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PECAplus: statistical analysis of time-dependent regulatory
changes in dynamic single-omics and dual-omics experiments

Guoshou Teo', Yun Bin Zhang?, Christine Vogel' and Hyungwon Choi
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Simultaneous dynamic profiling of mRNA and protein expression is increasingly popular, and there is a critical need for algorithms
to identify regulatory layers and time dependency of gene expression. A group of scientists from United States and Singapore
present PECAplus, a comprehensive set of statistical analysis tools to address this challenge. Protein expression control analysis
(PECA) computes the probability scores for change in mRNA and protein-level regulatory parameters at each time point,
deconvoluting gene expression regulation in the presence of measurement noise. PECAplus adapted PECA’s mass action model to
a variety of proteomic data including pulsed SILAC and generic protein expression data. It also features analysis modules to fit
smooth curves on rugged time series observations, and to facilitate time-dependent interpretation of the data for genes and
biological functions. They demonstrate the core modules with two time course datasets of mammalian cells responding to

unfolded proteins and pathogens.
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INTRODUCTION

Simultaneous, time-resolved profiling of mMRNAs and proteins has
developed into a routine task, providing new insights into the
dynamics of cellular gene expression regulation.' Current next
generation sequencing technologies enable whole transcriptome
profiling robustly; and mass spectrometry-based proteomics has
matured with the ability to quantify several thousands of proteins
in complex biological matrices, such as human tissues. Pairing
these technologies, emerging studies have provided intriguing
insights into the relative contribution of RNA and protein level
regulation in response to various types of stress,>* others have
compared ribosome profiling and protein synthesis rates in
dynamic conditions.’

These two-layered, time-resolved datasets bring new challenges
to data analysis, as traditional fold-change and significance
analyses methods cannot be used. Currently, the datasets are
typically analyzed assuming that a single, fixed first-order ordinary
differential equation (ODE) can explain the variation of a gene
across the entire time course. The ODE equations often take the
form of 4V, = kX; — KqV:, where Y, and X, denote protein and
mMRNA expression levels at time t, respectively. The two major
kinetic parameters include synthesis rate k; and degradation rate
Kq and they determine the changes in protein expression given
mRNA expression information.®

However, the ODE-based approach has several limitations when
applied to dynamic experiments. First, it implies that the rates of
translation and protein degradation remain constant over the
entire time period or change linearly at best, which is unlikely to
hold true in a rapidly changing cellular environment with long
follow-ups. As a result, the method reports only one set of rates for
each gene. Second, the true nature of the gene expression
function, i.e. the relationship between the input and the output, is
difficult to recognize in the presence of measurement errors and

other sources of noise, especially with a small number of
observation time points. Third, the approach is usually unable to
deconvolute the contributions of the different regulatory layers,
i.e. that of synthesis and degradation, and that of RNA-level and
protein-level regulation.

Last but not least, it needs to handle different types of
proteomic data, e.g. data from pulsed SILAC experiments’ or the
protein expression data acquired with label-free, conventional
stable isotope labeling-based (e.g., SILAC®), or isobaric tagging-
based quantification methods (e.g., iTRAQ,” TMT'?). The challenge
with the latter data is often overlooked: without pulsed labeling, it
is impossible to distinguish between newly synthesized and
pre-existing proteins. To the best of our knowledge, there exists
no computational tool that is able to infer rate parameters under
the relaxed constraint and identify both significantly regulated
genes and significant change points in a multi-layered regulatory
system.

To address this challenge, we present PECAplus, an ensemble
of statistical models for probabilistic inference of single-level
or multi-level regulatory kinetic parameters, including direct
estimation of synthesis and degradation rates from a variety of
datasets. In particular, all models in PECAplus identify the time
point in which the rate parameters shifted, reporting a statistical
significance score called the change-point probability score (CPS)
for each gene at each time point. We illustrate the models
for paired protein—-RNA time series data, but they can also be
readily fit onto mRNA data alone for the inference of RNA-level
regulatory parameters without software modification. PECAplus is
based on the core protein expression control analysis (PECA)
model,"" termed PECA Core hereafter, which uses a regression-like
framework for detecting significant changes in the combined
effects of synthesis and degradation for individual genes.
The underlying model uses a linear cumulative sum equation
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mimicking an ODE in a time interval manner, which is written as
AE[Yri1] = Ahe(KseXe — katE[Yt]), where the symbol E[Y,] denotes
denoised (true) protein concentration at time t conditional on the
observed mRNA concentrations.

