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a b s t r a c t

The 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR; EC1.1.1.267), an NADPH-dependent
reductase, plays a pivotal role in the methylerythritol 4-phosphate pathway (MEP), in the conversion
of 1-deoxy-D-xylulose-5-phosphate (DXP) into MEP. The sheath and leaf of citronella (Cymbopogon
winterianus) accumulates large amount of terpenes and sesquiterpenes with proven medicinal
value and economic uses. Thus, sequencing of full length dxr gene and its characterization seems
to be a valuable resource in metabolic engineering to alter the flux of isoprenoid active ingredients
in plants. In this study, full length DXR from citronella was characterized through in silico and tis-
sue-specific expression studies to explain its structure–function mechanism, mode of cofactor
recognition and differential expression. The modelled DXR has a three-domain architecture and
its active site comprised of a cofactor (NADPH) binding pocket and the substrate-binding pocket.
Molecular dynamics simulation studies indicated that DXR model retained most of its secondary
structure during 10 ns simulation in aqueous solution. The modelled DXR superimposes well with
its closest structural homolog but subtle variations in the charge distribution over the cofactor
recognition site were noticed. Molecular docking study revealed critical residues aiding tight
anchoring NADPH within the active pocket of DXR. Tissue-specific differential expression analysis
using semi-quantitative RT-PCR and qRT-PCR in various tissues of citronella plant revealed distinct
differential expression of DXR. To our knowledge, this is the first ever report on DXR from the
important medicinal plant citronella and further characterization of this gene will open up better
avenues for metabolic engineering of secondary metabolite pathway genes from medicinal plants
in the near future.
� 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Citronella (Cymbopogon winterianus), an aromatic grass with
large reserves of monoterpenes and sesquiterpenes, is grown for
commercial and industrial purposes in tropical as well as subtropi-
cal regions of Asia, America and Africa [1]. Industrial interest in
essential oils is due to their application as fragrance in perfumes,
as flavor additives for use in food products or even as pharmaceu-
tical products [2]. Citronella is traditionally known for its insect-
repellent nature, especially against malaria-causing mosquito
species, therapeutic properties against various diseases [3–5] and
its anti-fungal property [6]. Strong antifungal activity against several
species of Aspergillus, Penicillium and Eurotium due to presence of
citronellal and linalool, components of citronella oil, has also been
reported [7]. Citronella oil is used to expel worms or other para-
sites from the intestines, control muscle spasms, increase appetite,
and increase urine production (as a diuretic) to relieve fluid reten-
tion [8].

The Java citronella (C. winterianus) is known for its high quality
and quantity of essential oils ranging from 0.8% to 1.0% of total
weight having constituents like limonene (1.8%), geraniol (�23%),
elemol (�10%), geranyl acetate (4.0%), a-cadinol (8.0%), citronellol
(�10%), citronellal (�35%) etc., [9]. The processors for all these iso-
prenoid compounds are two common 5-carbon molecules i.e.,
isopentenyl diphosphate (IPP) and dimethylallyl diphosphate
(DMAPP). In higher plants, these two isoprenoid compounds are
synthesized by two non-related biosynthetic pathways, from dif-
ferent precursors [10–13]. In the mevalonate (MVA) pathway, IPP
and DMAPP are synthesized from mevalonic acid whereas,
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Fig. 1. 1-Deoxy-D-xylulose-5-phosphate reductoisomerase reaction (Adopted from
Takahashi et al. (1998) [23]).
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pyruvate and D-glyceraldehyde 3-phosphate are used as precursors
for IPP and DMAPP synthesis via mevalonate-independent plas-
tidial methylerythritol 4-phosphate (MEP) pathway [14–20].

