 ± 4.5 73.1 ± 5.6
Age grades

20–30 44 - -
31–40 44 - -
41–50 42 - -
51–60 45 3 3
61–70 50 80 10
71–80 30 179 37

Sex (M/F) 128/127 131/131 25/25
EDU - 16.3 ± 2.7 15.1 ± 3.0
ApoE4 - 0.3 ± 0.5 1.0 ± 0.7

Clinical scales
MMSE - 29.0 ± 1.2 23.2 ± 2.0
CDRSB - 0.0 ± 0.2 4.1 ± 1.3

FDG-PET
FDG - 1.3 ± 0.1 1.1 ± 0.1

EDU: education; MMSE: minimental state exam; CDRSB: clinical dementia rating sum of boxes; FDG: average FDG-PET of angular, temporal, and posterior
cingulate.

All original DICOM images from each subject were
combined into one NIfTI format file using a tool in
MRIcron called DCM2NII (available at http://people.cas
.sc.edu/rorden/mricron/index.html). For each subject, the
PET image was first normalized to theMontreal Neurological
Institute (MNI, McGill University, Montreal, Canada) space
through the “Normalize: Estimate and Write” methodology.
During this step, a reference PET template provided by SPM
software was used as the standard space.The nonlinear warp-
ing normalization was carried out automatically following
determination of the optimum 12-parameter affine transfor-
mation. Subsequently, the normalized images prefixed with a
“w” were smoothed using an isotropic Gaussian smoothing
kernel with the full-width at half maximum (FWHM) of
10 × 10 × 10mm3. Thus, the images’ noise-signal ratio can
be improved by these standardized processing steps. The
resulting images had 91 × 109 × 91 voxels with a voxel size of
2 × 2 × 2mm3. Next, the preprocessed FDG PET 3D images
were concatenated to one 4D image file using the DCM2NII
tool in preparation for the following data analysis.

2.4. Exploration of Brain Regions Displaying Negative Rela-
tionships with Age. To explore brain regions with nega-
tive relationships with age, three steps were used in this
section: (1) A data-driven method, Functional MRI of the
Brain’s (FMRIB’s) Linked Independent Component Analysis
(FLICA), was used to obtain an indication of the initial brain
regions that had a strong negative relationship with age. (2)
To obtain a more accurate indication of age-related brain
regions, different thresholds of voxel valueswere set and com-
pared correlations between SUVR mean and age using Pear-
son correlation. (3) Optimized brain regions were defined
after the application of suitable threshold voxel values.

2.4.1. Exploration of the Initial Age-Related Brain Regions
Using FLICA. To define initial brain regions, a data-
driven approach—FLICA—was used. Independent compo-
nent analysis (ICA) is a computational model for separating
a multivariate signal into additive subcomponents. Applied
in the spatial dimension, it is efficient for finding meaningful
and spatially independent components by assuming that
the subcomponents are non-Gaussian distributed spatial
sources and thus they are likely to represent real underlying
structured features in the dataset. This is because, during
linear mixing processes, it is likely that the non-Gaussian
independent sources can turn into more Gaussian observed
signals. Consequently, seeking non-Gaussian sources can be
an unsupervisedmeans of revealing the original independent
sources.

FLICA is an advanced independent component analysis
(ICA) approach implemented in FSL running as a MATLAB
toolbox in the Linux system [30, 31]. FLICA is an entirely
data-driven approach that can comodel multiple imaging
modalities. Its main goal is to model the imaging data as
a set of interpretable features (independent components),
most of which characterize biophysically plausible modes
of variability across all of the subjects’ images. Unlike in
a principal component analysis, the mixing matrix vectors
of an ICA are not forced to be orthogonal to each other
and thus can explain common variance of variables exter-
nal to the ICA, such as age [32]. Linked ICA has also
been implemented in age studies in earlier papers [32, 33].
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA).

In the present study, the dataset from Huashan Hospi-
tal was analyzed using FLICA, which was run totally on
MATLAB R2014a installed in a Linux environment. The
comprehensive library of analysis tools for brain imaging

http://people.cas.sc.edu/rorden/mricron/index.html
http://people.cas.sc.edu/rorden/mricron/index.html
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA
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Table 2: Information obtained from an IC output by FLICA.

Parameters Meaning Utility in this study

IC value
IC value: representing the weight of each

subject’s intensity explained by the
corresponding IC

Used to find out the IC that has the
strongest negative relationship with age

(see results in Section 3.1.1)

SI
Spatial information: representing the
regions that correspond to each IC

(Figure 1)
Used to define initial brain regions

VV
Voxel value: the probability operation

results of each voxel within the regions of
IC (Figure 1)

-

𝜎 The thresholds of VV
Used to determine the more accurate
age-related regions (see details in

Section 2.4.2)

L R
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(a)

−12 mm −9mm

+3mm+0mm

−6mm

+6mm

−3mm
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Figure 1: Anatomic structure of the brain regions corresponding to the significant age-related IC3 (pseudocolor) obtained across all 255
healthy subjects.

data, FSL, was also required for the procedure.The combined
4D image file was converted to a readable format in FSL
(∗.nii.gz) by the DCM2NII tool. Following data preparation
and creation of the environmental variables and options,
the analysis was run with all automatic calculations. When
finished, the output was saved safely, including a set of
independent components, in a sensible order (either in the
order of total energy or tomatch with a previous similar run),
with the relevant spatial maps.