The analysis using PECAplus occurs in three steps (Fig. 1a): the
data pre-processing module applies an advanced curve fitting
technique to noisy time series data, resulting in smooth time
series for each gene; an analysis module implementing a proper
mathematical model for the type of quantitative proteomic data
and the goal of the analysis, e.g., rate ratio change point detection
or synthesis and degradation rate estimation; and finally the gene
set analysis (GSA) module that summarizes the regulatory changes
at the level of biological functions in a time-dependent manner.

We demonstrate the different modes of analysis along with the

functionalities, using a label-free proteomics and transcriptomics
dataset for the unfolded protein response,* and a dataset derived
from a pulsed-SILAC experiment paired with transcriptomic data
for LPS stimulation.®> PECAplus is freely available as a compendium
of scripts and as a plugin for the widely used proteomics analysis
software PERSEUS.'?

RESULTS
PECA Core: basic approach

PECA Core performs statistical inference on the ratio of protein
synthesis rate over degradation rate in individual genes across
time points, i.e. for T-1 intervals in a T time point experiment (rate

newly implemented pre-processing and post-processing ratios hereafter). By definition, a change in rate ratio indicates that
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a Schematic diagram of PECAplus modules. The pre-processing module performs data smoothing and missing data imputation. The

processed data goes through a mass action modeling module of user’s choice, and post-processing GSA module is applied to summarize
time-dependent regulation patterns for biological functions. b PECA core analysis input and output in SLC39A14 gene. The four panels show
the RNA and protein expression data, with solid dots and clear circles representing observed and GP-smoothed data points, respectively. Red
circle and blue solid circle are imputed protein expression value at 16 h by GP and k-nearest neighbor imputation method. Fitted trajectory is
the consensus time course profile across the two replicates reported from the PECA model. ¢ The panels on the right side show the inferred
rate ratios and CPS values for RNA-level and protein-level regulation. Red dashed lines are the CPS thresholds at 5% FDR (0.83 for RNA, 0.88 for

protein)
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the balance between synthesis and degradation tips to one
direction (up or down), i.e. implicitly assuming that this change is
the result of cellular regulation. However, it cannot inform
whether the change is due to adjustment of synthesis rate or
degradation rate, or both. In particular, PECA Core calculates the
probability that the rate ratio is significantly different between
adjacent time intervals before and after each time point. We
validated and confirmed performance of the core approach in
detail in Teo et al."’

We first illustrate PECA Core using a paired proteomics and
transcriptomics dataset collected from mammalian cells respond-
ing to stress of the ER at eight time points.* PECA Core identifies
change points of protein-level (i.e. translation/protein degrada-
tion) and RNA-level (i.e. transcription/mRNA degradation) regula-
tion. At the protein level, we paired protein expression data with
respective RNA expression data. At the RNA-level, we paired RNA
expression data with constant values for DNA copy number.*

Figure 1b, ¢ show the two-layered regulation output from the
PECA Core for ZIP14 (SLC39A14), a zinc transporter with links to ER
stress.'>'® Under stress, its mRNA expression increases to peak at
eight hours, while its protein expression is at a minimum level at
that time point. Even if we take into account the typical time delay
associated with translation, these opposing expression changes
suggest complex interplay between the two levels of regulation,
especially considering that the latter four time points are spaced
6-8 h apart between adjacent observation times. Indeed, PECA
Core identifies significant RNA rate ratio changes between the 1
and 16 h marks and protein rate ratio changes at the 16 h mark
(Fig. 1¢), with high protein-level CPS scores near 1 (false discovery
rate, or FDR < 0.05). Hence PECA’s change point analysis frame-
work translates the simultaneous time course mRNA-protein data
into biologically interpretable measures of mRNA-level and
protein-level regulation (rate ratios, upper panels of Fig. 1c), each
with associated time-specific statistical significance scores (CPS
scores, lower panels of Fig. 1c).