The MEP pathway is composed of seven enzymatic steps.
But the second step i.e., NADPH-dependent reduction and conver-
sion of 1-deoxy-D-xylulose-5-phosphate (DXP) into MEP by
intramolecular rearrangement is considered as most crucial
[21–23] (Fig. 1). This reaction is catalyzed by 1-deoxy-D-xylulose-
5-phosphate reductoisomerase (DXR: EC1.1.1.267); which is the
first committed step of MEP pathway [24]. It has been seen that
disruption of the 1-deoxy-D-xylulose-5-phosphate reduc-
toisomerase (DXR) gene in Arabidopsis results in albino, dwarf
and defects in trichome initiation and stomata closure due to insuf-
ficient supply of all the major plant hormones synthesized from IPP
and DMAPP [25]. Their results reveal a critical role for the MEP
biosynthetic pathway in controlling the biosynthesis of iso-
prenoids. DXR gene of Zymomonas mobilis has been characterized
which shows highest percentage of sequence identity (i.e., 48.2%)
with dxr of Escherichia coli [26]. Recently, several groups concen-
trated on molecular cloning and characterization of a 1-deoxy-D-
xylulose 5-phosphate reductoisomerase gene from various plant
species viz., Ginkgo biloba [27], Elaeis guineensis Jacq. [28],
Camptotheca acuminate [29] and Salvia miltiorrhiza [30]. The
expression and molecular analysis of the Arabidopsis dxr gene along
with the comparative analysis of all plant DXR sequences known to
date, where it possess an N-terminal transit peptide for plastids,
with a conserved cleavage site, and a conserved proline-rich region
at the N terminus of the mature protein, which is absent in
prokaryotic DXR homologs. It has also been reported that
Arabidopsis DXR participates in the control of 2-C-methyl-D-ery-
thritol 4-phosphate pathway [31].

The DXR is a key enzyme in MEP pathway and therefore a
change in DXR activity could alter the flux of isoprenoid expressed
down the pathway. Metabolic engineering of essential oil yield and
composition in mint by altering expression of deoxyxylulose phos-
phate reductoisomerase and menthofuran synthase improves flux
through the MEP pathway that leads to increased monoterpene
production [32,33]. The sheath and leaf of C. winterianus also
accumulates large amount of terpenes and sesquiterpenes, com-
pound with proven medicinal value and economic uses, so
sequencing of full length dxr gene and its characterization would
enable prospective manipulations of the pathway that may lead
to increased accumulation of active ingredients. However, the
unavailability of X-ray- or nuclear magnetic resonance (NMR)-
derived structures of DXR has hindered the understanding of
three-dimensional architecture, mode of cofactor recognition and
critical residues participate in catalysis. Therefore in the present
study, we have utilized the full length dxr gene sequence
(GenBank Accession number: KJ749651) from one of our current
citronella leaf whole transcriptome sequencing study (BioProject
ID: PRJNA263976). In this study we have used a combinatorial
approach involving homology modelling, molecular dynamics
simulations and docking to explain the 3-dimensional domain
architecture, dynamics behaviour and mode of cofactor recognition
in DXR to facilitate the understanding of catalysis of dxr in citro-
nella. Further, tissue specific differential expression analysis of
DXR was performed both by semi-quantitative RT-PCR and
quantitative real time PCR in various tissues of citronella plant.
The results from the present study are expected to open up better
avenues for metabolic engineering of important secondary
metabolite pathway genes from important medicinal plants like
citronella, and also in other related medicinal plant species.
2. Results and discussion

