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ABSTRACT: The relationship between ewe body 
condition score (BCS) and liveweight (LW) has 
been exploited previously to predict the former 
from LW, LW-change, and previous BCS records. 
It was hypothesized that if  fleece weight and 
conceptus-free liveweight and LW-change, and 
in addition, height at withers were used, the ac-
curacy of  current approaches to predicting BCS 
would be enhanced. Ewes born in 2017 (n = 429) 
were followed from 8 mo to approximately 42 mo 
of  age in New Zealand. Individual ewe data were 
collected on LW and BCS at different stages of 
the annual production cycle (i.e., prebreeding, at 
pregnancy diagnosis, prelambing, and weaning). 
Additionally, individual lambing dates, ewe 
fleece weight, and height at withers data were 
collected. Linear regression models were fitted to 
predict current BCS at each ewe age and stage of 
the annual production cycle using two LW-based 
models, namely, unadjusted for conceptus weight 
and fleece weight (LW alone1) and adjusted (LW 
alone2) models. Furthermore, another two mod-
els based on a combination of  LW, LW-change, 
previous BCS, and height at withers (combined 
models), namely, unadjusted (combined1) and 

adjusted for conceptus and fleece weight (com-
bined2), were fitted. Combined models gave 
more accurate (with lower root mean square 
error: RMSE) BCS predictions than models 
based on LW records alone. However, applying 
adjusted models did not improve BCS prediction 
accuracy (or reduce RMSE) or improve model 
goodness of  fit (R2) (P > 0.05). Furthermore, in 
all models, both LW-alone and combined mod-
els, a great proportion of  variability in BCS, 
could not be accounted for (0.25  ≥ R2 ≥ 0.83) 
and there was substantial prediction error (0.33 
BCS ≥ RMSE ≥ 0.49 BCS) across age groups and 
stages of  the annual production cycle and over 
time (years). Therefore, using additional ewe 
data which allowed for the correction of  LW for 
fleece and conceptus weight and using height at 
withers as an additional predictor did not im-
prove model accuracy. In fact, the findings sug-
gest that adjusting LW data for conceptus and 
fleece weight offer no additional value to the 
BCS prediction models based on LW. Therefore, 
additional research to identify alternative meth-
odologies to account for individual animal vari-
ability is still needed.
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INTRODUCTION

Body condition score (BCS) in sheep is a com-
monly used subjective measure (Morris et al., 2002; 
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Vieira et al., 2015) to help make flock nutritional and 
management decisions. Devised by Jefferies (1961) 
and then revised by Russel et al. (1969), it subject-
ively quantifies the amount of soft tissue along the 
lumbar spine (Jefferies, 1961; Kenyon et al., 2014). 
Body condition score in sheep utilizes a 0.0−5.0 
scale range with either half  (0.5) units or quarter 
(0.25) units and is conducted through the palpation 
of the lumbar vertebrae immediately caudal to the 
last rib and above the kidneys (Kenyon et al., 2014).

Body condition score circumvents factors that 
can confound liveweight (LW) such as gut-fill, 
physiological status, fleece weight, and frame size 
(Coates and Penning, 2000; Kenyon et  al., 2014). 
Despite the advantages of using BCS over LW to 
better manage flock nutrition, producers, espe-
cially under extensive flock management systems 
such as in the southern hemisphere, rarely utilize 
it (Jones et al., 2011; Corner-Thomas et al., 2016). 
Instead, farmers either depend on inaccurate visual 
inspection methods or utilize liveweight measures 
only (Besier and Hopkins, 1989). This low uptake 
among producers is driven by the procedure being 
subjective: relatively labor intensive and requiring 
training (Kenyon et al., 2014). Strategies to increase 
the adoption and use of BCS among producers, 
such as promotion of producer training and regular 
assessor recalibration workshops, have not yielded 
the desired change (Kenyon et  al., 2014). This is 
likely because they do not address how to lessen the 
additional labor burden related to hands-on BCS, 
especially in large flocks under extensive manage-
ment systems. Therefore, it could be reasoned that 
reliable and precise alternative methods to estimate 
BCS of sheep that involve reduced hands-on meas-
urement would likely be useful and improve uptake 
and acceptance of the BCS technique. This indirect 
method would preferably be based on already ex-
isting and utilized on-farm management tools in 
order to reduce workload and be easily undertaken 
and not be subjective in nature.

The relationship between BCS and LW is well 
established in sheep (Sezenler et al., 2011; Kenyon 
et al., 2014; McHugh et al., 2019). In our previous 
study (Semakula et al., 2020a), it was demonstrated 
that BCS is positively and linearly related to LW. 
The relationship is known to differ by stage of the 
annual production cycle, age, and breed of ewes 
(Sezenler et al., 2011; McHugh et al., 2019). This 
relationship between BCS and LW was utilized to 
predict current BCS on a 5-point scale from life-
time liveweight (current and previous), liveweight 
change, and previous BCS based on linear re-
gression models (Semakula et  al., 2020b). It was 