Gaussian Process (GP) model for data smoothing and imputation

In PECAplus, we introduce a new data pre-processing module
which smoothes the typically rugged expression data and imputes
missing values based on temporal correlation in the time series
setting. This pre-processing is beneficial not only because RNA
and protein measurements are intrinsically noisy, but also because
this noise can create false time series trends when the number of
time points is small.

The module fits a smooth curve on the time series measure-
ments of each gene using a stochastic model called GP. The
empty circles connected through the solid lines in Fig. 1b illustrate
the smoothing for ZIP14. The GP model has two kernel parameters
controlling the smoothness, and we have optimized them with
several, representative experimental data sets. Supplementary
Information describes the tuning parameters and their impact on
smoothed curves. However, we still recommend the user to
visually inspect the fitted data using the script included in the
package and tune the parameter if necessary as every dataset has
different properties, such as varying noise levels.

In addition to smoothing, GP also interpolates unobserved time
points as the model provides both the estimate at any time point
and the uncertainty underlying the prediction. The lower left
panel in Fig. 1b illustrates this interpolation of protein measure-
ment in replicate 1 at 8 h (red circle). The imputed value not only
removes the ruggedness in the data, but also produces more
similar temporal patterns between the replicates. The blue solid
circle is the value that would have been imputed by the k-nearest
neighbor imputation,'> which does not model the temporal
correlation explicitly and therefore produces sub-optimal imputa-
tions. Supplementary Information describes performance
evaluation.
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Gene set analysis: time-dependent function enrichment analysis

The large number of gene-level CPS scores and rate ratio
parameters reported by PECA for each time point or interval can
make it difficult to grasp the overall regulatory dynamics. For this
reason, PECAplus offers the GSA module to convert the gene-level
output into a summary of significant changes for gene function
groups, i.e. all genes annotated with a specific function (Fig. 2).
The GSA module performs hypergeometric tests for the enrich-
ment of the Gene Ontology'® (GO) terms and other pathways
curated in the Consensus Pathway DataBase'’ (CPDB) in the genes
with CPS score above a user specified threshold at each time point
(guided by false discovery rate estimates). The test evaluates
genes with increased and decreased rate ratios separately, i.e. the
different directions of change, and genes with rate ratios altered in
both directions, extracting regulatory changes in each biological
pathway.

Figure 2 shows the output from the GSA module for ER-stressed
mammalian cells, with CPS score thresholds associated with 5%
FDR in each analysis. The heatmap shows —log;q p-values of the
most significantly enriched, non-redundant pathways, in a time-
dependent manner. It illustrates the dynamic up-regulation and
down-regulation of each pathway, at both the mRNA (Fig. 2a) and
protein levels (Fig. 2b). We clearly see upregulated pathways
implicated in unfolded protein response, ER-associated protein
degradation (before 2 h) and various metabolic pathways (16 h) at
the mRNA level. In comparison, genes of cell cycle and chromatin
organization (30 min), metabolism (1 h), and translation (after 2 h)
are upregulated at the protein level.

PECA-N: Incorporating prior network information in inference

Next, we built the PECA-N module which boosts sensitivity and
specificity of the PECA Core approach using prior information from
biological networks. The PECA-N module uses a Bayesian
inference framework called Markov random field (MRF) prior'®'?
in cases where connected genes are regulated in a similar fashion,
i.e. change their rate ratios along the time course concordantly.
The user can supply any network data, e.g. on functional similarity
or physical protein—protein interactions. PECA-N then increases
sub-threshold scores above the threshold if a gene’s network
neighbors are regulated similarly at the same time point.
Importantly, if a gene’s network neighbors are regulated incon-
sistently, then PECA-N will not falsely incorporate the prior to
report more changes. In other words, PECA-N increases true-
positives without introducing a large number of false-positives.