2.1. Sequence analysis

The domain prediction of DXR by SMART against Pfam database
revealed two putative domains viz., 1-deoxy-D-xylulose 5-phos-
phate reductoisomerase (Pfam: DXP_reductoisom) positioned
between 81 and 209 amino acid and 1-deoxy-D-xylulose 5-phos-
phate reductoisomerase (Pfam: DXP_redisom_C) comprised of
223–306 amino acids. The mature 465 amino acid peptide is neu-
tral in nature (pI of 6.44) with a molecular mass of 50.8 kDa. The
aliphatic index of DXR is very high (96.5) indicating the stability
of the protein over a wide range of temperature. Instability index
was 35.1 (<40) DXR is classified as a stable protein. The GRAVY
index of DXR is very low (0.056) indicating the possibility of its
better interaction with water. To characterize the sequence of
the N-terminal region of CwDXR, we aligned CwDXR with the same
region of the plant DXRs known to date (Fig. 2). The plant enzyme
contains an extension of 73–80 residues that is not present in the
prokaryotic sequence [24]. The prediction of transit peptide for
plastids with the ChloroP Program [34] in CwDXR sequence envis-
aged transit peptide processing site at the N terminus of a con-
served Cys-Ser-X motif (49–51 position), where X means any of
the hydrophobic residues Ala, Val, or Met (Met51) in CwDXR). At
the N-terminal end, the sequence is weakly conserved but enriched
in Ser residues, features that are typical of plastid transit peptides
[35]. In contrast, the extended region at the N-terminal side (posi-
tions 52–80 of CwDXR) is highly conserved and specifically rich in
Proline residues (Fig. 2). The number of Pro residues in this region
ranges from 6 to 8. The consensus motif P(P/Q) PAWPG(R/T) A can
be defined in the Proline rich region of plant DXR (positions 55–62
of CwDXR sequence). The primary sequence analysis suggests that
CwDXR has a transit peptide for plastids, is processed at a con-
served cleavage site, and contain an extended Pro-rich region at
N-terminus of the mature protein. This consensus P(P/
Q)PAWPG(R/T) Pro-rich motif of all plant DXR sequences may be
used as a signature for DXR protein. Analysis of secondary struc-
ture elements through CONCORD revealed random coils (55.47%)
dominates over helices (33.33%) followed by strands (11.20%).
2.2. Phylogenetic analysis

To characterize the full length sequence of DXR in citronella, the
polypeptide was aligned with few other homologs’ plant DXRs
known to date. Multiple sequence alignment of DXR with its clos-
est homologs revealed that initial region of the N-terminal of all
the selected sequences(1–55 amino acids) are not conserved
whereas, the central region and C-terminal region is strongly con-
served. The 2-D phylogenetic tree inferred from NJ method
revealed dichotomy with two distinct clusters (Fig. 3). Cluster-I
comprised of DXR from monocots including citronella whereas,
dicots formed the second cluster (Cluster-II) well supported by
strong bootstrap values within their nodes. So, it can be inferred
that DXR gene may have evolved due to parallel duplication from
the same ancestral gene which has transferred subsequently to dif-
ferent lineages of plant species. The closest homology of citronella
DXR has been found with Zea mays (97% identity) followed by
Seteria italica (96% identity) which formed distinct cluster
(Cluster I).



Fig. 2. Multiple sequence alignment of CwDXR sequence with all the available plant DXR sequences using MEGA v6.1 and ESPript. Conserved regions are highlighted in red
square boxes labelled in white whereas partially or conserved residues are marked in yellow square boxes labelled in black.
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Fig. 3. Phylogenetic analysis of DXR from citronella with its closest homologs using Neighbor-Joining method. The percentage of replicate trees in which the associated taxa
clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the
evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the p-distance method and are in the units of the number of
amino acid differences per site. Evolutionary analyses were conducted in MEGA6.
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2.3. Structure–function studies

There were three top hits of DELTA-BLAST search i.e., 1R0K-A,
1Q0L-A and 3IIE-A which were considered as putative templates
for DXR (Table 1). Out of the three templates, 1R0K-A (DXR of Z.
mobilis [36]) showed greater sequence identity 45% with coverage
83% over other templates. Pairwise alignment of target with closest
homolog (1R0K) using Multalign Program portrayed the N-term-
inal (1-74 residues) didn’t show any significant homology with tar-
get, so this region was not taken into consideration for further
model building exercises (Fig. 4).

2.4. Comparative modelling and model validation

The optimised model after a round of energy minimization was
assessed for residue-by-residue stereo-chemical quality evaluation
using various model validation servers. Ramachandran plot analy-
sis using Procheck revealed that the DXR model had 93.3% U and W
angles of its residues within the core region of the Ramachandran
plot as compared with 93.5% of the template, which signifies the
accuracy of modelled DXR (Fig. 5). All the bond distances and
Table 1
Templates selected for combative modelling of DXR from citronella.