demonstrated that with a set of established equa-
tions it may be possible to calculate a predicted 
BCS instantly, at each live weighing, for each 
sheep. However, a great proportion of variability 
in BCS remained unaccounted for, leading to less 
robust models. Furthermore, in our previous study 
(Semakula et al., 2021b), machine learning classi-
fication algorithms were successfully (with up to 
90% accuracy) used to predict BCS using LW pre-
dictors. However, these machine learning classifica-
tion models were limited to a 3-point scale due to 
gross class imbalance in BCS data. Full scale BCS 
(5-point scale: 1.0−5.0) prediction based on linear 
regression does not require balanced data. In our 
study (Semakula et al., 2020b), it was hypothesized 
that greater accuracy could be achieved if  key vari-
ables affecting the relationship between BCS and 
LW were also accounted for. Morphometric meas-
urements such as height at withers are positively 
correlated with LW and BCS in sheep (Burke et al., 
2004; Holman et  al., 2012). Furthermore, preg-
nancy and fleece weight confound the relationship 
between BCS and LW (Kenyon et al., 2014; Brown 
et al., 2015). If  these variables could be accounted 
for, BCS prediction accuracy may potentially be 
improved. Therefore, the aim of this study was to 
firstly determine if  the ewe BCS prediction accur-
acies reported by Semakula et  al. (2020b) can be 
reproduced in an independent dataset and secondly 
to investigate if  the accuracy and scope of BCS pre-
diction equations could be improved by adding in-
formation on the height at withers, fleece weight, 
and physiological state of a ewe.

MATERIALS AND METHODS

Experimental Design

The current study utilized data collected be-
tween 2017 and 2020 from one flock. Romney 
type ewes were initially raised at Riverside farm 
(2017−2018) and later (2019) transferred to Keeble 
farm as part of normal routine farm management. 
Riverside farm is located 11 km north to north-west 
of Masterton (40°50′ S, 175°37′ E) while Keeble 
farm was 5 km south of Palmerston North (40°24′ 
S and 175°36′ E), New Zealand. Ewes were main-
tained under commercial farming conditions from 
weaning to 42 mo of age (Pettigrew et  al., 2018; 
Pettigrew et  al., 2019). A  total of 429 ewe lambs 
born in the same season (Aug–Sep 2017) were fol-
lowed until maturity at 42 mo of age. Data were 
collected on whether study ewe lambs were born to 
mature or ewe lambs and in which breeding cycle. 
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Unfasted liveweights and BCS of ewes (born to ewe 
lambs or mature ewes) were recorded at 6 mo of 
age, prebreeding (PB), at pregnancy diagnosis (PD), 
and 8 d prior to the start of lambing (PL: prelamb-
ing) and at weaning (W: weaning; lambs on average 
of 3 mo of age) in each year. All weight measure-
ment occasions were conducted when ewes were not 
wet. All ewes were followed for three productive full 
years. The ewes in this study were themselves pre-
sented for breeding at 8 mo of age. This study was 
approved by the Massey University animal ethics 
committee (protocol number: MUAEC 17/16).

All ewes were weighed (to the nearest 0.1  kg) 
using static digital weighing scales (Tru-Test group, 
model XR5000). Body condition score was under-
taken by one experienced assessor using a 1.0−5.0 
scale (1 =  thin, 5 = obese) with sheep assessed to 
the nearest 0.5 of a BCS (Jefferies, 1961; Kenyon 
et al., 2014). Ewes were shorn each year during late 
pregnancy (47 to 49 d prior to the start of lambing), 
and fleece weights were recorded. Estimated fleece 
weights at the time of the weighing (equation 1) in 
each year were computed by multiplying the an-
nual fleece weight at late pregnancy with the rela-
tive proportion of the fleece length (mm) at the 
corresponding time assuming a shorn fleece length 
of 150 mm and an amplitude of 19% of the mean 
(Cottle and Pacheco, 2017),

Yt(kg) = Fwt ∗ Rl� 1

where Yt is the estimated fleece weight (kg) at 
a given time (month), Fwt was the actual fleece 
weight at the annual shearing (kg), and Rl is the 
proportion of wool length at a given time of the 
year relative to the wool length when shearing was 
last done (Length at shearing, mm). The minimum 
wool length left during shearing was 5.0 mm. All 
parameters were adapted from Cottle and Pacheco 
(2017).

The conceptus mass can confound accurate 
measurement of ewe conceptus-free liveweight, 
especially from mid-pregnancy onwards (Kenyon 
et al., 2008; Kenyon et al., 2011). Adjusted ewe live-
weight can be obtained if  the conceptus mass can 
be corrected for. Therefore, to allow for the com-
putation of adjusted liveweights, lambing dates 
for each ewe were recorded. The dates were used 
to estimate days of pregnancy when the liveweight 
measurements were recorded at PD and PL. The 
gestation time (days of pregnancy at PD or PL) was 
computed as the difference between 147 d (gesta-
tion was assumed to be 147 d) and the time from 
the event (PD or PL liveweight measurement) to 
lambing. The predicted conceptus and gravid uterus 

weight was determined using Gompertz equation 
(equation 2) below adapted by Freer et al. (2007),

Y = SBW exp(A − B(exp(−Ct))� 2

where Y is the weight of the content of the gravid 
uterus, SBW is the scaled birth weight (the ratio of 
the actual birth weight to the standard birth weight 
of 5 kg assumed by Gompertz equation), t is the 
gestation length (days), and parameters A, B, and 
C are constants 5.17, 8.38, and 6.08 × 10−3, respect-
ively. A 5 kg lamb at 147 d was used as the standard 
for scaling of birth weights. The final adjusted ewe 
liveweights excluded fleece weight and gravid uterus 
weight. To cater for both single- and twin-bearing 
ewes, a pooled lamb birth weight (overall weight of 
both lambs) was computed for twin-bearing ewes. 
Liveweights at pre-breeding and weaning were ad-
justed for fleece weight only, while at PD and PL, 
both conceptus and fleece weights were adjusted.

