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Simple Summary: Gilthead seabream (Sparus aurata) is a teleost fish of great relevance in marine
aquaculture, especially in the Mediterranean area and one of the most important farmed food marine
species in Europe. Nevertheless, in captivity fish are usually exposed to stressful conditions, with a
consequent negative impact on animal welfare and growth. The principal goal of this study was to
shed light on the acute stress response of gilthead seabream juveniles exposed to different stressors
using a multidisciplinary approach. For this purpose, gilthead seabream have been exposed to three
different stress tests (temperature, salinity, and ammonia changes) and several laboratory techniques
have been used to evaluate their growth and stress response. Results revealed that all the tested
stressors had an impact on fish growth and health, particularly thermic and chemical exposure,
whereas salinity seems to have a minor effect since this species can efficiently face with extreme
variations in environmental salinity. The present work aimed to obtain relevant information on
acute stress response of gilthead seabream to be used for improving farming condition and ensuring
fish welfare.

Abstract: The present study aimed to investigate the acute response of gilthead seabream (Sparus
aurata) juveniles exposed to temperature, salinity and ammonia stress. Radioimmunoassay was
used to evaluate cortisol levels, whereas insulin-like growth factors (igf1 and igf2), myostatin (mstn),
heat-shock protein 70 (hsp70) and glucocorticoid receptor (gr) gene expression was assessed trough
Real-Time PCR. The presence and localization of IGF-I and HSP70 were investigated by immuno-
histochemistry. In all the stress conditions, a significant increase in cortisol levels was observed
reaching higher values in the thermic and chemical stress groups. Regarding fish growth markers,
igf1 gene expression was significantly higher only in fish subjected to heat shock stress while, at
60 min, igf2 gene expression was significantly lower in all the stressed groups. Temperature and
ammonia changes resulted in a higher mstn gene expression. Molecular analyses on stress response
evidenced a time dependent increase in hsp70 gene expression, that was significantly higher at 60 min
in fish exposed to heat shock and chemical stress. Furthermore, the same experimental groups were
characterized by a significantly higher gr gene expression respect to the control one. Immunostaining
for IGF-I and HSP70 antibodies was observed in skin, gills, liver, and digestive system of gilthead
seabream juveniles.

Keywords: RT-PCR; immunohistochemistry; cortisol; IGFs; mstn; HSP70; gr; gilthead seabream;
stress response; fish welfare
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1. Introduction

The worldwide decline of marine fisheries stocks has provided stimulus for rapid
growth in fish and shellfish farming. Particularly, global production of gilthead seabream
(Sparus aurata) has reached 237,049 tonnes in 2018 primarily from aquaculture activities [1].
In the Mediterranean area, the production of seabream ranges from extensive polyculture
(e.g., vallicoltura in Italy and lagoon production in Egypt) or semi-intensive production
in earth ponds (Portugal and southern Spain) to highly intensive land-based systems
(raceways or tanks), inshore (Greece and Turkey) and offshore sea cages (Cyprus, Italy
and Spain).

An extensive literature is available about fish biology of stress and physiological and
behavioural responses to a wide variety of physical, chemical and biological stressors, both
in wild and captivity conditions (including aquaculture) [2–6]. In particular, water quality
is one of the most important contributors to fish welfare; temperature, salinity and ammo-
nia represent, in fact, the most common water parameters affecting physiological stress.
Thermal and osmotic stress take place when water temperature or salinity, respectively,
exceed the optimal ranges, modifying the normal physiological functions and triggering
energy-consuming stress responses [7].

As a result of global climate change, it is predicted that variations in temperature
and salinity could be important causes of stress in aquaculture [8,9], possibly affecting
fish production. Moreover, temperature and salinity are considered abiotic crucial factors
which may affect the development and survival of fish during larval growth [10–12].

In addition, rises in water temperature, salinity and pH led to ammonia concentration
increase [7]. Ammonia is the main end product of nitrogen metabolism in marine teleosts
and reduced growth was observed in fish exposed to increased ammonia levels for a short
period [13,14].