PDB ID Source Total score Query coverage

1R0K-A Zymomonas mobilis 388 83
1Q0L-A E. coli 406 75
3IIE-A Yersinia pestis 401 83

Fig. 4. The pair-wise sequence alignment of the target DXR and template 1R0K was c
identified from the 1R0K structure using ESPript. The a-helices, g-helices, b-sheets an
highlighted in boxes, and completely conserved residues are indicated by white letterin
angles of modelled protein lie within the allowed range of the stan-
dard dictionary values indicating that DXR model is reasonably
good in geometry and stereochemistry. The U and W distribution
of Ramachandran plot of non-glycine, non-proline residues in the
model and template (1R0K-A chain) are summarized in Table 2.
The packing quality of each residue of the model was assessed by
Verify3D Program, where the compatibility of the model residues
with their environment is assessed by a score function. Residues
with a score over 0.2 should be considered reliable. The score of
the refined model maximally was above 0.2 which corresponds
to acceptable side chain environment (Table 2). ProSA revealed a
Z-score of �9.62 for modelled (Z-score of ZmDXR is �9.68) reflect-
ing the overall quality of the DXR model. To check the degree of
structural similarity of modelled target and template, we have
measured the RMSD between equivalent Ca atom pairs along with
a pair-wise 3-D alignment search of the template protein with the
modelled structure through iPBA and MATRAS, which showed an
overall identity of mere 94.70% for 375 aligned residues with a very
low RMSD of 1.08 Å. The results of iPBA and MATRAS web server
are in agreement with DXR and its structural homolog sharing
strong structural conservation and similar in terms of structural
(%) Sequence identity (%) E-value Resolution (Å)

45 3e-107 1.91
45 2e-100 2.61
45 2e-100 2.21

onstructed using Multalign and ESPript. The secondary structural elements were
d strict b-turns are denoted a, g, b and TT respectively. Similar amino acids are
g on a red background.
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Fig. 5. Ramachandran plot and ProSA analysis of modelled DXR obtained using
Procheck Program and ProSA Web tool.

Table 2
Comparison of Ramachandran plot statistics of DXR model with closest structural
homologue 1R0K.

Ramachandran plot
statistics

Modelled structure of
DXR

Template (1R0K-A)

Residues Percentage Residues Percentage

Residues in most favoured
regions

319 93.3 1262 93.5

Residues in additionally
allowed regions

21 6.1 18 5.3

Residues in generously
allowed regions

0 0.0 1 0.3

Residues in disallowed
regions

2 0.6 1 0.3

Number of non-glycine
and non-proline

342 100 338 100

Number of end residues
(excluding Gly and Pro)

2 — 2 —

Number of glycine
residues

26 — 22 —

Number of proline
residues

21 — 18 —

Overall G factor �0.03 — 0.42 —
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Fig. 6. The RMSD, RMSF and radius of gyration graph of the modelled CwDXR and
template 1R0K: A (ZmDXR) during MD simulation. (a) RMSD of backbone Ca atoms
of the CwDXR modelled structure and ZmDXR. (b) RMSF analysis of amino acid
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modelled structure and ZmDXR during 10 ns trajectory. All the images were
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ZmDXR models, respectively.
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folding. It also signifies that the generated model is reasonably
good for further studies. From the above analysis, it is evident that
the geometric quality of the backbone conformation, the residue
contact, the residue interaction, and the energy profile of the struc-
ture are well within the limits which confirms the reliability of the
modelled structure.

2.5. Molecular dynamics simulation of modelled DXR

The refinement of the modelled protein was subjected to MD
simulation to get an optimized and stable structure suitable for
docking with cofactor. The stability and dynamic properties of
DXR model was observed by MD simulation. For cross-comparison
and to understand the dynamics behaviour of the modelled DXR
and its closest structural homolog, we employed MD simulation
for 10 ns in explicit water for both the systems. To understand
the stability of both the systems, the RMSD of Ca backbone atoms,