The independent components (ICs) output from FLICA
contained three types of information: IC values, spatial
information, and voxel values (see Table 2). The IC values
were represented as an𝑀×𝑁matrix where𝑀 is the number
of the subjects and 𝑁 is the number of ICs obtained. The
spatial information (SI) and corresponding voxel values (VV)
of the ICs were combined in a 4D nii formatted file that
could be opened and viewed as a common brain image where
voxel values can be displayed in pseudocolor (Figure 1). Note
that the voxel value is the probability operation result of the
coordinate of each voxel. That is, the possibility of the region
having a strong relationship with age becomes larger as the
voxel values of the corresponding coordinates become larger.
Hence, an appropriate threshold of VV, 𝜎, is required to be
defined in order to obtain an accurate indication of affected
brain regions.

2.4.2. Further Exploration of the Final Age-Related Brain
Regions by Defining 𝜎. Three steps were used to achieve
appropriate values of 𝜎:

(I) Extraction of initial brain regions: for 255 image
data from Huashan Hospital, SI corresponding to the
IC was extracted as initial brain regions using the
Automatic Anatomical Labelling (AAL) template in
the Montreal Neurological Institute (MNI) standard
space.

(II) Definition of 𝜎: the initial brain regions were then
optimized by setting different thresholds for 𝜎. In
particular, 𝜎 was set to start as 1 and end as the
maximal voxel value, 𝑋. To generate an optimized
brain region mask for each 𝜎 separately, all voxels
whose values were no less than 𝜎 were set as 1 and
others as 0. Next, data from the 255 healthy subjects
were utilized to calculate SUVR mean [34] of the
targeted brain regions generated with different 𝜎, by
using the paracentral lobule (AAL 69 and AAL 70) as
the reference regions [35].The formula to form SUVR
mean is [34]

SUVR mean =
𝐼avg ROIC

𝐼avg ref
, (1)
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where 𝐼avg ROIC is the average intensity of the brain
regions and 𝐼avg ref is the average intensity of the
reference region.

(III) Comparison experiments: subsequently, Pearson cor-
relation [36] was used to analyze correlations between
age and SUVR mean under different 𝜎 and the most
appropriate 𝜎 was selected to achieve the strongest
correlations. In order to reduce the influence of
accidental factors to a minimum, 250 subjects were
selected randomly from a total of 255 subjects for
3,000 times and the Pearson correlation analysis was
carried out separately on these data. The statistical
results, including the correlation coefficients 𝑅 and 𝑝
values, were taken as an average of the 3,000 results.

2.5. Definition of the Age-Correction Mathematical Model.
With an appropriate 𝜎, Pearson correlation analysis was
carried out again on the same 255 healthy subjects in order
to obtain the linear coefficient 𝛽𝐶. The entire process was as
follows:

(I) The linear regression coefficient 𝛽
𝐶
between age and

the corresponding set of SUVRmeans was calculated.
Thus, the development of SUVRmean during normal
aging can be described as

SUVR mean = 𝛽
𝐶
× age + 𝑝

2
. (2)

(II) Similar to Section 2.4.1, the linear regression process
was repeated for 3,000 times and the 𝛽

𝐶
value was

taken as an average of the 3,000 results.
(III) Finally, to carry out the age correction, a model

similar to the one proposed in [29] was defined, and
the amount (Δ) assumed to have been affected by the
subject’s age since birth (i.e., aged 0) was calculated:

Δ = 𝑌 (agesubject) − 𝑌 (age0) = 𝛽𝐶 × age. (3)

Then the target index was then corrected by subtracting this
amount, as follows:

Indexcor = Indextar − Δ. (4)

2.6. Evaluation of the Brain Regions and Age-CorrectionMath-
ematical Model. To validate the effectiveness of the brain
regions and age-correction mathematical model defined in
the present study, they were evaluated using another dataset
that included 262 healthy subjects and 50 AD subjects from
the ADNI.These two datasets were firstly preprocessed using
the same approach as in Section 2.3. Following preprocessing,
the evaluation was composed of four tests.

(I) In the first test, using 262 healthy subjects, the corre-
lations were calculated between age and SUVR mean
in the final brain regions from Section 2.4.2. It was
verified whether negative relationships between age
and SUVR means also occurred in the new dataset.
Pearson correlation analysis was used in this test.

(II) In the second test, 262 healthy subjects were used
to test the effectiveness of the age-correction math-
ematical model. Pearson correlation analysis was also
used to compare negative relationships between age
and SUVR means before and after correction. As
expected, the relationships should be weaker after
correlation and the slope should be flat.

(III) In the third test, to visualize the changes before and
after corrections, a case study with one healthy and
one AD subject was evaluated.

(IV) In the fourth test, to verify whether the age-correction
mathematical model can be used for clinical pur-
poses, 50 AD subjects fromADNI were tested. Partial
correlation analysesweremade between SUVRmeans
and the outcomes of the two clinical scales, MMSE
and CDRSB, and an imaging index, FDG (Table 1),
and the results of the analyses were compared. During
the partial analyses, the effects of education, sex, and
ApoE4 status were removed as a set of controlled
variables.