Variations in water quality parameters (temperature, salinity, ammonia content) can
induce fish growth reduction influencing the expression of insulin-like growth factors
(igf1 and igf2) and myostatin (mstn) [14–19] by the activation of stress response system.
In fish, both IGF complex and myostatin play a key role in growth regulation [10,20–23].
The IGF complex includes the two highly conserved primary ligands (IGF-I and IGF-II),
high-affinity transmembrane receptors that belong to the insulin/IGF receptor family and
six IGF-binding proteins (IGFBP-1 to -6) [22,24,25]. In fish, IGF-I is mainly produced in
liver, although numerous other organs express this molecule as well [26–32]. IGF-II shows a
structural sequence similar to that of IGF-I and, in fish, exhibits a ubiquitous expression and
acts mainly as a growth factor [29,33–36]. Myostatin is a member of the TGF-β superfamily
and, in fish, its expression has been observed in several organs such as brain, eyes, exocrine
and endocrine pancreas, gills, gonads, heart, intestine, kidney, liver, oesophagus, pharynx,
skin, spleen, stomach and muscle fish explants [37–42].

The primary stress response in fish involves the release of catecholamines and acti-
vation of the hypothalamic–pituitary–interrenal (HPI) axis. Corticotropin releasing factor
from the hypothalamus acts on the pituitary to synthesize and release corticotropic hor-
mone, which in turn stimulates the synthesis and mobilization of glucocorticoid hormones
(cortisol in teleost fish) from the interrenal cells [2,43]. Cortisol acts as an agonist of glu-
cocorticoid receptor (GR). GR is a member of nuclear hormone receptor superfamily of
ligand-activated transcription factors and it regulates gene transcription interacting with
glucocorticoid response elements (GREs) or with numerous cytosolic proteins including
chaperones, kinases, phosphatases and proteasome [44] to recover homeostasis and HPI
axis functioning [45,46].

At cellular level, the stress response is mediated by the heat shock proteins (HSPs), a
family of highly conserved proteins that are present in all cells in all life forms [3,47–49]. In
fish, a variation in HSP70 expression has been observed not only after exposure to thermal
shock [3], but also as a consequence of an osmotic shock [50–52] or after an ammonia stress
exposure [14,53,54].
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In this study, the effect of acute changes in temperature, salinity and ammonia, within
a range that is likely to be found in a fish farm, were investigated in gilthead seabream
juveniles. Particularly, the role of these abiotic factors on growth markers and short-
term stress response was investigated through a multidisciplinary approach including:
(i) Radioimmunoassay (RIA) to evaluate cortisol levels; (ii) Real-time PCR to evaluate
gr, hsp70, igf1, igf2 and mstn gene expression (iii) immunohistochemistry to evaluate the
cellular localization of HSP70 and IGF-I.

2. Materials and Methods
2.1. Ethics

All procedures involving animals were conducted in line with the Italian legislation
and approved by the Ethics Committee of Università Politecnica delle Marche and the
Italian Ministry of Health (prot. No AQUASTRESS/2013).

2.2. Experimental Design and Sampling

Gilthead seabream juveniles (n = 600; 70 dph; mean weight 0.25 g) were provided
by the Valle Cà Zuliani Società Agricola s.r.l. (Monfalcone, Go) and transported to the
Department of Life and Environmental Sciences (Ancona) in aerated tanks.

Fish have been acclimated for 25 days in four 200 L tanks equipped with mechanical
biological and UV filtration (Panaque, Viterbo, Italy) and fed (2% body weight) with a
commercial diet (Perla 4.0–5.0, Skretting) three times a day before the stress tests. Water
parameters were kept constant and daily controlled (temperature 19 ◦C; salinity 30 ppt;
ammonia: <0.02 mg/L; nitrates 10 mg/L). Finally, 24 h before the stress test, fish were
starved and transferred in three 100 L tanks per experimental treatment (control, salinity,
temperature and ammonia).