Height at withers (HW) was recorded every 
6 mo using an automatic laser distance measurer 
(Stanley TLM130i distance meter, max range = 30 
m ± 3 mm accuracy) attached to a sliding bar from 
above the weigh crate. The height of the ewe was 
computed using the formula:

Unadjusted Height at withers (m) = XZ� 3

where X is the distance from the laser meter (X) 
to the floor of the weigh crate and Z is the distance 
from the laser meter to the ewe withers. Height at 
withers was later corrected based on predicted an-
nual fleece growth to generate adjusted HW (Cottle 
and Pacheco, 2017).

Statistical Analyses

Data were analyzed using R program version 
3.3.4 (R Core Team, 2016) with package extensions 
in the caret package (Kuhn, 2008). Similar analyt-
ical procedures including variable formulation and 
selection, model building, cross-validation, and 
evaluation used by Semakula et  al. (2020b) were 
followed. Consequently, both classification and 
multiple linear regression approaches were tested. 
Any missing values were imputed using the pre-
Process function and bagimput method from the 
caret package in R (Kuhn, 2008). Additionally, 
non-numerical data were made numerical and 
z-transformed (scaled and centered) during ana-
lysis using the same preProcess function above. 
Z-transformed values outside the 95% CI (z ± 
1.96 range) were not used in the final analysis. 
Differences among correlation coefficients were 
tested for significance based on Fisher’s r-to-z 
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transformation. In the present analysis, there was 
high-class BCS imbalance (Supplementary Table 
A1) making use of classification methods to pre-
dict individual BCS inappropriate (Triguero et al., 
2015). In order to predict individual ewe BCS on a 
full scale (1.0−5.0), an alternative statistically ro-
bust method (Norman, 2010) to class imbalance 
was warranted. Consequently, the multivariate 
linear model which has been successfully utilized 
to predict BCS in cattle (Martins et al., 2020) and 
sheep (Semakula et al., 2020b) was applied.

Variable Selection, Model Building, and Validation

The predictors for each BCS were selected 
through a variable selection technique executed in 
the R program (R Core Team, 2016) using the elastic 
net method in the glmnet extension (Friedman 
et  al., 2010) in the caret package (Kuhn, 2008). 
Models were fitted and validated using a four-step 
procedure (data partitioning, resampling, model 
training, and validation) as described by Semakula 
et al. (2020a) and Semakula et al. (2020b). Using 
selected predictors, regression equations were fitted 
on a training dataset to predict BCS from life-
time ewe liveweight records (current and previous 
weights), liveweight change (difference in weight 
between two consecutive weights taken at dif-
ferent time points), height at withers, previous BCS 
scores (a record of all previous BCS scores), and 
their lamb birth and weaning weight data in one 
regression. Initially a total of eleven (11) regression 

equations (each representing ewe age group and 
stage of the annual production cycle) were created 
for BCS prediction based on unadjusted lifetime 
LW measurements (Liveweight alone1 models). 
A  previous measurement was that taken at a dif-
ferent time point (different stage of the annual pro-
duction cycle) prior to the current one. Liveweight 
change refers to the change in liveweight between 
two time points. Furthermore, 11 more equations 
were generated incorporating liveweight change 
and previous BCS in addition to lifetime liveweight 
(combined1 models). The process of generating 
BCS prediction equations above was repeated 
based on adjusted LW (adjusting for conceptus 
weight and fleece weight) (Liveweight alone2 mod-
els) and based on adjusted LW, liveweight change, 
height (adjusted for fleece growth) at withers, and 
previous BCS (combined2 models). A description 
of variables is given in Table 1.

Model Evaluation

Models were evaluated as described by 
Semakula et  al. (2020b). Model performance 
evaluation was conducted on training dataset 
using two metrics (Theil, 1958; Botchkarev, 2019) 
adjusted coefficient of  determination (adj. R2) 
and the root mean square error (RMSE). Each 
BCS prediction model validation was conducted 
on the testing dataset, with each replicated 1000-
fold. The quality and success of  the prediction 
models was assessed using the coefficient of 

Table 1. Explanation of liveweight (LW), liveweight change, height at withers (H), and body condition 
score (BCS) variables by ewe age group and stage of the annual production cycle

Age (mo) Stage of the annual production cycle LW* BCS† Change in liveweight‡ HW‖

8–18 Pre-breeding WP1 BP1  PH1

Pregnancy diagnosis WD1 BD1 WT11(WD1–WP1) DH1

Pre-lambing WL1 BL1 WT12(WL1–WD1) LH1

Weaning WW1 BW1 WT13(WW1–WL1) WH1

19–30 Pre-breeding WP2 BP2 DW-T1(WP2–WW1) PH2

Pregnancy diagnosis WD2 BP2 WT21(WD2–WP2) DH2

Pre-lambing WL2 BL2 WT22(WL2–WD2) LH2

Weaning WW2 BW2 WT23(WW2–WL2) WH2

31–42 Pre-breeding WP3 BP3 DW-T2(WP3–WW2) PH3

Pregnancy diagnosis WD3 BP3 WT31(WD3–WP3) DH3

Pre-lambing WL3 BL3 WT32(WL3–WD3) LH3

Weaning WW3 BW3 WT33(WW3–WL3) WH3

* Liveweight at pre-breeding (WP), pregnancy diagnosis (WD), pre-lambing (WL), and weaning (WW).
†Body condition score at pre-breeding (BP), pregnancy diagnosis (BD), pre-lambing (BL), and weaning (BW). 
‡Change in liveweight between successive measurements within age groups, DW-T: change in liveweight between successive measurements be-

tween age groups.
‖Height at withers at pre-breeding (PH), pregnancy diagnosis (DH), pre-lambing (LH), and weaning (WH).

http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txab130#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txab130#supplementary-data
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determination (r2), mean bias, root mean squared 
error (RMSE), residual prediction deviation 
(RPD), the ratio of  performance to interquar-
tile distance (RPIQ), and percent error (RPE) 
(McDowell et al., 2012); overall adjusted R2 value 
and error metrics between models were compared 
based on Wilcoxon signed-ranks test (Conover, 
1973; Rahe, 1974) and a two-tailed paired t-test 
(Kim, 2015).