Fig. 7. Homology model of DXR from citronella and its Topology. Solid ribbon representation of the DXR model coloured by its secondary structure elements. The secondary
structure elements such as a helices, b strands and the N and C termini are labelled. The images were prepared with Discovery Studio and Profunc Web server.
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was calculated. The calculated RMSD was found to be �0.3 Å;
whereas, the template had an average RMSD of 0.24 Å. After initial
4 ns, the system remained in the plateau state till the 10 ns. Based
on the intrinsic dynamics, and improved relaxation of the model
protein, the potential energy and total energy of the structure
was calculated and the radius of gyration graph was plotted with
respect to different time scale. As compared to the template, DXR
model had a less radius of gyri. The protein remained within com-
pact radius of gyri of 2.2 Å indicating stability nature of the protein
(Fig. 6). RMSFs of Ca atoms of the model and the template showed
similar type fluctuations throughout the simulation process with
minute deviation at the N-terminal end. As evidenced from
Fig. 6, it can be clearly observed that the (amino acids positioned
in 150–300 within the catalytic domain) residues showed more
deviation reflecting flexibility of this region in protein. In addition,
energy profile of the both systems i.e., the total and potential
energy of model as compared the template indicated the dynamic
stability of the proposed model. To assess changes in the structural
arrangement of elements during 10 ns simulation, each residue
was minutely observed and secondary structure elements at differ-
ent time scale were mapped. As evident from Fig. 6, that most of
the secondary structure elements of modelled DXR remained
stable which highlight the stability and reliability of the DXR
model for docking studies. A representative structure was
extracted from stable of portion of trajectory (last 2 ns) to study
the 3-D architecture of DXR protein.

2.6. Structural study of DXR protein

Detailed structural study of DXR protein was performed to
understand the arrangement of secondary structural elements in
3-D space. Modelled DXR comprised of 17 a-helices (51.15% of
amino acid, 200 residues), 11 beta-strands (16.11% of amino acid,
63 residues) and other secondary structure elements (turns/coils:
32.99%, 128 residues) (Fig. 7). So as to understand the active site
architecture of modelled DXR, the pair-wise structural super-
position of DXR with its closest structural homolog i.e., DXR of Z.
mobilis was extensively studied. The active site of modelled DXR
also consists of the two pockets i.e., NADPH binding pocket and
the substrate binding pocket as also reported in ZmDXR [3]. The
modelled DXR bears a three domain architecture viz., N-terminal
domain (residues 1–152) with 7 b-sheets and 7 a-helices, catalytic
domain (residues 153–279) with 4 b-sheets and 6 a-helices and
small C-terminal domain (residues 311–391) with only 4 a-helices.
This domain distribution resembled the DXR from Z. mobilis, which
is composed of three domains the N-terminal domain, residues
1–150, the catalytic domain comprising residues 151–299 and
the C-terminal domain, residues 300–386 [32]. The N-terminal
domain contains a seven-stranded parallel b-sheet, with three
a-helices on each side of the sheet. The catalytic domain also
belongs to the class of a/b folds; composed of a four-stranded
b-sheet, and 6 a-helices and the smaller C-terminal domain con-
sists of a bundle of four a-helices. Interestingly, the electrostatic
surface potential analysis of both DXR from citronella and Z. mobilis
revealed insightful variations in the charge distribution over the
substrate binding site, which can be correlated with the sequence
variability (variation in the key catalytic residues i.e., evident from
the pair-wise structural superposition of the modelled DXR and
crystal structure) and may suggest distinct substrate-binding pat-
terns and differences in the catalytic mechanism.