Fish were then subjected to lower salinity (20‰), higher temperature (28 ◦C) and
higher ammonia concentration (1.5 mg/L), respectively. The degree of changes of each
stressor has been selected on the basis of adverse conditions expected in a commercial
farm. Temperature increase (2 ◦C/10 min) was obtained by the use of a 1000 W heaters
(Prodac, Cittadella, Padova, Italy), while salinity was decreased by gradually adding
distilled water (2 ppt/min). High ammonia concentration was gained by adding water
obtained by macerating commercial feed over the days before the stress test (20 L/10 min).
The beginning of the test was set at the reach of the stress conditions for each experimental
group (20‰ of salinity, 28 ◦C of water temperature and 1.5 mg/L of ammonia, respectively).

At 0–30 and 60 min from the beginning of the test, 10 fish per tank (30 fish per
experimental group) were euthanized with a lethal dose of MS222 (300 mg/L) and properly
stored for further analyses.

2.3. Cortisol

For cortisol analyses, 10 whole body fish per experimental group were immediately
frozen in liquid nitrogen and stored at −80 ◦C. Whole body cortisol was measured by a
specific microtiter radioimmunoassay (RIA) as described by Bertotto et al. [18]. Each fish
was thawed out and pulverized in liquid nitrogen, and 100 mg of the resulting powders
were suspended in 1 mL phosphate buffer (PBS, pH 7.2) and extracted with 8 mL of
diethyl ether. The dry extracts were dissolved in PBS and used for RIAs. Briefly, a 96-
well microtiter plate (Optiplate, Perkin Elmer Life Sciences) was coated with anti-rabbit
c-globulin serum raised in a goat (dilution 1:1000 in 0.15 mM sodium acetate buffer, pH
9, at 4 ◦C) and, after PBS double washing, incubated overnight at 4 ◦C with the specific
antiserum solution. Standards, quality controls, unknown extracts and 3H tracers were
then added and, after overnight incubation at 4 ◦C, the plate was washed with PBS, added
with 200 µL scintillation cocktail (Microscint 20, Perkin Elmer Life Sciences) and counted
on a beta-counter (Top-Count, Perkin Elmer Life Sciences).

The anti-cortisol serum showed the following cross-reactions: cortisol 100%, pred-
nisolone 44.3%, 11-deoxycortisol 13.9%, cortisone 4.95%, corticosterone 3.5%, prednisone
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2.7%, 17-hydroxyprogesterone 1.0%, 11-deoxycorticosterone 0.3%, dexamethasone 0.1%,
progesterone < 0.01%, 17-hydroxypregnenolone < 0.01%, pregnenolone < 0.01%.

To validate steroid determination in seabream juveniles’ whole body, competitive dose-
response binding curves were created by serial extract dilutions of seabream (parallelism
test) and the intra-inter-assays and recovery tests were performed.

2.4. RNA Extraction and cDNA Synthesis

RNA extraction was performed according to Piccinetti et al. [55]. Total RNA extraction
from 5 seabream juveniles’ whole body (randomly collected from each of the 3 tanks)
was optimized using RNAzol RT reagent (Sigma-Aldrich, Saint Louis, MO, USA, R4533)
following the manufacturer’s protocol. The total RNA extracted was eluted in 40 µL of
RNase-free water (Qiagen). Final RNA concentrations were determined by NanoPhotome-
terTM P-Class (Implen, München, Germany). RNA integrity was verified by ethidium
bromide staining of 28S and 18S ribosomal RNA bands on 1% agarose gel. RNA was stored
at −80 ◦C until use. Total RNA was treated with DNAse (10 IU at 37 ◦C for 10 min, MBI
Fermentas). Finally, 5 µg of RNA were used for cDNA synthesis using the iScript cDNA
Synthesis Kit (Bio-Rad, Milan, Italy).