To demonstrate PECA-N, we first used the protein—-protein
interaction information from the STRING database® on the RNA-
level data of the ER stress experiment. Figure 3a shows the impact
of network information with respect to function enrichment
between PECA-N and PECA Core using the GSA output. PECA-N
made the most notable difference in the GSA scores for
upregulated metabolic functions at 16 h and ER stress-related
functions at 1 and 2 h. Consistently, the CPS scores for the genes
in these two function categories were also elevated in the PECA-N
output (Fig. 3b, Supplementary Fig. 1). Treating up-regulation of
ER stress-related genes as true positives, Fig. 3¢ suggests that
PECA-N with the STRING network detected 10-15% more genes
with up-regulated rate ratios than PECA Core. The CPS values for
genes not involved in relevant function categories remained
unchanged or became even lower, as reflected by the reduction in
the GSA scores of biological processes not related to ER stress
(blue cells in Fig. 3a).

Next, we applied PECA-N to the protein-level analysis with the
same network information. Interestingly, the network information
in PECA-N made little changes to the CPS scores from PECA Core
in the protein-level analysis. This mainly suggests that the
protein—protein interaction network is better aligned with RNA-
level gene expression regulation during ER stress than the protein-
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level regulation. However, another main reason is the poor
network coverage over the 2130 genes in the protein data, which
accounts for only 14.6% of the original network. By contrast, the
RNA data has ~16,000 genes and >11,000 of those genes
appeared on the network, accounting for 67.5% of the network.
Thus, the power to detect additional coordinated synthesis and
degradation change was limited in the protein level analysis of
PECA-N. Furthermore, it is possible that protein synthesis and
degradation are slow in nature and thus span multiple time
periods with varying lengths of time lag, which cannot be
captured efficiently by MRF prior structure. Nevertheless, transla-
tion control is still highly coordinated over time as the GSA output
suggests (Fig. 2b).

PECA-pS: estimation of rate parameters from pulsed SILAC
proteomics data

Next, we developed PECA-pS to parse pulsed SILAC data that
allows for quantification of newly synthesized proteins and
monitoring of degradation for existing protein copies simulta-
neously.” Importantly, PECA-pS evaluates each time point
separately to account for non-linear changes in rates. We tested
PECA-pS against an existing approach that analyzed dendritic cells
following LPS treatment.® The authors estimated per mRNA protein
synthesis rates and degradation rates for 3147 genes, using two
different isotope labels for the two rates, respectively (e.g., heavy
and medium stable isotopes), and a third channel (light) as
reference. The authors then used an ODE model to estimate the

npj Systems Biology and Applications (2018) 3

rate parameters, but assumed that the rates were linearly
increasing or decreasing (or not changing). In contrast to PECA-
pS, the approach produced only one set of rate estimates for each
gene at 0 h and another set at 12 h.

To allow for flexible rate changes, PECA-pS estimates rates per
time interval. We note that the rate parameters cannot be
computed in the absolute molar concentration scale, since most
proteomics data sets do not have absolute quantification. Similar
to PECA Core, PECA-pS reports CPS scores for a change in the rates
between consecutive intervals. An important condition when
modeling pulsed SILAC data is that the time course pattern must
be monotone decreasing in the channel representing degradation
of existing proteins, and monotone increasing in the channel
representing synthesis of new proteins. Therefore, we focused the
analysis on those proteins where this condition held true (see
Online Methods).

Figure 4a shows the GP smoothed data (solid line) and PECA-pS
fitted time course patterns (dashed line) for the heavy and
medium isotope-labeled channels for the IFITT gene. As shown in
the plot, the model fits a monotone increasing expression profile
for the heavy channel as the intensity values in this channel
quantify newly synthesized protein copies. We then compared the
PECA-pS output to the 0 and 12 h rate estimates from the ODE
model used in the original paper,® and observed good correlation
confirming our model (avg. R? of 0.48, Supplementary Fig. 2). In
addition, PECA-pS reported a high CPS score at 4 h in the synthesis
rates.