2.7. Docking of co-factor NADPH

The residue conservation of the binding site and structural com-
parisons of NADPH-dependent DXR with known NADPH-
dependent forms are crucial for predicting the cofactor specificity
and the enzymatic mechanism. Molecular docking was performed
to understand the recognition specificity and mode of cofactor
binding to DXR using CDOCKER module of DS3.5. The consensus
scoring system i.e., CDOCKER ENERGY, CDOCKER Interaction
Energy, Ligscore1 Dreiding, LigScore2 Dreiding, PLP1, PLP2, Jain,
PMF and PMF4 used for scoring various poses of the cofactor
(NADPH) with the DXR is shown in Table S2. The pose with highest
CDOCKER energy was selected as the best pose and it was observed
that cofactor firmly binds to active site residues of the DXR protein
through hydrogen bonds and hydrophobic interactions (Fig. 8). The
pose with the highest CDOCKER energy was selected to represent
the studied DXR ligand inside the binding cavity and employed
MMFF to minimize the final structure. The NADPH is bound in an
extended conformation, through a strong network of hydrogen
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bonds and hydrophobic contacts (Table 3), as well as a covalent
bond via Asp153 residue. The residues involved in DXR–NADPH
interactions are listed in Table 3. The H-bond distances were in
the range of 2.37–3.35 Å. The phosphate molecule of NADPH forms
two H-bonds with Asn41 (a2 helix) with an atomic distance of
3.33 Å and 2.37 Å. Further, it also formed two additional H-bonds
with Nitrogen atom of Gly39 and Ser40. Again the N atom of
Ser15 (a1 helix) forms two H-bonds with O2A and O2 N atoms of
NADPH. Other than these, Thr13, Gly14, Ile16, Val105, Lys128,
Asp153 residues forms H-bond with different atoms of NADPH
molecule with an average of atomic distance of �2.37 Å. In addi-
tion, a minute observation revealed that when most of the residues
which participated in H-bond formation with the cofactor NADPH
are discrete amino acids of a-helices. Thus it can conjecture that a-
helices plays a vital role in recognition of cofactor with the DXR
holo-enzyme. Comparison of the modelled DXR with closest
structural homolog showed that Asn41 (NADPH binding residue
in template corresponds to Asn41 of ZmDXR is only conserved
whereas rest amino acid residues are not conserved indicating dif-
ferent mode of cofactor recognition in citronella. Apart from tight



Table 3
Residues involved in hydrogen bonding and hydrophobic interaction of NDP with DXR
obtained using LigPlus+ software.

Properties No. of
hydrogen
bonds

Interacting residues
forming hydrogen
bonds

Hydrophobic interaction
forming residues

Modelled
DXR

12 Thr13,Gly14, Ser15,
Ile16, Gly39, Ser40,
Asn41, Val105, Lys128,
Asp153

Gly11, Ala38, Arg60,
Gly103, Ile104, Ala108,
Ala126,Asn127, Met207,
Ile211, Met269

Fig. 9. Semi-quantitative RT-PCR analysis DXR gene in four tissues of citronella
plant.
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H-bond network the NADPH molecule is tightly anchored in the
active pocket of DXR with widespread hydrophobic contacts where
most of the residues are from various b-sheets. Moreover, theoreti-
cal calculation showed that free energy of binding score (negative
CDOCKER energy) of NADPH to DXR is �1043.27 kCal/mol affirms
the affinity of DXR model towards NADPH.

2.8. Tissue specific expression study

A distinct differential expression pattern was observed in the
semi quantitative RT-PCR analysis in which DXR expression level
was found to be highest in leaf sheath followed by leaf (Fig. 9),
establishing the fact that DXR is a chloroplast and other plastids
specific enzyme which perfectly corroborate with the earlier find-
ings of Lichtenthaler (1999), Lichtenthaler et al. (1997), Rodriguez-
Concepcion and Boront (2002) [17,15,37]. As evidence from Fig. 10,
it can be clearly observed that maximum expression was seen leaf
sheath followed by leaf. Although, in number of previous studies
on expression profiling of dxr gene in different plants species it
was reported that higher level of expression was found in leaf tis-
sues than other tissues tested [38]. But, it can be suggested that
high level of mRNA is not enough to reflect the level of enzyme
Fig. 10. Comparative expression of DXR gene in three different tissues of mature
citronella plant using DDCT method of real time PCR (RQ: Relative Quantification).
activity in a particular cell type, as mRNA or protein itself is trans-
portable to other site of action. Our result might be an indication
that the expression of dxr gene is high in plastids abundant in
phloem and other cells of sheath tissue. Similar results have also
been obtained in a northern blot and immunolocalization experi-
ment conducted in Catharanthus roseus for DXR expression [39].
In C. roseus the specific expression of four MEP pathway genes
including DXR in internal phloem tissues was observed which
was unanticipated as photosynthetic pigments are mostly localised
in mesophyll tissues. But, the data obtained suggested that internal
phloem parenchyma was the main site of isoprenoid biosynthesis
and implies the intercellular translocation of metabolites. Recent
results suggest that phytol biosynthesis in leaf might involve trans-
location of an isoprenoid precursor from the vascular tissue in
Arabidopsis [40]. Internal phloem plays a key role in formation of
precursors and decoration of monoterpenoids. Thus, several
mechanisms of transport must exist to deliver isoprenoid inter-
mediates out of the phloem parenchyma plastids and to other
compartments and/or cells where they will be further metabolised
or stocked [39].
3. Conclusion