2.5. Real-Time PCR

PCRs were performed with SYBR Green in an iQ5 iCycler thermal cycler (both from
Bio-Rad, Hercules, CA, USA), in triplicate according to Maradonna et al. [56]. Reactions
were set on a 96-well plate by mixing, for each sample, 1 µL cDNA diluted 1:20, 5 µL of
2× concentrated iQ TM SYBR Green Supermix containing SYBR Green as the fluorescent
intercalating agent, 0.3 µM forward primer and 0.3 µM reverse primer. The thermal profile
for all reactions was 3 min at 95 ◦C, followed by 45 cycles of 20 s at 95 ◦C, 20 s at 60 ◦C
and 20 s at 72 ◦C. Fluorescence was monitored at the end of each cycle. Dissociation curve
analysis showed a single peak in all cases.

Relative quantification of the expression of genes involved in fish stress response (gr
and hsp70) and growth (igf1, igf2 and mstn), was performed using β-actin and 18s as the
housekeeping genes to standardize results by removing variation in mRNA and cDNA
quantity and quality [57]. Amplification products were sequenced, and homology was
verified. No amplification product was detected in negative controls and no primer-dimer
formation was found in control templates. Data were analysed using the iQ5 optical system
software version 2.0 including Genex Macro iQ5 Conversion and Genex Macro iQ5 files
(all from Bio-Rad, Hercules, CA, USA). Primer sequences were designed using Primer3
(210 v. 0.4.0, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts,
USA) starting from seabream sequences available in GenBank. Primers were used at a final
concentration of 10 pmol µL−1 (for sequences, please see Table 1).

Table 1. Primers sequences used in this study.

Gene Forward Primer (5′–3′) Reverse Primer (5′–3′)

gr 5′- GCCTTTTGGCATGTACTCAAACC -3′ 5′- GGACGACTCTCCATACCTGTTC -3′

hsp70 5′- GTACGGTCTGGACAAAGGCA -3′ 5′- GGTTCTCTTGGCCCTCTCAC -3′

igf1 5′- AGCCCAGAGACCCTGTGC -3′ 5′- CAGCTCACAGCTTTGGAAGCA -3′

igf2 5′- TGGGATCGTAGAGGAGTGTTGT -3′ 5′- CTGTAGAGAGGTGGCCGACA -3′

mstn 5′- GGCCTGGACTGTGATGAGAA -3′ 5′- GCATGTTGATGGGTGACATC -3′

β-act 5′- GGTACCCATCTCCTGCTCCAA -3′ 5′- GAGCGTGGCTACTCCTTCACC -3′

18s 5′- GTGAGGTTTCCCGTGTTGAG -3′ 5′- GACCATAAACGGTGCCAACT -3′

2.6. Immunohistochemistry (IHC)

For immunohistochemistry, 5 seabream juveniles’ whole body per experimental group
were fixed in 4% paraformaldehyde prepared in phosphate-buffered saline (PBS, 0.1 M,
pH 7.4) at 4 ◦C overnight, washed in PBS, dehydrated through a graded series of ethanol
and embedded in paraffin. Consecutive sections were cut at a thickness of 4 µm using
a microtome (Leica, Wetzlar, Germany). Immunohistochemical staining was performed
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using the Elite ABC KIT system (Vector Laboratories, Inc., Burlingame, CA, USA). Before
applying the primary antibodies, endogenous peroxidase activity was blocked by incubat-
ing the sections in 3% H2O2 in PBS. Non-specific binding sites were blocked by incubating
the sections in normal goat serum (Dakocytomation, Milano, Italy). Sections were then
incubated with the primary antisera (monoclonal anti HSP70 dilution 1:600, Stressgen
Biotechnologies, San Diego, CA, USA; polyclonal anti IGF-1 dilution 1:200, Ibt System,
Reutlingen, Germany), overnight at 4 ◦C. After washing with PBS, sections were incubated
with biotin-conjugated anti-mouse or anti-rabbit Ig antibodies (Dakocytomation), washed
with PBS and reacted with peroxidase-labeled avidin-biotin complex (Vector Laboratories).
The immunoreactive sites were visualized using a freshly prepared solution of 10 mg of
3.3′-diaminobenzidine tetrahydrochloride (DAB, Sigma, Milano, Italy) in 15 mL of a 0.5 M
Tris buffer at pH 7.6, containing 1.5mL of 0.03% H2O2. To ascertain structural details,
sections were counterstained with Mayer’s haematoxylin.