RESULTS

Descriptive Statistics

The frequency of ewe BCS score across age 
group and stage of the annual production cycle is 
presented in Supplementary Table A1. The majority 
of the ewes had BCS ranging from 2.5 to 3.0, while 
the extreme BCS scale values (1.5 and 5.0) were the 
least common. Within age groups, the most fre-
quent ewe BCS at 8−18 mo was 2.5 across stages 
of the annual production cycle. At 19−30 mo, the 
most frequent ewe BCS was 3.0 across all stages of 
the annual production cycle except at weaning and 
at 31−42 mo there was no clear pattern.

Summaries of ewe LW, BCS, and HW from 
8 to 42 mo of age are presented in Table 2. Body 
condition score did not significantly change (P > 
0.05) over time and across stages of the annual pro-
duction cycle, while both LW (P < 0.05) and HW 
(P < 0.01) varied with annual production cycle and 
increased with ewe age. Unadjusted LW continued 
to increase with ewe age beyond 30 mo. However, 

adjusted liveweight increased with age up to 30 mo 
before plateauing.

Correlation Between Liveweights and Height 
at Withers

The relationship between ewe liveweight (LW) 
and height at withers (HW) was positive but weak to 
moderate across age groups and stages of the annual 
production cycle, regardless of whether unadjusted 
or adjusted LW was used (Supplementary Table A2). 
However, a negative association between LW and 
HW was observed at 19−30 mo at prebreeding. There 
was no pattern in the strength of BCS–HW associ-
ation between same and different time points.

Correlation Between BCS and Liveweights

There was a linear association between LW 
and BCS in all age groups and stages of the annual 
production cycle, but the association was weak to 
moderate, regardless of whether unadjusted or ad-
justed LW was used (Supplementary Table A3). 
Furthermore, this association was comparable (P > 
0.05) for both unadjusted and adjusted LW. Both 
the weakest and strongest relationships were ob-
served at weaning. The relationships, however, were 
strongest when liveweight and BCS measurements 
were from the same time point (pair of LW–BCS 
measurements taken at the same time) except at PL 
8−18 mo, compared to when lifetime (i.e., measure-
ments taken at different time points) records were 
used.

Table 2. Mean liveweight unadjusted and adjusted for conceptus and fleece weight (LW), height at withers 
(HW), and body condition score (BCS) with respective standard deviations by ewe age group and stage of 
annual production cycle

Age (mo) Stage of annual production cycle n

LW

P-vale

HW

P-vale BCSUnadjusted Adjusted Unadjusted Adjusted 

8−18 Pre-breeding 428 43.7 (5.61) 41.5 (5.46) <0.001    2.8 (0.42)

PD 429 48.8 (5.83) 45.7 (5.42) <0.001    2.7 (0.39)

Pre-lambing 428 52.6 (7.49) 52.0 (7.47) 0.256 0.61 (0.032) 0.58 (0.032) 0.011 2.8 (0.41)

Weaning 429 59.7 (7.10) 58.6 (7.05) 0.016    2.8 (0.53)

19−30 Pre-breeding 427 62.8 (6.67) 59.1 (6.73) <0.001 0.61 (0.038) 0.59 (0.038) 0.006 3.0 (0.61)

PD 426 63.0 (7.09) 60.2 (6.74) <0.001 0.60 (0.036) 0.58 (0.036) 0.011 3.3 (0.63)

Pre-lambing 424 70.8 (7.70) 62.0 (6.60) <0.001    3.2 (0.63)

Weaning 424 66.1 (8.67) 64.2 (8.67) 0.001 0.63 (0.033) 0.59 (0.033) 0.001 2.8 (0.67)

31−42  
 

Pre-breeding 401 68.9 (7.71) 66.4 (7.74) <0.001     

PD 402 70.7 (7.76) 64.8 (7.57) <0.001 0.62 (0.047) 0.59 (0.033) 0.001 3.1 (0.63)

Pre-lambing 399 88.8 (9.32) 64.3 (8.27) <0.001    3.4 (0.65)

Weaning 402 69.0 (9.74) 66.8 (9.70) 0.002 0.64 (0.033) 0.61 (0.047) 0.001 2.8 (0.78)

P-value  <0.001 <0.001  <0.001 <0.001   

Values in parentheses indicate the standard deviation. Adjusted indicates that variables were corrected for fleece conceptus weight (LW) and 
fleece growth (LW and HW). P-values based on t-tests.

http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txab130#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txab130#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txab130#supplementary-data
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Correlation Between BCS and Height at Withers

Generally, there was a poor linear associ-
ation between ewe HW and BCS in all age groups 
and stages of the annual production cycle, re-
gardless of whether unadjusted or adjusted HW 
(Supplementary Table A4). At any one time point, 
the relationship between BCS and HW did not vary 
(P > 0.05) across age and stage of the annual pro-
duction cycle except for 19−30 mo ewes at weaning 
(P < 0.01) and 31−42 mo ewes at PL (P < 0.01) and 
weaning (P < 0.05). There was no clear pattern in 
the change of strength of BCS–HW association 
over time.