(V) In the final test, to verify whether the diagnostic
accuracy of AD increased after the age correction in
these 50 subjects, we performed principal component
analysis (PCA) to extract image features and support
vector machine (SVM) for AD classification. For sim-
plification, linear kernel was used for SVM. 50 age-
matched healthy subjects were selected from the 262
healthy subjects, and classification was carried out on
these altogether 100 subjects before and after the age
correction, respectively.The results are represented as
the classification accuracy and ROC curves.

3. Results

3.1. Exploration of Brain Regions Displaying Negative
Relationships with Age

3.1.1. Exploration of the Initial Age-Related Brain RegionsUsing
FLICA. A total of 29 ICs were obtained from the FLICA
blind tests for any other demographics or cognitive factors
of the participants. According to the purpose of the present
study, there were 10 statistically significant components (𝑝 <
0.05), as shown in Figure 2. Amongst these, only the third
component (IC3) revealed a monotone linear decrease with
increasing age (although assessed using a quadratic fit) with
a clear practical significance (𝑅2 = 0.518, 𝑝 = 1 ×
10−40). 𝑅 squared values for all other components were
below 0.3. In the present study, both linear and quadratic
fits were used to assess the relationship between IC values
and age. As a result, the statistics of the quadratic fits were
generally better than those of the linear fits. Furthermore,
the curves of IC3 plotted with a linear fit and a quadratic
fit, respectively, virtually coincide with each other.Thus, only
results of quadratic fits are presented here. Moreover, the
statistical results (quadratic fits) between the ICs and age in
the 6 age groups of the 255 subjects are shown in Table 3.
Amongst these, the subgroups of age 51–60 and 61–70 reached
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Figure 2: Plots of the post hoc relationship between the ICs and age.
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Table 3: Statistical results (quadratic fits) between IC3 and age in the 6 age groups of the 255 subjects.

Subgroup Cumulation
Number 𝑝 𝑅 Number 𝑝 𝑅

20–30 44 0.077 0.117 20–30 44 0.077 0.117
31–40 44 0.672 0.019 20–40 88 2.49E−04 0.177
41–50 42 0.317 0.057 20–50 130 1.11E−09 0.277
51–60 45 0.032 0.151 20–60 175 4.37E−18 0.372
61–70 50 0.01 0.179 20–70 225 1.56E−31 0.472
71–80 30 0.71 0.026 20–80 255 1.22E−40 0.518

statistical significance (𝑝 < 0.05), while from the perspective
of cumulation, the correlation reached statistical significance
from the second age group 20–40.

Spatially, IC3 covered the regions encompassing:
Frontal Mid, Frontal Med Orb, Cingulum Ant, Cingulum
Post, Parietal Inf, Temporal Mid, Temporal Inf, Frontal Sup,
Frontal Sup Orb, Frontal Mid Orb, Frontal Inf Oper,
Frontal Inf Tri, Frontal Inf Orb, Insula, Cingulum Ant,
Hippocampus, ParaHippocampal, Lingual, Fusiform, Cau-
date, Temporal Sup, Temporal Pole Sup, and Temporal Mid
(all coordinating with the AAL template within the MNI
standard space). The anatomic structure of these regions is
shown in Figure 1.

The anatomic structure of the brain regions correspond-
ing to the significant age-related IC3 degradation is illustrated
in Figure 1. The voxel values ranged from 1 to 38. The
total voxel volume was 128271. Figure 1(a) was visualized
using the BrainNet Viewer package (https://www.nitrc.org/
projects/bnv/). Figure 1(b) was visualized using the RESTplus
toolkit (http://restfmri.net/forum/index.php?q=rest).

3.1.2. Further Exploration of the Final Age-Related Brain
Regions by Defining 𝜎. The automatic results from FLICA
showed that IC3 totally contained 128271 voxels, with voxel
values ranging from 1 to 38. The cumulative distribution of
the 38 voxel values is shown in Figure 3. It can be observed
that voxels with values of 1 to 9 occupied more than 50% of
the IC3 region. As 𝜎 increased, the brain regions narrowed
and the high voxel values were mainly concentrated in the
Frontal Inf Orb, Insula L, and Temporal Pole Sup L. When
𝜎 is 38, the volume of the narrowed brain regions was only 16.

The statistical results of the Pearson correlation analyses
between SUVR mean and age under different 𝜎 (average of
3,000 times) are shown in Table 4.The correlation coefficients
𝑅 became larger when 𝜎 increased and peaked at 𝜎 = 30
(𝑅 = −0.787;𝑝 value= 1.77𝐸−53).Thefluctuation of𝑅 values
can be observed when 𝜎 is greater than 30. According to
previous literature, this may be due to the fact that the SUVR
mean value of the IC3 region becomes vulnerable when 𝜎
is above the peak [34]. Note that all of these were negative,
indicating a negative correlation between SUVR mean and
age. In addition, all 𝑝 values were less than 1.00𝐸 − 35,
suggesting that the correlations were strong and statistically
significant for every 𝜎 from 1 to 38.