The specificity of the immunostaining was verified by incubating sections with: (i) PBS
instead of the specific primary antibodies; (ii) pre-immune sera instead of the primary
antisera; (iii) PBS instead of the secondary antibodies. The results of these controls were
negative (i.e., staining was abolished).

2.7. Statistical Analysis

Data from cortisol analysis have been subjected to analysis of variance by using a
Linear Model of R software (R Core Team2019) with stress type and sampling time as
main factors. Data from Real-time PCR analyses were analyzed by two-way ANOVA
(with stress factor and sampling time as explanatory variable) followed by Tukey’s and
Dunnett’s test for time course and sampling point analysis, respectively, with a statistical
software package, SigmaStat 3.1 (Systat Software, Chicago, IL, USA). All data were ex-
pressed as the mean ± SD. Differences among means with p < 0.05 were accepted as being
statistically significant.

3. Results
3.1. Cortisol

The cortisol assay showed acceptable parallelism and reproducibility (linear regression
curve y = 19.2x − 0.2; regression coefficient R2: 0.99; CV % intra-assay = 5.8; CV % inter-
assay = 13.9). The recovery test with value higher than 75% confirmed the efficiency of
steroid extraction method. As reported in Figure 1, cortisol levels showed a significant
increase related to the time in thermal and ammonia stress groups with respect to control
both at 30 and 60 min (all p < 0.001) but not in the salinity group. In post stress sampling
times, the salinity group cortisol level significantly differed from the others (p < 0.05 and
p < 0.001) except to that of control at 60 min post stress. Significant differences were
detected also between thermal and ammonia stress groups at 60 min (p < 0.001) but not at
30 min (Figure 1).
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3.2. Real-Time PCR Results
3.2.1. Stress Response

The glucocorticoid receptor (gr) gene expression (Figure 2A) showed a time-related
significant (p < 0.05) decrease in control group, from 0 to 60 min treatment. Salinity and
thermic stress groups did not show significant changes in gr transcript during the trial,
while ammonia stress groups showed a significant (p < 0.05) increase in gr gene expres-
sion after 60 min treatment. As regards differences within the same sampling point, at
both 0 and 30 min, no significant differences were observed among the experimental
groups. Differently, at 60 min, both thermic and ammonia stress groups showed a sig-
nificant (p < 0.05) higher gr gene expression with respect to control and salinity stress
groups (Figure 2A).
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Considering hsp70 gene expression (Figure 2B), control and salinity stress groups did
not show significant changes neither in time nor within the same sampling points. During
the time course, a statistically significant (p < 0.05) increasing of hsp70 gene expression
in both thermic (after 30 and 60 min) and ammonia (after 60 min) stress groups was
observed. Considering differences within the same sampling time, a significantly (p < 0.05)
higher hsp70 gene expression was evident in the thermic stress (at both 30 and 60 min) and
ammonia (only at 60 min) groups respect to the other ones.

3.2.2. Fish Growth Markers

As regards both igf1 and igf2 gene expression (Figure 3A,B), significant differences
during the time course and within the same sampling time were detected only after 60 min
treatment. In fact, both time course and time point analysis, evidenced a significant increase
(p < 0.05) of igf1 transcript in thermic stress group after 60 min treatment respect to the
other sampling points (0 and 30 min) (Figure 3A). Differently, a significant increasing
(p < 0.05) of igf2 gene expression (Figure 3B) was observed in control and ammonia groups
at 60 compared to 0 and 30 min of stress treatment. Furthermore, at 60 min, all the groups
subjected to a stress condition showed a significantly (p < 0.05) lower igf2 gene expression
respect to control group.
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Regarding mstn gene expression (Figure 3C), time course analysis showed a significant
(p < 0.05) increase after 30-min treatment followed by a significant decrease after 60-min
treatment in thermic stress group, while in ammonia stress group, a significant (p < 0.05)
increase of mstn gene expression was detectable only after 60-min treatment. Considering
differences within the same sampling time, a significantly (p < 0.05) higher mstn gene
expression was evident in the thermic stress (at both 30 and 60 min) and ammonia (only at
60 min) groups respect to the other ones.