Published in partnership with the Systems Biology Institute
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In sum, PECA-pS is a tool to estimate synthesis and degradation
rates from pulsed SILAC-based ratio information, for individual
time intervals. While the average PECA-pS rate parameter values
over time periods can be interpreted similarly to those from
linearly shifting ODE-based model, delivering overall rate esti-
mates, PECA-pS advances the analysis through detection of
significant rate changes for each time point separately, entirely
independently of the underlying rate function (Fig. 4b).

PECA-R: estimation of rate parameters from generic expression
data

Last, we present another important PECAplus module to
approximate synthesis and degradation rates from paired mRNA
and proteomics data, in the absence of pulsed SILAC data (PECA-
R). PECA-R can use any type of protein expression values, e.g.
concentrations or intensity values. With the rise of label-free
proteomics experiments and the increasing use of post-hoc labels,
such data becomes more routinely available. We illustrate PECA-R
with the LPS data in which we summed medium and heavy
channels for each gene to produce total protein expression values.

De-convoluting synthesis and degradation rates from the total
protein expression data (not pulse labeled) requires strong
mathematical assumptions as the data does not separate newly
synthesized and existing molecules. Any change in the concen-
tration of a molecule can be explained by infinitely many
combinations of synthesis and degradation rates. Moreover,
synthesis and degradation for a gene might have opposing
effects and the resulting expression data would be unchanged.
Therefore, it is impossible to recover change unless additional
information is available, i.e. changing RNA concentrations that
impact protein levels.

PECA-R aims to overcome this identifiability issue by placing
reasonable restrictions on the rate parameter space. Specifically, we
assume that increase in total expression of a protein is more likely
attributable to increased synthesis than decreased degradation;
whereas decrease in expression is more likely due to increased
degradation than decreased synthesis (see Online Methods).

To evaluate the ability of PECA-R, we created an unbiased,
synthetic data set from the LPS data mirroring data parameters
(Online Methods), consisting of 1231 genes. Fig. 5 shows that
PECA-R's approach successfully models the data: the rate
estimates from PECA-R in the LPS data set correlate well with
the estimates from PECA-pS (with average R? of 0.54). While the
rate estimates from the two approaches are not on the same scale,

Synthesis rates

R*=0.631

PECA-pS (In)

PECA-R (In)

the relative changes within individual genes are well preserved
between the two versions (Fig. 5).

Despite similarity in the synthesis rates between the PECA-pS
and PECA-R, a number of synthesis rate changes with high CPS
scores were specific to the PECA-pS output (Fig. 4c). We found that
PECA-R did not detect changes in these genes as their total
protein (and RNA) expression values remained largely constant
over time (e.g., within 1.5 fold). In contrast, PECA-R sensitively
detected rate changes when the total concentration changed
substantially due to regulated synthesis or degradation.

Finally, we also validated the PECA-R with the rate values
reported by the ODE-based approach with the linearity assump-
tion. The correlation between the two sets of estimates was very
strong (Supplementary Fig. 3, average R* 0.31), supporting the
ability of PECA-R to recover the underlying synthesis and
degradation rates on a relative scale. Remaining differences
between the two approaches can be explained by the fact that
many rate parameters changed in a non-linear fashion (Fig. 4b, c),
similar to what we observed when comparing PECA-pS and the
ODE-based approach.

Computation time and tool availability

The source code and binaries are freely available from https://
github.com/PECAplus. PECAplus is also available as a plugin to the
widely used Perseus software (version 1.6.0.2), downloadable from
the same GitHub site. The Online Methods describe the availability
and computation requirements.