According to the analysis results listed in Table 4, 30 was
chosen as the best 𝜎 due to the strongest correlation. The
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Figure 3: Cumulative distribution of the voxel values.

final brain region was then defined. The number of voxels
with 𝜎 = 30 was 2031. The AAL regions covered by the final
brain region are shown in Table 5. The anatomic structure of
the final brain region with 𝜎 = 30 is shown in Figure 4. In
particular, areas corresponding to 𝜎 = 30 overlapped with
9 regions in AAL: Frontal Inf Orb L (15), Frontal Inf Orb R
(16), Frontal Sup Medial L (23), Frontal Med Orb L (25),
Insula R (30), Cingulum Ant L (31), Cingulum Mid L (33),
Temporal Pole Sup L (83), and Temporal Pole Sup R (84).

The final brain region included the bilateral orbital part
of inferior frontal gyrus (AAL 15 and AAL 16), the left medial
part of superior frontal gyrus (AAL 23), the leftmedial orbital
part of superior frontal gyrus (AAL 25), the right insula
(AAL 30), the left anterior cingulate (AAL 31), the leftmedian
cingulate, and paracingulate gyri (AAL 33), and bilateral
superior temporal gyri (AAL 83 and AAL 84).

3.2. Definition of the Age-Correction Mathematical Model.
The linearity coefficients 𝛽

𝐶
were calculated to create the

corresponding age-correction mathematical model. Similar
to the last step, random sampling was used in this step.
3,000 times of random sampling of 250 subjects from 255
healthy subjects were conducted and the linear regression
coefficients 𝛽

𝐶
between their SUVR mean and age were

calculated, respectively (the third column in Table 5). Thus,
the mathematical model can be described as

SUVR mean = −0.00415 × age + 𝑝
2
, (5)

where 𝛽
𝐶
= −0.00539 and 𝑝

2
was the constant term when

conducting the linear regression, which had no effect on the
definition of the age-correction model.

https://www.nitrc.org/projects/bnv/
https://www.nitrc.org/projects/bnv/
http://restfmri.net/forum/index.php?q=rest
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Table 4: Statistical results of Pearson correlation analyses between SUVR mean and age under different 𝜎.

𝜎 SUVR mean
𝑅 𝑝 value 𝛽

𝐶

Average ± Average ± Average ±
1 −0.69078 0.004314 2.15𝐸 − 36 4.63𝐸 − 36 −0.00201 1.95𝐸 − 05
2 −0.70248 0.004163 4.04𝐸 − 38 9.70𝐸 − 38 −0.00211 1.99𝐸 − 05
3 −0.70505 0.004088 1.72𝐸 − 38 3.48𝐸 − 38 −0.00213 1.93𝐸 − 05
4 −0.70732 0.003972 7.79𝐸 − 39 1.28𝐸 − 38 −0.00215 1.96𝐸 − 05
5 −0.71126 0.004001 1.98𝐸 − 39 3.59𝐸 − 39 −0.00219 2.00𝐸 − 05
6 −0.71589 0.003869 3.74𝐸 − 40 7.52𝐸 − 40 −0.00225 2.01𝐸 − 05
7 −0.71954 0.003853 9.62𝐸 − 41 2.11𝐸 − 40 −0.00231 2.07𝐸 − 05
8 −0.72191 0.004004 3.85𝐸 − 41 9.00𝐸 − 41 −0.00237 2.18𝐸 − 05
9 −0.72329 0.00385 2.37𝐸 − 41 3.97𝐸 − 41 −0.00243 2.16𝐸 − 05
10 −0.72439 0.003884 1.62𝐸 − 41 3.12𝐸 − 41 −0.00248 2.18𝐸 − 05
11 −0.72653 0.003878 6.94𝐸 − 42 1.41𝐸 − 41 −0.00254 2.28𝐸 − 05
12 −0.72982 0.003748 2.02𝐸 − 42 3.85𝐸 − 42 −0.00261 2.24𝐸 − 05
13 −0.73463 0.003733 2.96𝐸 − 43 5.12𝐸 − 43 −0.00268 2.30𝐸 − 05
14 −0.74075 0.003678 2.45𝐸 − 44 4.79𝐸 − 44 −0.00277 2.36𝐸 − 05
15 −0.74601 0.003559 3.03𝐸 − 45 7.36𝐸 − 45 −0.00285 2.35𝐸 − 05
16 −0.75093 0.00336 3.60𝐸 − 46 7.28𝐸 − 46 −0.00294 2.34𝐸 − 05
17 −0.75519 0.003342 5.89𝐸 − 47 1.09𝐸 − 46 −0.00303 2.37𝐸 − 05
18 −0.75828 0.003328 1.47𝐸 − 47 2.85𝐸 − 47 −0.00311 2.48𝐸 − 05
19 −0.76163 0.003282 3.26𝐸 − 48 8.33𝐸 − 48 −0.0032 2.52𝐸 − 05
20 −0.76479 0.003203 7.59𝐸 − 49 1.84𝐸 − 48 −0.00329 2.51𝐸 − 05
21 −0.76782 0.00321 1.84𝐸 − 49 4.31𝐸 − 49 −0.00338 2.64𝐸 − 05
22 −0.77095 0.003207 4.29𝐸 − 50 8.36𝐸 − 50 −0.00348 2.67𝐸 − 05
23 −0.77505 0.003002 6.17𝐸 − 51 1.09𝐸 − 50 −0.00359 2.69𝐸 − 05
24 −0.77783 0.003031 1.62𝐸 − 51 3.07𝐸 − 51 −0.00368 2.79𝐸 − 05
25 −0.78031 0.00297 4.91𝐸 − 52 1.11𝐸 − 51 −0.00377 2.81𝐸 − 05
26 −0.78164 0.002894 2.62𝐸 − 52 5.01𝐸 − 52 −0.00384 2.84𝐸 − 05
27 −0.78308 0.00284 1.16𝐸 − 52 2.12𝐸 − 52 −0.00392 2.90𝐸 − 05
28 −0.78417 0.002848 6.79𝐸 − 53 1.70𝐸 − 52 −0.00399 2.93𝐸 − 05
29 −0.78584 0.002811 2.76𝐸 − 53 6.28𝐸 − 53 −0.00408 3.05𝐸 − 05
30 −0.78679 0.002817 1.77E − 53 3.22E − 53 −0.00415 3.05E − 05
31 −0.7865 0.002822 2.18𝐸 − 53 4.26𝐸 − 53 −0.0042 3.16𝐸 − 05
32 −0.78558 0.002849 3.41𝐸 − 53 6.38𝐸 − 53 −0.00425 3.19𝐸 − 05
33 −0.78627 0.002835 2.26𝐸 − 53 4.77𝐸 − 53 −0.00433 3.28𝐸 − 05
34 −0.78522 0.002819 3.93𝐸 − 53 9.98𝐸 − 53 −0.00439 3.38𝐸 − 05
35 −0.77836 0.002867 1.15𝐸 − 51 2.35𝐸 − 51 −0.00441 3.41𝐸 − 05
36 −0.77042 0.002963 5.30𝐸 − 50 1.00𝐸 − 49 −0.00443 3.51𝐸 − 05
37 −0.76594 0.00296 4.43𝐸 − 49 8.09𝐸 − 49 −0.00453 3.59𝐸 − 05
38 −0.7343 0.003578 3.35𝐸 − 43 7.69𝐸 − 43 −0.00443 4.06𝐸 − 05
Note. All the results in Table 5 are the average of the 3000 Pearson correlations between SUVR mean and age.