3.3. Immunohistochemistry
3.3.1. HSP70 Immunohistochemistry

In general, HSP70 immunoreactivity was expressed in skin, gills, liver and digestive
system of both controls and stressed animals with a higher intensity in stressed animals
than in controls. Instead, the lateral muscle, cartilages and connective tissue of control
groups did not show any HSP70 expression (Table 2).

Table 2. Immunohistochemical localizations of HSP70 and IGF-I in different tissues of Sparus
aurata (control and stressed animals): −, not detectable; +/−, slight but above background levels;
+, moderate staining; ++ marked staining.

Tissue
Ctrl Salinity Stress Temperature Stress Ammonia Stress

HSP70 IGF-I HSP70 IGF-I HSP70 IGF-I HSP70 IGF-I

Skin + ++ ++ ++ ++ ++ ++ ++
Muscle − − − − − − − −

Gills + ++ ++ ++ ++ ++ ++ ++
Stomach +/− ++ + ++ ++ ++ + ++
Intestine +/− ++ + ++ + ++ ++ ++

Liver +/− ++ ++ ++ ++ ++ + ++

In particular, at cellular level, immunoreactivity to HSP70 antibody was detected in:
(i) the epithelial cells of skin (Figure 4A); (ii) scattered cells of gill epithelium at the level of
primary and secondary lamellae (Figure 4B); (iii) scattered cells of the gastric epithelium of
stomach as well as in the gastric pits (Figure 4C); (iv) the rodlet cells scattered throughout
the intestinal epithelium of ammonia stressed animals (Figure 4D). The hepatocytes of liver
parenchyma showed an immunopositivity too (insert in Figure 4D).
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Figure 4. Immunohistochemical localization of HSP70 in Sparus aurata. All panels are counterstained
with haematoxylin. (A) control fish. HSP70 immunoreactivity in the epithelium of the skin (asterisks);
the lateral muscle is negative (arrowheads); (B) control fish. The epithelium lining both primary
and secondary lamellae shows an immunoreactivity (asterisks); (C) thermal stressed fish. Gastric pits
(asterisks) and liver parenchyma (arrowheads) exhibit an immunopositivity to HSP70 antibody;
(D) ammonia stressed fish and as inserted a salinity stressed fish. Intestinal rodlet cells (asterisks) and
hepatocytes are immunopositive (arrowheads). Bars: 200 µm for all panels.

3.3.2. IGF-I Immunohistochemistry

In general, an intense immunoreactivity was present in the skin, gills, and digestive
system of stressed fish, whereas no reactivity was found in control animals at the level
of trunk musculature, cartilages, and dense connective tissue, regardless of the stress
experimental condition (Table 2). In particular, at cellular level, the anti-IGF-1 antibody
revealed an immunostaining in: (i) the epithelial cells of skin (Figure 5A); (ii) scattered
cells of gill epithelium at the level of primary and secondary lamellae (Figure 5B); (iii) the
cytoplasm of cells lining the lumen of the stomach as well as in the cytoplasm of gastric
pits (Figure 5C); (iv) the cytoplasm of enterocytes (Figure 5D). Moreover, rodlet cells
imunoreactivity to IGF-I antibody was detected in the intestine epithelium of fish subjected
to ammonia stress (Figure 5D). The parenchyma of liver showed an immunopositivity at
the level of the cytoplasm of the hepatocytes (Figure 5D).
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Figure 5. Immunohistochemical localization of IGF-I in Sparus aurata. All panels are counterstained
with haematoxylin. (A) control fish. In the skin, immunopositivity was localized at the level of
the epithelium (asterisks), whereas the trunk musculature is negative (arrowheads); (B) thermal
stressed fish. In gills, the epithelium of primary and secondary lamellae showed an immunoreactivity
(asterisks); (C) salinity stressed fish. The epithelium of the stomach shows immunoreactivity to IGF-I
antibody (arrowheads); a positivity was also evident in the gastric pits (asterisks); (D) ammonia
stressed fish. Enterocytes (arrowheads), intestine rodlet cells (asterisks) and liver parenchyma (arrows)
showing strong immunoreactivity to IGF-I antibody. Bars: 40 µm (A), 200 µm (B), 200 µm (C),
200 µm (D).