Coefficient of Determination (R2) and Number of 
Predictors

To predict BCS at any given time, all current 
and previous individual liveweights (liveweight 
alone models) were included in linear regression 
equations. Separate models were formulated for 
unadjusted and adjusted LW (based on training 
dataset). The adjusted R2 values averaged across 
folds 0.38 (0.10 to 0.74), regardless of the time 
point. The adjusted R2 values were comparable 
(z  =  0.37, t10  =  0.56, P > 0.05) for both adjusted 
and unadjusted BCS prediction models across 

age groups and stages of the annual production 
cycle (Figure 1). However, the average adjusted 
R2 value was greater for unadjusted than adjusted 
LW models (z = 2.40, t10 = 2.23, P < 0.05). Within 
age groups, across stages of the annual produc-
tion cycle, the adjusted R2 value varied with no 
clear pattern (Figure 1). There was a trend for ad-
justed R2 to improve at older ages, when a greater 
amount of previous liveweight information was 
known. In general, the adjusted R2 value was high-
est at weaning with no clear pattern in the lowest 
value. The average number of liveweight predictors 
(significant variables) for BCS prediction was com-
parable for models using unadjusted as well as ad-
justed LW (average: 6, 1 to 11)  and with ewe age 
(Supplementary Figure A1). To improve the pre-
diction of current BCS, the LW alone models were 
expanded by adding the unadjusted LW differences 
(change in liveweight measurements from adjacent 
time points) and all preceding BCS (combined un-
adjusted models) or by adding the adjusted LW dif-
ferences (change in liveweight measurements from 
adjacent time points) and height at wither, and all 
preceding BCS (combined adjusted models). The 
overall proportion of variance explained (adjusted 
R2) improved (z  =  3.62, t21  =  5.71, P  <  0.001) by 
approximately 1.3 times (from 0.38 to 0.50) in all 

Figure 1. Adjusted coefficient of variation (adjusted R2, with standard deviations) of models (dotted bar: unadjusted liveweight alone models; 
horizontal stripes: combined models based on unadjusted LW, liveweight change, and previous BCS; diagonal stripes: adjusted liveweight alone; 
and shingled: adjusted liveweight, liveweight change, height at withers, and previous BCS) for current BCS prediction across the stage of the annual 
production cycle and ewe age group. Colors (red indicates unadjusted liveweight while blue indicates adjusted liveweight was used). PB, PD, PL, 
and W indicate body condition score prior to pre-breeding, at pregnancy diagnosis, prior to lambing, and at weaning, respectively. In large samples 
where bootstrapping is applied, the standard deviations approximate the standard errors.

http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txab130#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txab130#supplementary-data
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combined model categories compared to LW mod-
els (Figure 1). However, the adjusted R2 values were 
comparable (z = 1.07, t10 = 0.99, P > 0.05) for both 
adjusted and unadjusted models across age groups 
and stages of the annual production cycle (Figure 
1). Furthermore, the adjusted R2 values were mar-
ginally greater in combined models than liveweight 
alone models across age and stages of the annual 
production cycle. The highest adjusted R2 values 
were achieved at the weaning period with no clear 
pattern concerning the lowest value. The number of 
significant predictors for BCS was higher (average: 
10, from 1 to 16 for unadjusted and 1 to 21 for un-
adjusted) in the combined models compared to live-
weight alone models (Supplementary Figure A1). 
Overall, the number of predictors was increased 
1.5 and 2.0 times for unadjusted and adjusted 
combined models, respectively, compared to LW 
alone models.

Prediction Accuracy

To access the accuracy of predicting BCS, sev-
eral prediction error metrics (MAE, RMSE, and 

RPE) were computed. The error metrics appeared 
to vary across (P < 0.05) age group but not (P > 
0.05) stage of the annual production cycle except 
for 19−30-mo-old ewes, when liveweight or com-
bined models were used to predict BCS (Tables 3 
and 4; Figure 2). Using adjusted LW did not affect 
BCS prediction accuracy (±2SD, P > 0.05) except 
for the 19−30-mo-old ewes at PL. The average pre-
diction error associated with BCS prediction in 
terms of MAE and RMSE were 0.38 and 0.45, and 
0.32 and 0.40 body condition scores for liveweight 
alone and the combined models, respectively. In 
adjusted models, the average prediction error as-
sociated with BCS prediction in terms of MAE 
and RMSE was 0.37 and 0.45, and 0.33 and 0.41 
body condition scores for liveweight alone and the 
combined models, respectively. However, combined 
models improved (z = 5.41, t21 = 2.08, P > 0.001) 
the BCS prediction error by 10.7% (average RMSE: 
0.45 vs 0.40) compared to LW alone models.

The magnitude of the BCS prediction error 
was moderate to high in both the liveweight and 
combined models, based on the smallest unit of 
measurement (0.5). The BCS predictions using the 

Table 3.  Coefficient of determination (r2), bias, root mean square error (RMSE), mean absolute error 
(MAE), relative prediction error (RPE), residual prediction deviation (RPD), and the ratio of performance 
to interquartile distance (RPIQ) based on testing data for the prediction of BCS in ewes between 8 and 42 
mo by stage of the annual production cycle using unadjusted liveweight and adjusted liveweight (LW) alone 
models