DISCUSSION

In this work, we presented a comprehensive statistics package to
analyze time series omics data that involves one-layer or two-layer
expression data. We present PECAplus through two proteomics—
transcriptomics examples, but the approach is generalizable to
any paired expression data with two levels of regulation, i.e. where
the molecules in one level serve as template for synthesis of those
in the other level. For example, the researcher might investigate
changes in transcription and RNA degradation, using transcrip-
tomics and genomic data. In principle, PECAplus can also be used
with paired ribosome footprinting and transcriptomics time series
data, in which the tool deconvolutes the contributions of
ribosome association with and dissociation from the RNA to
support translation (not shown).

Degradation rates
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Fig. 5 Comparison of rate parameter estimates between PECA-pS and PECA-R in the synthetic data set. Note that each dot is a rate parameter
for one time period, not the entire time course. The rates are not in an absolute scale since the mRNA and protein measurements are not

made in molar concentrations
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The main objective of PECAplus is robust inference of gene
expression regulatory parameters in a dynamic experimental
design, moving beyond traditional fold change analysis that is not
suitable for time series data. The most notable advances in
PECAplus are PECA-R and PECA-pS, which infer (relatively scaled)
rates of synthesis and degradation. Pulsed SILAC experiments
monitor these rates directly through assessment of newly made
and pre-existing proteins. However, traditional analyses only
determine rates across the entire time course and ignore rate
changes during the experiment. PECA-pS takes the analysis further
and infers rates that are specific to each measurement interval,
monitoring complex regulatory patterns over time.

Inferring change points of rate parameters directly from
proteomics data that was not collected in a pulse-chase
experiment can be a risky endeavor. We strongly recommend
first analysis of such data to be carried out with PECA Core or
PECA-N to identify genes, gene groups, and time points with
significant changes. The user can perform post hoc analysis using
PECA-R to identify the possible cause of the change, ie.
differentiate between synthesis-driven or degradation-driven
events. If the proteomics data is from a pulsed SILAC experiment,
PECA-pS can extract rate parameter changes more accurately than
PECA-R to determine to estimate synthesis or degradation rates.
Therefore, we recommend using PECA-pS over PECA-R in this case.
When the experimental design does not include pulse labeling,
we recommend using PECA-R to examine rate parameters, but
strictly focus events with high CPS scores associated with
noticeable and statistically significant impact on the total protein
concentration changes.

In sum, PECAplus offers an array of solutions to decipher
systems-level signals from data generated with different experi-
mental platforms. It employs mathematically sound statistical
analysis of paired omics time series data in stream-lined fashion. In
contrast to traditional analysis of concentration changes, PECAplus
generates hypotheses on the regulatory mechanism underlying
the change, e.g. if it arose from synthesis or degradation of the
molecule. It helps moving gene expression analysis to new levels:
that of time and of interconnected regulatory layers.

METHODS
ER stress data

We used the whole transcriptome RNA-seq data and proteomic data from
Cheng et al.* for 2131 genes with missing observations at up to two time
points within each replicate. The experiment consists of mRNA and protein
intensity data collected at eight time points (0, 0.5, 1, 2, 8, 16, 24, and 30 h)
in two biological replicates of HeLa cells after DTT treatment. This data set
was used for illustration of data smoothing and imputation, and time-
dependent functional enrichment analysis in PECA and PECA-N analyses.

LPS data

We obtained the pulse labeled-intensity data for 2288 genes from
supplementary data in Jovanovic et al.> Using a modified pulsed-SILAC
strategy,” the abundance of newly synthesized proteins (heavy isotope-
labeled, H) and previously labeled proteins (medium isotope-labeled, M)
are measured up to 12 h after LPS treatment on dendritic cells. We divided
the intensity values into the medium-isotope and heavy-isotope labeled
samples by those in the light-labeled samples (H) to adjust for the variation
in the reference pool of dendritic cells. This data was used for the
illustration of PECA-pS.