Citronella is a highly useful medicinal aromatic plant and so
increasing its level of secondary metabolite synthesis is of interest
to commercial producers of its essential oils. However, the up-
regulation of the key enzyme of MEP pathway i.e., DXR will be a
significant step for increased essential oil production. This study
is the first ever report on characterization of full length DXR in this
important medicinal and aromatic plant C. winterianus. This study
is purely based on in silico methods, and so combinatorial methods
involving biochemical, enzyme kinetics and site directed
mutagenesis will be needed to confirm these predictions.
However this is a promising first step towards opening up better
avenues for metabolic engineering of secondary metabolite
pathways.

4. Materials and methods

4.1. Primary sequence analysis

The primary protein sequence (GenBank Accession number:
KJ749651) was subjected to various tools viz., InterProScan,
SMART (Simple Modular Architecture Research Tool) (http://
smart.embl-heidelberg.de), CDD (http://www.ncbi.nlm.nih.gov/
Structure/cdd/cdd.shtml) and Pfam database (http://pfam.sanger.
ac.uk/) to deduce the protein family DXR gene and to explore the
domain arrangement within the protein. In addition, the
Protparam tool of ExPaSy proteomic server to analyse the primary
structure of the amino acid sequence of DXR protein. Consensus
meta-server CONCORD (http://helios.princeton.edu/CONCORD/)
was used to assign secondary structure elements from its primary
amino acid sequence.

4.2. Phylogenetic study

Primary amino acid sequence of DXR was subjected to BLAST
search against non-redundant (NR) database of NCBI. Sequence
producing significant alignment (cut-off identity of P85% and E-
value of 0) with the DXR of citronella were aligned using
Multalign and displayed using ESPript. Finally, 2-dimensional
phylogenetic tree was established implementing Dayhoff model
of substitution using Neighbor-Joining method in MEGA v6.1.0
with a bootstrap value of 1000 iterations.

http://smart.embl-heidelberg.de
http://smart.embl-heidelberg.de
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
http://pfam.sanger.ac.uk/)
http://pfam.sanger.ac.uk/)
http://helios.princeton.edu/CONCORD/
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4.3. Theoretical modelling of DXR

Homology model of DXR protein was generated using
MODELLER v9.12 based on suitable template 1R0K-A which was
chosen by using fold-recognition server’s viz., 3D Jury, Pcons.net,
GeneSilico and Geno3D. Further to ensure the correctness in
identifying templates for homology modelling through fold recog-
nition servers, DELTA-BLAST (Domain Enhanced Lookup Time
Accelerated BLAST) was used against protein data bank (PDB).
Based on the optimised target-template alignment, modeller facili-
tated in the development 200 models, of which, the model with the
lowest discrete optimized protein energy (DOPE) score and low
RMSD (after aligning them on corresponding Ca atom pairs of
the template) was selected for further refinements (i.e., loop and
side chain refinement) using Discovery Studio3.5 (Accelrys, Inc.,
San Diego, USA). The refined model was validated by Procheck tool
embedded in SAVES server to quantifies the amino acid residues in
the available zones of Ramachandran plot to assess the stereo-
chemical quality of the model. Energy profile of modelled DXR
was analysed using ProSA tool. The root mean square deviation
(RMSD) of the corresponding Ca-atom pairs of both the model
and template was calculated using iPBA web server.