4. Discussion

In aquaculture practices, temperature and salinity changes and increasing ammonia
concentrations are considered important fish stressors [58]. Changes in temperature and
salinity can affect metabolism, growth and survival of cultured fish while short-term
ammonia exposure can cause oxidative stress and apoptosis and altered osmoregulatory
function [59,60]. Regardless of the stress factor, the primary response is the activation
of HPI axis which releases corticosteroid hormones like cortisol [2,61]. Cortisol is one
of the most commonly used biomarkers to detect a stressful situation in fish [18,62–64],
but it is well known that also gene expression of stress markers like hsp70 and gr can
be considered a prized indicator to better understand fish cellular and physiological
status [65,66]. The determining role of cortisol in the stress response has been confirmed
also in the present study. In fact, fish exposed to short-term changes of temperature and
ammonia, similar to those that can possibly occur in a commercial farm, were characterized
by higher levels of this hormone respect to control already after 30 min of treatment.
Increases of cortisol due to changes in these two environmental factors have been already
reported in other species as black seabream (Spondyliosoma cantharus), blunt snout bream
(Megalobrama amblycephala), brook trout (Salvelinus fontinalis), turbot (Scophthalmus maximus)
and common carp (Cyprinus carpio) [59,67–70]. Acute change in salinity failed to increase
cortisol significantly confirming the euryhalinity of the gilthead seabream [71,72].

The cortisol results in the present study are supported by molecular ones that evi-
denced a significantly increased gr gene expression in the same groups (temperature and



Animals 2021, 11, 97 10 of 15

ammonia) at 60 min of treatment, further highlighting that cortisol acts through glucocorti-
coid receptors and elevates GR transcript levels [73,74]. Furthermore, to confirm the stress
response, temperature and ammonia groups were characterized also by a significant time
dependent increase in the hsp70 gene expression at 60 min. In teleost fish, in addition to the
HPI axis activation, acute stressors may act at a cellular level causing a higher synthesis
of heat shock proteins in order to offer the cell a protection in stress conditions [75–77].
Among all the HSPs, the HSP70 inducible isoform is frequently activated by thermal stress
and temperature-induced increases in hsp70 gene expression have been detected in dif-
ferent fish species [18,78]. In the present study, increased temperature elevated the hsp70
gene expression level already at 30 min confirming the sensitivity of this indicator to the
thermal shock [3,18]. In accordance with our results, different studies reported increased
HSP70 transcriptions in fish exposed to ammonia [59,79]. As regards salinity stress, no
significant changes in gr and hsp70 gene expression were evident with respect to control
according to the observed cortisol levels. As previously suggested, this result is justified by
the fact that Sparus aurata is an euryhaline teleost able to easily cope with extreme changes
in environmental salinity [71,72].