3.3. Evaluation of the Mathematical Age-Correction Model in
Healthy Participants

3.3.1. Evaluation of the Final Brain Region in 262 Healthy
Participants. The validation results of the final brain region
with the new dataset are shown in Figure 5. The 𝑝 value was
5.39𝐸 − 04, indicating a statistically significant relationship
between SUVRmean and age, and the correlation coefficient
𝑅 = −0.212, indicating a negative correlation (see Figure 5).

3.3.2. Evaluation of the Mathematical Age-Correction Model
in 262 Healthy Participants. The validation results are shown
in Figure 6 as a scatter plot and fitting curves between
SUVR mean and age across the 262 healthy subjects before
(red and dashed) and after (green and solid) age correction.
The correlation between SUVR mean and age measured
using Pearson correlation analysis became weaker after age
correction (the Pearson correlation coefficient 𝑅 declined
from 0.212 to 0.027 while the 𝑝 value rose from 5.39𝐸 − 04
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Table 5: AAL regions covered by the final brain region with 𝜎 = 30.

Region number Region name MNI coordinates (mm)
𝑥 𝑦 𝑧

15 Frontal Inf Orb L −35.98 30.71 −12.11
16 Frontal Inf Orb R 41.22 32.23 −11.91
23 Frontal Sup Medial L −8.06 15.05 −11.46
25 Frontal Med Orb L −5.17 54.06 −7.40
30 Insula R 39.02 6.25 2.08
31 Cingulum Ant L −4.04 35.40 13.95
33 Cingulum Mid L −5.48 −14.92 41.57
83 Temporal Pole Sup L −39.88 15.14 −20.18
84 Temporal Pole Sup R 48.25 14.75 −16.86

−9mm

+9mm+6mm+3mm+0mm

−12 mm −6mm −3mm

Figure 4: Anatomic structure of the final brain region with 𝜎 = 30.
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Figure 5: Scatter plot and fitting curves between SUVR mean
formed from brain regions and age.

to 0.669), indicating that the influence of age on the regions
used to form the SUVR mean was weakened as a result of
age correction. Simultaneously, after correction, the slopewas
decreased to almost 0, indicating that the influence of age
on the SUVR mean values had been eliminated. In addition,
similar changes were found in the 𝑝 values and Pearson
correlation coefficients 𝑅 in both age groups of the 252
healthy subjects after age correction (the Pearson correlation
coefficients 𝑅 declined from 0.208 to 0.063 for age group
61–70 and from 0.171 to 0.07 for age group 71–80 while the 𝑝
value rose from 0.059 to 0.573 for age group 61–70 and from
0.022 to 0.353 for age group 71–80).