4.4. Molecular dynamics simulations

For further refinement the model, modelled DXR was subjected
to molecular dynamics (MD) simulations using GROMOS96 43A1
force field in GROMACS 4.6 package [41–43]. For cross validation,
we have used two systems i.e., modelled DXR as well its closest
structural homolog ZmDXR (template: PDB ID: 1R0K). The systems
were solvated with SPC3 water molecules and neutralized by add-
ing equal number of counter ions (Na+/Cl�) with a concentration of
0.15 mol. Both the models were placed in an octahedron box main-
taining a distance of 1.2 nm from all the directions of protein and
periodic boundary. Then the solvated systems were subjected to
energy minimization using steepest descent algorithm (2000 steps
max.) followed by a 100 ps position restrained MD simulation at
constant pressure (1 atm) and temperature (300 K). The long-range
electrostatic interactions were computed using the particle-mesh
Ewald (PME) [44] with a cut-off value of 0.9 nm for van der
Waals and 1.4 nm for electrostatic interactions. All bond lengths
were constrained using LINCS algorithm. The trajectories were
analysed using GROMACS analysis tools and the structures were
analysed using DS3.5 and PyMOL (www.pymol.org).

4.5. Molecular docking of NADPH using CDOCKER

The average coordinate of DXR protein was extracted from
stable portion of the trajectory and cofactor NADPH were prepared
using CDOCKER module following prepare protocol in DS3.5 prior
docking. For docking we adopted the methodology from an earlier
study by Dehury et al. (2014) [45]. The ligand was docked within
the active site of enzymes and receptors by implementing
CHARMm-based molecular dynamics method [46,47] which (bind-
ing pocket) was obtained by pair-wise alignment of DXR with the
template. Based on the consensus scoring system of CDOCKER
module, best ten poses were selected and binding energy of the
best 10 poses of NADPH was obtained using ‘‘Binding energy mod-
ule’’ of DS3.5. The pose with lowest energy, and more number of
interacting H-bonds was selected for displaying the enzyme-
cofactor interaction using LigPlot+ software.

4.6. Tissue specific expression studies

The differential expression of the DXR gene in three different
tissues of citronella (leaf sheath, leaf and root) was tested by
semi-quantitative RT PCR and quantitative real time PCR. The pri-
mers were designed by primer3 (http://primer3.ut.ee/) with GC% of
60–65% and melting temperature ranging from 60–65 �C. The first
strand cDNA was synthesized by using PrimeScript™ 1st strand
cDNA synthesis kit (Takara, Clontech) as per manufacturer’s
instruction. The 10 ll reaction mixtures with 125 ng first strand
cDNA with 1X Taq polymerase buffer (Genei, India), 1U Taq
polymerase buffer (Genei, India) 10 pmol both forward and reverse
primers (Sigma) and 5 mmol dNTP mixure (Invitrogen) were sub-
jected to semi-quantitative RT PCR in GeneAmp Thermo Cycler
(Applied Biosystem, USA). The amplification condition were
5 min at 94 �C, followed by 35 cycles of 1 min at 94 �C 1 min at
67.5 �C 1 min at 72 �C and final extension was done for 10 min at
72 �C. The amplified products were visualized in 2% agarose gel
stained with EtBr. In this study rice GAPDH gene was used as refer-
ence. The relative expression of DXR gene in the same 3 tissues
were checked with quantitative real time PCR by DDCT method
[48] on StepOnePlus Real-Time PCR System (Applied Biosystem)
using the SuperScript III Platinum SYBR Green One Step qRT-PCR
with ROX Kit (Invitrogen, CA, USA) according to manufacturer’s
instruction. PCR amplification was performed under the following
conditions: 95 �C for 10 min, followed by 40 cycles of 95 �C for 15 s
and 60 �C for 1 min finally melting at 95 �C for 15, 60 �C for 1 min.
The gene expressions were normalized against an internal refer-
ence gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
and root tissue was arbitrarily chosen to be the calibrator of tissue
gene expression.
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