  
Metric

8−18 19−30 31−42

PB PD PL W PB PD PL W PD PL W

Liveweight alone1 models (Unadjusted)

r2 12.90 13.89 10.30 36.70 25.50 26.61 17.50 64.02 33.20 20.33 71.10

BIAS 0.007 −0.043 0.004 −0.013 −0.05 −0.015 0.02 −0.02 0.204 −0.047 −0.152

RMSE 0.39 0.37 0.39 0.43 0.53 0.55 0.54 0.38 0.50 0.49 0.44

MAE 0.32 0.3 0.32 0.33 0.43 0.45 0.46 0.31 0.43 0.44 0.35

RPE 14.90 15.01 13.21 16.20 16.03 15.30 14.70 13.20 16.00 14.30 15.80

RPD 1.14 1.06 1.07 1.26 1.32 1.27 1.30 1.71 1.26 1.26 1.83

RPIQ 1.25 1.25 1.39 1.16 1.04 1.04 1.02 1.32 1.00 2.04 1.14

Liveweight alone2 models (Adjusted)

r2 12.30 15.81 13.50 36.78 32.67 26.70 32.40 68.31 44.16 34.60 57.60

BIAS 0.006 0.019 0.003 −0.088 −0.002 −0.006 −0.008 −0.003 −0.037 0.038 0.063

RMSE 0.4 0.37 0.38 0.41 0.49 0.54 0.54 0.41 0.48 0.52 0.48

MAE 0.32 0.30 0.31 0.33 0.43 0.44 0.43 0.32 0.41 0.43 0.37

RPE 10.6 12.95 13.38 14.75 16.33 16.12 16.72 14.64 15.53 15.25 17.2

RPD 1.08 1.09 1.07 1.24 1.23 1.17 1.19 1.79 1.35 1.25 1.53

RPIQ 1.25 1.35 1.32 1.22 2.04 1.39 0.93 1.22 2.08 1.92 1.04

PB, PD, PL, and W indicate the four stages of the annual production cycle including pre-breeding, pregnancy diagnosis, pre-lambing, and 
weaning, respectively. Interpretation of measures: The best model has the highest r2, RPD, and RPIQ, and the lowest RMSE and RPE. Ranges 
for values: r2 (0 indicates that the model accounts for none of the variability of the response data around its mean and 1.0 indicates that the model 
accounts for all the variability). RPD (< 1.4: Weak, 1.4 < RPD < 2.0: Reasonable, > 2.0: Excellent). RPIQ (< 1.4: Very poor, 1.4 < RPIQ < 1.7: 
Fair, 1.7 < RPIQ < 2.0: Good, 2.0 < RPIQ < 2.5: Very good, > 2.5: Excellent). Superscripts 1 and 2 indicate model based on unadjusted or adjusted 
liveweight, respectively. Bias (positive value indicates overestimation; negative sign indicates underestimation). Adjusted indicates that a model was 
based on liveweight corrected for conceptus and fleece weight.

http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txab130#supplementary-data
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Figure 2. Root mean square error (RMSE with standard deviations) of models (dotted bar: unadjusted liveweight alone models; horizontal 
stripes: combined models based on unadjusted LW, liveweight change, and previous BCS; diagonal stripes: adjusted liveweight alone; and shingled: 
adjusted liveweight, liveweight change, height at withers, and previous BCS) for current BCS prediction across the stage of the annual production 
cycle and ewe age group. Colors (red indicates unadjusted liveweight while blue indicates adjusted liveweight was used). PB, PD, PL, and W indicate 
body condition score prior to prebreeding, at pregnancy diagnosis, prior to lambing, and at weaning, respectively.

Table 4.  Coefficient of determination (r2), bias, root mean square error (RMSE), mean absolute error 
(MAE), relative prediction error (RPE), residual prediction deviation (RPD), and the ratio of performance 
to interquartile distance (RPIQ) based on testing data for the prediction of BCS in ewes between 8 and 42 
mo by stage of the annual production cycle using unadjusted and adjusted combined models

  
 Metric

8−18 19−30 31−42

PB PD PL W PB PD PL W PD PL W

Combined1 models (Unadjusted)

r2 12.9 31.3 26.6 51.5 29.9 55.1 58.3 68.8 54.7 54 71

BIAS 0.007 −0.025 −0.005 0.009 0.051 −0.038 0.007 0.065 −0.014 −0.155 0.011

RMSE 0.39 0.33 0.34 0.36 0.49 0.47 0.40 0.39 0.42 0.45 0.41

MAE 0.32 0.27 0.28 0.29 0.41 0.31 0.31 0.31 0.34 0.35 0.31

RPE 14.90 12.13 11.97 12.86 16.69 12.18 12.42 14.08 13.64 13.20 14.96

RPD 1.14 1.20 1.18 1.42 1.20 1.48 1.56 1.73 1.50 1.49 1.84

RPIQ 1.25 1.52 1.47 1.39 2.00 1.83 2.50 1.28 1.19 1.11 1.22

Combined2 models (Adjusted)