The primary function of fish responses to variable stress factors is to adapt metabolism
to face the energy requirement and to maintain homeostasis [80]. At this regard, it is
well known that a physiological link between stress and growth-related genes exists [32].
Teleost species subjected to various stress factors usually evidence increased serum cor-
tisol levels which have been associated to a suppression of the somatotropic axis [81–83].
The mechanisms through which glucocorticoids inhibit growth may involve the GH/IGF-
I/IGFBP network [84]. For this reason, the influence of acute stress on igf s expression has
been investigated in different fish species evidencing, in most cases, a downregulation
in fish exposed to different stressors as, among them, temperature or salinity changes
or high ammonia levels [17,82,85–88]. Accordingly, in the present study, igf2 gene ex-
pression was significantly lower in groups subjected to a stress condition with respect
to control after 60 min of treatment. Differently, igf1 gene expression was significantly
higher even if only in the thermic stress group. At this regard, it should be pointed out
that igf1 expression is regulated by GH hormone and increases with the onset of the
post-natal growth [89,90]. Juveniles fish show faster growth rate with increased tem-
perature which can be considered as the major external factor influencing growth [91].
On this regard, it has been demonstrated that, in fish under optimal nutritional status,
temperature can increase plasma GH levels with a consequent stimulation of igf1 gene
expression [92,93]. Finally, the higher mstn gene expression observed in thermic and am-
monia stress groups could be related to the higher cortisol level detected in the same
experimental groups. Glucocorticoids in fact strongly regulate myostatin transcript levels
in mammals via glucocorticoid response elements (GR Es) in the myostatin promoter, and
this has been demonstrated in several fish species, suggesting a possible direct regulation
of cortisol on muscle growth also in these animals [94–97].

Given the importance of HSP70 and IGF-I in describing fish growth and
welfare [30,77,98], in the present work the localization of these proteins has been investi-
gated by immunohistochemistry. Immunopositivity for HSP70 and IGF-I antibodies was
detected in several tissues and organs of gilthead seabream juveniles, regardless of the ex-
perimental condition. Considering IGF-I, an intense reactivity was present in the skin, gills,
and digestive system of stressed fish, whereas no reactivity was found in control animals at
the level of trunk musculature, cartilages, and dense connective tissue. Immunopositivity
was detected also in the parenchyma of liver. Specifically, a strong IGF-I immunoreactivity
was evident in the epithelial cells of skin, stomach (including the gastric pits) and intestine,
in the epithelium of both primary and secondary lamellae of gills, and in the hepatocytes of
liver. These results are in agreement with those in literature [29,30,99–101], where a similar
pattern of IGF-I immunostaining was observed in Sparus aurata and other fish species, thus
attesting the role of IGF-I in the regulation of fish somatic growth, regardless of whether the
animal is stressed or not. As to HSP70, it was expressed in skin, gills, liver and digestive
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system of both controls and stressed animals. Instead, the lateral muscle, cartilages and
connective tissue of control groups did not show any HSP70 expression. The same immuno-
histochemical localization of HSP70 has been found by Fiocchi et al. [102] in European
sea bass (Dicentrarchus labrax) exposed to manipulation and temperature changes. In fact,
they observed both a weak presence of immunoprecipitates in the control groups and an
increased immunopositivity in gills, liver and intestine of heat shock stressed fish. This
notable increase of immunoprecipitates in the skin, gills, liver and intestine was evident
also in other studies [77,103,104] of fish exposed to abiotic stress (environmental pollution
and transport). Moreover, rodlet cells imunoreactivity to both IGF-I and HSP70 antibodies
was detected in the intestine epithelium of fish subjected to ammonia stress. This result is
consistent with those of Fiocchi et al. [102] from sea bass exposed to a different stressor, i.e.,
temperature, confirming that the appearance of these cells is commonly related to stressful
conditions [102,103,105–108].

5. Conclusions

Short term exposure of seabream juveniles to changes in temperature and ammonia
induced a stress response attested by a significant increase in cortisol, gr and hsp70 gene
expression levels within 60 min of treatment. The reduction in salinity did not evoke a
significant response indicating the euryhaline characteristics of this species. Stress also
produced variations in the transcripts of genes linked to growth but with less marked and
clear trends, as is often reported in the literature. Considering the potential variability of
the environmental factors tested in the farm, it will be necessary to carry out similar studies
in the future to explore the response of animals after exposure to medium and long term
stress conditions.
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