3.3.3. A Qualitative Case Study. To visually demonstrate the
correction results visually, one typical subject was selected
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Age grade Number Before correction After correction

61–70 80 (3) p 0.059 p 0.573
R −0.208 R −0.063

71–80 179 p 0.022 p 0.353
R −0.171 R −0.07

Figure 6: Scatter plot and fitting curves between SUVR mean and
age across the 262 healthy subjects before (red and dashed) and after
(green and solid) age correction. In addition, the statistical results of
the age correction in the two age groups of the 252 healthy subjects
are presented below.

from each of the two groups (healthy group and AD group)
and the age-correction model was applied on all the voxels
within the final brain region (the subject selected from the
healthy group was aged 78.3 and the other subject selected
from the AD group was aged 58.4). As shown in Figures
7(a) and 7(c) the origin anatomic structures of the final
brain region are extracted from the healthy and AD subject,
respectively. The corrected anatomic structures of the final
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Figure 7: Visual result demonstration of a qualitative case study.

brain regions extracted from the healthy and AD subject
are shown in Figures 7(b) and 7(d), respectively. The mean
intensities of these two subjects were very similar (0.6180 and
0.6144, resp.). The age correction results of the two subjects
are shown in Figures 7(b) and 7(d), and the mean intensity
of the healthy subject went beyond that of the AD subject
(0.8742 and 0.8552, resp.), indicating a healthier status after
eliminating the influence of age.

Additionally, the SUVR mean values based on the final
brain region of each subjects in both the healthy and AD
groupswere calculated before and after the age correction and
the statistical significance between the two groups was mea-
sured by an independent 𝑡-test. The 𝑝 value declined from
1.706𝐸−08 to 1.740𝐸−10 after the age correction, indicating
that the difference between healthy and AD subjects became
more significant after the age correction.

3.3.4. Evaluation of the Mathematical Age-Correction Model
in AD Participants. To validate whether the age-correction
model can serve to eliminate the confusing factor of age
so as to highlight the pathological differences, the model
was applied to the dataset of 50 AD patients selected from
the ADNI database. The SUVR mean of each subject was
generated from the optimal final brain region, and age
correction for SUVR mean was then carried out. Before
and after the age correction, the partial correlation analysis

was applied between the SUVR mean and the 3 clinical
results. As is evident from Figure 8 and Table 6, the 𝑝 value
and 𝑅 coefficient were both significantly improved after age
correction. The partial correlation coefficients 𝑅 rose from
0.371 to 0.497 for MMSE, −0.422 to −0.512 for CDRSB, and
0.426 to 0.573 for FDG. During the partial analyses, the
effect of education, sex, and ApoE4 status was removed as
a set of controlled variables. The results showed that the
correlations between the SUVR means values and clinical
tests were improved after age-correction. Radiologists may
find it easier to diagnose AD by analyzing FDG PET images
after age-correction.

As shown in Table 6, we can see that, in subgroups 69–73
and 73–78, the relationship between SUVR mean and two of
the clinical results (MMSE and CDRSB for subgroup 69–73
and CDRSB and FDG for 73–78) becamemuch stronger after
age correction. Apart from that, the relationship between
SUVRmean and FDG in subgroup 56–69 also became much
stronger after age correction.

Taken together, it can be safely concluded, with the
results of Figure 2 and Tables 3 and 6, that the effect of
normal aging becomes apparent after approximately age 50
(Figure 2 and Table 3). Meanwhile, the age of early-onset
dementia such as AD has been reported to be 60–65 years
[11, 23]. As seen from Table 6, the effect of age correction
on subgroup 69–73 and 73–78 was obvious since the 𝑝
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Figure 8: Scatter plot and fitting curves between SUVRmean and (a) MMSE, (b) CDRSB, and (c) FDG across the 50 AD subjects before (red
dots and dashed lines) and after (green dots and solid lines) age correction.

Table 6: Statistical results of the age correction in each age group of the 50 AD subjects.

Age grade Number Before correction After correction
MMSE CDRSB FDG MMSE CDRSB FDG

56–69 11 𝑝 0.419 0.166 0.025 𝑝 0.158 0.139 0.003
𝑅 0.272 −0.449 0.668 𝑅 0.456 −0.476 0.805

69–73 10 𝑝 0.037 0.04 0.26 𝑝 0.025 0.029 0.251
𝑅 0.663 −0.655 0.394 𝑅 0.699 −0.685 0.401

73–78 16 𝑝 0.12 0.034 0.011 𝑝 0.091 0.02 0.005
𝑅 0.404 −0.531 0.615 𝑅 0.436 −0.575 0.664

78–80 13 𝑝 0.014 0.067 0.057 𝑝 0.015 0.058 0.069
𝑅 0.663 −0.522 0.539 𝑅 0.658 −0.537 0.52

Note. Age groups 69–71 and 71–73 and 73–76 and 76–78 were combined into one group, respectively, because of their insufficient quantity.

values decreases evidently after age correction. We can
conclude that the age correction is more effective for ages
69–78.

To verify whether age correction can help to improve the
diagnostic accuracy, classification for AD combining PCA
and SVM was applied to 50 healthy and 50 AD subjects. Age
correctionwas conducted on the final brain region of IC3 and
then the whole brain of each subject was used as the input for

the feature extraction of PCA. Leave-one-out cross validation
was used during SVM classification to achieve more reliable
results by reducing the influence of stochastic factors. As
shown in Table 7, the classification performancewas achieved
with an accuracy of 79% before age correction and 90% after
age correction. Table 7 also shows the ROC curves of the
two classifications. The AUC values were 0.735 before age
correction and 0.84 after age correction.
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Table 7: Classification accuracy for AD before and after age correction.