r2 13.0 31.9 18.7 53.7 36.4 55.5 57.1 67.2 51.7 57.8 71.3

BIAS 0.006 −0.001 −0.002 0.021 −0.01 0.005 0.054 −0.034 0.043 0.031 −0.054

RMSE 0.40 0.33 0.39 0.35 0.49 0.46 0.41 0.42 0.44 0.42 0.40

MAE 0.33 0.28 0.27 0.30 0.43 0.35 0.32 0.32 0.34 0.34 0.31

RPE 10.6 11.76 13.64 12.68 16.33 13.65 12.58 15.16 14.15 12.35 14.55

RPD 1.08 1.24 1.08 1.47 1.25 1.34 1.54 1.79 1.40 1.55 1.85

RPIQ 1.25 1.56 1.28 1.43 2.04 1.63 1.22 1.19 2.27 2.38 1.25

PB, PD, PL, and W indicate the four stages of the annual production cycle including pre-breeding, pregnancy diagnosis, pre-lambing, and 
weaning, respectively. Interpretation of measures: The best model has the highest r2, RPD, and RPIQ, and the lowest RMSE and RPE. Ranges 
for values: r2 (0 indicates that the model accounts for none of the variability of the response data around its mean and 1.0 indicates that the model 
accounts for all the variability). RPD (< 1.4: Weak, 1.4 < RPD < 2.0: Reasonable, > 2.0: Excellent). RPIQ (< 1.4: Very poor, 1.4 < RPIQ < 1.7: 
Fair, 1.7 < RPIQ < 2.0: Good, 2.0 < RPIQ < 2.5: Very good, > 2.5: Excellent). Unadjusted indicates that models were based on all previous and 
current crude and previous liveweights, liveweight changes, and previous BCS). Adjusted indicates that models were based on all previous and 
current liveweights and liveweight changes corrected for conceptus and fleece weight, adjusted height at withers, and previous BCS. Superscripts 
1 and 2 indicate without and with adjusted HW in the model, respectively. Bias (positive value indicates overestimation; negative sign indicates 
underestimation).
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unadjusted liveweight alone and combined mod-
els were, on average, 15.4% and 13.5%, respect-
ively, from the actual value. In adjusted models, 
the predictions deviated by 15.9% and 13.4%, re-
spectively, for LW alone and combined models. 
Therefore, combined models improved the BCS 
prediction error prevalence by 9.6% compared to 
LW alone models.

Models were categorized regardless of model 
type as weak (RPD: 1.06 to 1.35) or very poor to 
fair (RPIQ: 1.47 to 1.85). There was inconsistency 
in the BCS prediction model performance where a 
model with relatively good RPD (>1.4) had a poor 
RPIQ (<1.4) and vice versa. Using adjusted LW or 
unadjusted LW did not affect (P > 0.05) both model 
RPD and RPIQ metrics. However, both RPD and 
RPIQ were improved (P < 0.05) by 10% to 16% in 
the combined than LW alone models.

DISCUSSION

The aim of this study was to explore the pos-
sibility of improving the prediction accuracy of 
BCS using a ewe’s production characteristics as 
they aged from 8 to approximately 42 months. This 
was a follow-up study to Semakula et al. (2020b). 
Previously, using a different dataset, the relation-
ship between liveweight and BCS at a given time 
point, and the possibility of using a linear combin-
ation of a ewe’s unadjusted lifetime LW, liveweight 
change, and previous BCS data to predict BCS at a 
given time, was examined (Semakula et al., 2020a; 
Semakula et al., 2020b). Weak to moderate levels 
of BCS prediction accuracy were achieved. It was 
then postulated that if  corrected liveweights (cor-
rected for conceptus and fleece weight) and wither 
height (corrected for fleece length) data were used, 
BCS prediction accuracy would be improved.

In this study, the majority of the ewes had BCS 
between 2.5 and 3.0 which falls within the recom-
mended BCS range (2.5−3.5) for optimal prod-
uctivity (Kenyon et  al., 2014). Additionally, there 
were few thin or obese ewes in the 8- to 18-mo-old 
group. These observations combined indicate that 
ewes were supplied with sufficient nutritional re-
quirements through their first reproductive cycle. 
Furthermore, this study demonstrated unadjusted 
LW continued to increase beyond 30 mo of age but 
adjusted LW (adjusted for conceptus and fleece 
weight) plateaued. The observed trend in adjusted 
LW corroborates an earlier study which reported 
that mature Romney ewe weight was achieved by 
33 mo (Pettigrew et al., 2019). It appears that the 
confounding effects of conceptus and fleece weight 

increase with age, causing the apparent increase in 
weight unadjusted LW.

It was not clear why the relationship between 
LW and HW was negative for 18−30-mo-old ewes 
at prebreeding. Prior to breeding, farmers en-
hance their feeding strategies in a process known 
as flushing to ensure as many ewes reach the re-
quired breeding weight regardless of their frame 
sizes (Kenyon et  al., 2011). Given that fact that 
this was the same cohort of ewes, it is possible that 
changes in nutritional effects could have randomly 
altered the relationship between LW and HW. With 
the moderate strength of association between LW 
and HW, height at withers was expected to sig-
nificantly affect the relationship between LW and 
BCS. However, HW was poorly correlated with 
BCS. There was a weak to moderate correlation be-
tween LW and BCS as reported by Semakula et al. 
(2020a).

The observation that LW alone models were 
not as good as combined ones and, thus, likely to 
be unreliable in predicting future BCS based on 
linear regression, corroborate our previous find-
ings (Semakula et  al., 2020b). The variability in 
BCS explained for both liveweight and combined 
models increased with the number of predictors  
in the model. This was expected as it is known that  
as the number of predictors that significantly relate to  
the dependent variable increases, the proportion 
of the variance due to the regression increases 
(Li, 2017). However, in this study, a considerable 
amount of variability in BCS (0.26 ≤ R2 ≤ 0.83 and 
0.25 ≤ R2 ≤ 0.72) remained unaccounted for in both 
liveweight alone models and combined models, re-
spectively. Some of the reasons for the apparent 
failure for both liveweight alone and combined 
models to account for more of the variability in 
BCS include 1)  assessor consistency over time, 
2) losses in liveweight due to gut-fill and urination 
when ewes were weighed at different times, and 
3)  confounding effects of fleece weight and con-
ceptus weight (Semakula et  al., 2020b). The con-
sistency between BCS assessors varies between 5% 
to 27% and 40% to 60%, and within assessors from 
16% to 44% and 60% to 90% for inexperienced and 
experienced assessors, respectively (Kenyon et  al., 
2014). In the current study, a single experienced as-
sessor (with more than 30 yr of experience in BCS 
assessment) was used to determine all BCS to en-
sure consistency. It is, therefore, unlikely that the 
data used in this study were affected by assessor 
reliability. Liveweight losses resulting from fluctu-
ations in gut-fill can account for between 5% and 
23% of total liveweight in ruminants (Hughes, 
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1976; Moyo and Nsahlai, 2018). Thus, the dur-
ation between feeding and recording an individ-
ual’s liveweight can influence the accuracy of the 
liveweight. Further, ewe fleece weight, pregnancy, 
and lambing data were collected and used to cor-
rect LW. Given that standard equations, with little 
known error rates and repeatability were used to 
adjust liveweight, it is possible that these strat-
egies could have introduced some error cancelling 
the effect of adjusting for LW confounders. The 
study also did not measure individual time off  feed 
prior to weighing, a function that many electronic 
weighing systems now have the potential to account 
for. Future studies should examine if  the accuracy 
of BCS prediction can be improved by accounting 
for gut-fill fluctuations. In regression models, all re-
sidual errors are assumed to be contributed by the 
predictors, and thus, any inaccuracies in their meas-
urement should be of concern (Dosne et al., 2016). 
Losses in liveweight due to gut-fill changes and urin-
ation in relation to when ewes were weighed and the 
effect of pregnancy on liveweight are therefore of 
concern, as they affect liveweight, a key variable for 
BCS prediction. When predictor variables are im-
precise, estimations based on the standard model 
assumptions can lead to inaccurate parameter esti-
mates even when large samples are used (Hausman, 
2001; Pischke, 2007). Therefore, if  errors in the 
measurement of liveweight could be minimized, 
the goodness-of-fit and accuracy of BCS prediction 
models should increase. In delayed weighing, ac-
counting for liveweight losses with respect to time 
of delay (the duration from when the animal last 
fed to weight recording) using prediction equations 
offers a practical solution. These time-dependent, 
liveweight adjusting equations for ewes have been 
developed but are not regularly used (Burnham 
et al., 2009; Wishart et al., 2017).

The BCS prediction models using liveweight 
alone had larger error (MAE and RMSE) and 
lower RPD and RPIQ values, compared to com-
bined models which led to high relative error 
prevalence (RPE). Combined models reduced the 
magnitude of all the prediction error metrics but 
were greater than those observed in our previous 
study (Semakula et  al., 2020b). The model BCS 
prediction percentage error (RPE) was above the 
desired 10% (Hagerman et  al., 2017; Lalic et  al., 
2018). The large BCS prediction error values (60% 
to 108% of the smallest unit on a 0.5 decimal scale) 
in the present study (where a 0.5-unit change in 
BCS changes the performance rank of a ewe) could 
lead to inaccurately predicted BCS values, thereby, 
greatly influencing management decisions. Ideally, 

all prediction models should have had resolutions 
as low as 0.02 body condition scores. However, 
due to the intractable discrete nature of the BCS 
scale used, such resolutions cannot be achieved 
(Semakula et al., 2020b). It has been suggested that 
decisions concerning strategic feeding and manage-
ment of ewes to maximize performance should be 
based on a critical range of BCS values (i.e., 2.5 to 
3.5; Kenyon et al., 2014). The predictions found in 
this study may, therefore, overestimate or underesti-
mate measures by 0.33 to 0.54 BCS, which could 
substantially change the ranking of a ewe, leading 
to less robust management decisions, which in turn 
could reduce flock productivity. The greater BCS 
prediction error than reported in our previous 
study (Semakula et al., 2020b) could be explained 
by the smaller sample size used in the current study 
leading to greater variability in the outcome and 
predictor variable measurements.

The findings suggest that using quantitative 
traits (physical and linear morphometric measure-
ments) may not be sufficient to predict sheep BCS 
on a full range scale (1.0−5.0). Therefore, further 
studies using data such as image analysis (com-
puted tomography: CT scans and dual-energy x-ray 
absorptiometry: DXA), and automated metabolic 
profiles, to account for individual animal vari-
ability may be warranted. Where a narrow range of 
BCS such as 1.0−3.0 is acceptable, further research 
should look at extending machine learning algo-
rithms across all age groups and stages of the annual 
production cycle. Given the limitations of predict-
ing BCS, itself  a predictor of body composition. It 
would be worthwhile investigating how accurately 
liveweights and other predictors would predict total 
body fat and muscle weights, or proportions given 
they are more objective and continuous variables. 
The first step in these types of studies would require 
animals to be euthanized and/or tools such as CT 
scans.

CONCLUSION

The combined models improved the proportion 
of variability in BCS that could be accounted for, 
as well as the accuracy metrics across all age groups 
and stages of the annual production cycle and over 
time (years), compared to the liveweight alone mod-
els. Using ewe data to correct LW (correct for fleece 
weight and conceptus weight) and height at withers 
as an additional predictor did not offer better model 
accuracy. The most common way of determining 
BCS is through a direct hands-on method; how-
ever, if  it is not possible, the equations generated 
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in the current and previous study (Semakula et al., 
2020b) could be used to predict BCS. These equa-
tions could potentially be incorporated in elec-
tronic weighing systems that utilize lifetime data, 
especially in large extensively run sheep flocks. 
However, the 30% to 90% variability in BCS that 
was unaccounted for, even in the combined mod-
els, coupled with the large prediction error associ-
ated with our equations dictates that they should be 
used with caution. Additional ways of accounting 
for individual variability in BCS could ameliorate 
the accuracy of BCS and warrant investigation.

SUPPLEMENTARY DATA

Supplementary data are available at 
Translational Animal Science online.
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