Before age correction After age correction
Accuracy 79% 90%

ROC curves
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4. Discussion

In the present study, a data-driven analysis of brain glucose
metabolism variation across 255 healthy participants revealed
a component showing a monotone decrease with an increase
in age. According to Figure 4, the regions corresponding
to the component IC3 included left inferior and superior
frontal gyrus (AAL 15 and AAL 16), the left medial part of
superior frontal gyrus (AAL 23), the left medial orbital part
of superior frontal gyrus (AAL 25), the right insula (AAL
30), the left anterior cingulate (AAL 31), the left median
cingulate, and paracingulate gyri (AAL 33), and bilateral
superior temporal gyri (AAL 83 and AAL 84).These findings
were mostly in accordance with the typical results that have
been reported in most lifespan studies [15–22]. In addition,
a set of brain region called the resting state, or default
mode network (DMN) of the human brain, which has been
suggested by studies of functional connectivity to be relevant
to cognitive development, was reported to be significantly
related to age [23–25]. This network includes the posterior
cingulum (PCC), the precuneus, the left orbital and medial
prefrontal cortex (OPFC and MPFC L), the left orbitofrontal
cortex (OFC L), and the angular gyrus (ANG). As can be
observed, the final brain regions overlapped with regions of
DMN typically within the left MPFC, OPFC, and medial
temporal lobe, which again is in good agreementwith the age-
related findings of most previous studies described above.

In addition to DMN, the final brain region also covered
other areas that have been reported to be related to AD. FDG
PET is said to have a predictive value for neurodegeneration
at a very early stage [4, 12, 13]. A network was reported to
enable FDG PET to detect abnormal metabolism reduction
both earlier and at more advanced AD stages than MRI [14].
This network encompassed hippocampal, temporal, parietal,
occipital, andposterior caudate regions. It wasmostly covered

by the final brain regions identified in the present study, with
the exception of the occipital regions and right hippocampal
regions. Hence, age correction may be conducive to enhanc-
ing the conviction of predictions.

The IC value of IC3 was found to have a negative linear
correlation with age (Figure 2 and Table 3). This finding is
in good agreement with reports in the literatures of most
regions using FDG PET, where there are clear negative
correlations with age [15–22]. In addition, comparison of ICs
with the literature [7] showed a similar negative correlation
trend through other imaging modalities in GM volume, WM
volume, and FA between ages 22 and 82, indicating advanced
age-related adverse changes in the brain reflected by various
imaging modalities. The results of the comparison between
the present study and the literature are shown in Figure 9,
suggesting that the definition of IC3 in the present study is
credible.

The age-correction model was also conducted on 50
AD subjects. Before the correction, a statistically significant
positive correlation between SUVR mean and MMSE or
FDG and the negative correlation between SUVR mean and
CDRSB were in good accordance with the authors’ general
understanding of the clinical physiological indices (i.e., the
severity of AD is indicated by a lower SUVR mean, a lower
MMSE score, and a lower FDG, but a higher CDRSB score).
After the correction, these correlations remained unchanged,
and the correlation coefficient 𝑅 finally rose to 0.497 for
SUVRmean andMMSE,−0.512 for SUVRmean andCDRSB,
and 0.573 for SUVR mean and FDG, respectively. The cor-
rected results were compared with those from other studies.
In the work by Hatashita [37], the correlation coefficients 𝑅
reached 0.46 for SUVRandMMSEand−0.44 for SUVRmean
and CDRSB, which is numerically similar to the correlations
before age correction in the present study (0.371 and −0.422).
After the age correction, however, the correlation coefficients
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Figure 9: Similar linear scatter plots of negative correlations between age and different imaging indices. (a) Results from the present study.
Correlation between SUVR mean and age. Correlations between (a) IC value (b; c; d) Results in [7]. Correlations between (b) GM volume,
(c) WM volume, and (d) FA and age.

in the present study rose to 0.497 and −0.512, respectively,
indicating a relatively stronger correlation between SUVR
and the clinical results. Note that the stronger correlation
between SUVRmean and FDG after age correction indicated
both potential age- and AD-related responses with areas of
angular, temporal, and posterior cingulate indications, which
again overlapped with the network of DMN [23–25, 38,
39]. Overall, it can be reasonably concluded that the age
correction is valid in clinical AD diagnoses.

The methodological approach used here had two advan-
tages that were crucial in confirming this monotone decreas-
ing component IC3 that revealed a natural decline with age.
First, no spatial, age-related, or any other prior information
was imposed on the data. Second, the presumption that the
components were non-Gaussian independently distributed
sources allowed more subtle modes to be detected with
respect to abnormal variation and coordinately dominated
by certain underlying common features across all subjects.
While explaining only a modest amount of the metabolism
variation across all 255 healthy subjects (3.7%), the IC3
revealed a strong negative relationship with age (as age
explained 51.8% of the spatial variance).Therefore, the FLICA
method is very suitable for the present study. In the work by
[32], the authors obtained 70 ICs, including IC1, that had an
extraordinary relationship with age, for which the 𝑅 square
value was 0.9 across 484 healthy participants along with 3
modals (MRI, vertexwise cortical thickness and surface area).
In addition, the authors mainly discussed a symmetrical

inverted-U IC4 with an 𝑅 square value with age that was 0.5,
indicating a mirror effect in age-related brain development.
Earlier, in thework byGroves et al. [33], 100 ICswere obtained
with a larger dataset that included the same 484 subjects and
the three modalities mentioned above, in addition to another
three modalities: FA, MD, andMO, all of which were derived
from DTI scans. It was understandable that the IC3 obtained
during the present study had a lower 𝑅 squared value due
to a relatively smaller and single-modal data size, but its
relationship with age was still significant.

In addition, the paracentral lobule (AAL 69 and AAL
70) was set during the present study as the reference region
when forming SUVR following the research by Zhang et al.
[35]. However, other regionsmay also be selected as reference
regions. In the work by Gardener et al. [40, 41], the whole
cerebellar or the whole brain region was used as the reference
region, and the cerebellar tonsil (AAL 105 and AAL 106) was
also reported by Zhang et al. [35] to be one of the two best
regions to be a reference, due to their improvement in the
separation of natural age-associated changes from changes
in brain metabolism. In the present study, these four regions
were taken separately as a reference region and the SUVR
mean was calculated under different values of 𝜎. As shown
in Figure 10 (all the results in Figure 10 are the average of
the 3000 times Pearson correlation between SUVR mean
and age), the relationship between age and SUVR mean was
strongest when normalized to the paracentral lobule, with
the 𝑅 value climbing up to 0.787 at 𝜎 = 30. However, its
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Figure 10: Relationship between age and SUVRmean based on four
different reference regions: the cerebellum, the cerebellar tonsil, the
paracentral lobule, and the whole brain region.

advantage was not obvious when compared with the whole
cerebellum (𝑅 = 0.76 at 𝜎 = 1). This may be due to the
limitations inherent to the datasets, such as possible cohort
effects and selection bias, which may influence the use of this
more rational reference region to some degree. Nevertheless,
it could arguably be concluded that the paracentral lobule
can be chosen as the reference region when the age influence
needs to be discounted.

5. Limitations and Further Considerations

Although certain initial findings regarding brain regions
related to age in FDG PET have been explored in the present
study, some limitations still exist. First, no cognitive tests such
as MMSE or CDRSB have been conducted on subjects at
the Huashan Hospital to evaluate their cognitive condition.
Further, no partial volume correction (PVC) was performed
during the present study due to the lack of MRI data.
Both issues should be addressed in future work. Second,
the 𝑅 squared value of IC3 was only 0.518, which is far less
than for the similar monotonically decreasing IC obtained
by [32] whose 𝑅 squared value fitting with age was 0.9.
The reason for this discrepancy was likely the limitation of
the amount of the subjects’ image data, since they had a
dataset of 484 subjects. Thus, we could only define one age-
correction mathematical model during the long age-span
of 20–80 years. Without the data deficiency, we would be
able to obtain one age-correction model for each age grade,
and the effect of the age correction would then be much
more precise. Third, only a linear relationship between the
IC value and age was taken into account for the definition of
the age-correction mathematical model, since IC3 revealed a
monotone linear decrease with increasing age via assessment
with a quadratic fit (Figure 2 and Table 3). In fact, a nonlinear
relationship with age has also been reported in previous
literatures as was found in the present study (e.g., IC11).
However, a nonlinear age-correction mathematical model
was not investigated but will be studied in the near future.
Fourth, in the present study, we used the same template from
SPM during the image preprocessing steps for both datasets
from Huashan Hospital and the ADNI. However, structural

and functional differences between brains in the Chinese
and Western elderly populations exist, which may result in
various impacts of age on FDGPET scans.Thus, geographical
differences between the two datasets from Huashan Hospital
and theADNIwill be investigated in the future using different
templates. Fifth, in the present study, only FDG PET scans
were used for the FLICA. In fact, the FLICA approach can
also be used on multimodal data. In addition to FDG PET,
the others modals (i.e., other brain imaging techniques) can
be MRI, PiB-PET, DTI, and the advanced morphological
patterns extracted from these modals, such as FA, MD, and
MO from DTI [33], or vertexwise cortical thickness and
surface areameasures fromMRI [32].Different brain imaging
techniques focus on different dementia disorders such asMRI
and structural atrophy, PiB-PET and amyloid deposition,
and DTI and communication amongst nerve cells in the
brain. Thus, combined multimodal analyses can definitely
help to increase the number of ICs and obtain more accurate
appraisals of brain regions as a result of more integrated
information. It is certainlyworth comparing the brain regions
related to age in these different modals so as to build a
corresponding correction template. This approach can also
help in the study of differences in how diseases affect each
modal of the images. Last of all, the differences in natural
brain decline between male and female subjects need to be
studied further.

6. Conclusion

In summary, the findings of the present investigation sug-
gest that the inferior frontal gyrus, the left medial part of
superior frontal gyrus, the left medial orbital part of superior
frontal gyrus, the right insula, the left anterior cingulate, the
left median cingulate, and paracingulate gyri, and bilateral
superior temporal gyri have a strong negative relationship
with age in 18F-FDG PET images. An age-correction model
characterizing the rate of decline of the index SUVR mean
provides the possibility of correcting analyses for the effect of
the confounding variable, age. By applying the age correction
to AD subjects, it was determined that the correction could
effectively suppress the interference of age on the analysis and
bring disease abnormalities nearer to manifestation. Thus,
the method can be applied to patients prior to a clinical AD
diagnosis, which will help in determining the severity of the
underlying disease.
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