Synthetic data derived from the LPS data set

To evaluate PECA-R, we derived a synthetic data set from the original LPS
data by summing the intensity data from the medium-labellled and heavy-
labeled channels at each time point (separately within each biological
replicate), in addition to normalization by light-labeled samples at
respective time points. The original data demonstrated many time course
patterns with abundance values defying the expected trajectories in some
genes: the intensity values of newly synthesized proteins decreased over
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time, or the intensity values of existing proteins increased in some genes.
We removed these genes to avoid complications in the evaluation. We
further smoothed both channels by fitting PECA-pS to guarantee generally
smooth, monotone decreasing or increasing curves in the original signal,
and added random noise to the filtered data (Gaussian noise, mean 0,
standard deviation 0.1). This new data set consisting of 1231 genes was
used for the illustration of PECA-R and the comparison of PECA-pS and
PECA-R with the ODE-based model.

GP curve fitting for smoothing and imputation of missing values

Before any data analysis module from PECAplus was applied, we used a
smooth curve fitting procedure to mRNA and protein time series data.
Assuming that the observed data points are realizations from a GP model,
we optimized the parameters governing the Gaussian kernel and noise
variance parameter empirically based on multiple data sets. After fitting a
curve onto the time series data of each molecular type, we replace the
observed intensity values with the predicted values from the GP model. If
an intensity value is missing at a particular time point, the value is imputed
by the posterior mean of the curve at that time point, which yields the
most likely intensity value given other values in the neighboring time
points according to the estimated GP model. The details of the
mathematical model can be found in the Supplementary Information.

Gene set analysis

We implemented the test for time-specific enrichment of biological
functions in a gene list, which is selected by a user-provided threshold of
CPS scores. At the threshold, we make a list of genes for which rate ratios
or rate parameters scored above the CPS threshold at each time point, and
perform hypergeometric tests for all relevant biological functions in three
different ways: the ones for which the rate or rate ratio parameter
increased (up-regulation), decreased (down-regulation), or changed in any
direction (significant-regulation). The background gene list is automatically
adjusted to the genes included in the entire data. The user can specify the
range of functions to test enrichment for, such as the minimum number of
significant genes in the function and the number of genes in the function
(e.g., size of a GO term). The software package contains GO and CPDB
annotations mapping to mouse and human genes.

PECA-N model

PECA-N employs the same statistical model as the original PECA in Teo
et al."" with a notable exception. In PECA Core, the prior probability of
change point in a rate ratio parameter at time t is the same for every gene,
which is estimated from the data across all genes. In PECA-N, we employ
the MRF prior,'® where the prior probability of change point in a gene is
adjusted by the change point status of other first degree neighbor genes
in a user-provided biological network. To identify the neighbor genes, we
used the protein-protein interaction data from the STRING database.?”
See Supplementary Information for the details of the model and estimation
procedure.

PECA-pS model

PECA-pS model uses pulsed-SILAC data for the proteomic data to estimate
synthesis and degradation rates separately (up to a constant) and infer
regulatory changes across the time points in synthesis and degradation
separately. The model for the synthesis rate parameter takes the amount of
mMRNA available at the beginning of each time period into estimation,
while the model for the degradation rate is formulated as a function of
protein abundance at the beginning of each time period and the rate
parameter, disregarding the abundance of mRNA. See Supplementary
Information for the details of the model and estimation procedure.

PECA-R model

PECA-R aims to estimate synthesis and degradation rates separately from
proteomic expression data (along with mRNA). The model expresses the
total concentration change as a sum of increase in concentration due to new
synthesis and decreased due to degradation. The synthesis and degradation
rate parameters are estimated under the following assumptions:

(i) When the total concentration increases, it is due to the increase in
the synthesis rate as long as the mRNA concentration did not rise
sufficiently high to explain the protein concentration at a fixed
synthesis rate;
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(i) When the total protein concentration decreases, it is due to the
increase in the degradation rate as long as the mRNA concentration
did not drop sufficiently to explain the protein concentration
change at a fixed degradation rate.

The reason for imposing those assumptions on the parameter space is
straightforward. In label-free or TMT data, we only observe total protein
changes, without separate abundance measurements for newly synthe-
sized and existing proteins. Hence when the protein concentration
changes, this model has to make a decision as to whether the synthesis
rate and/or the degradation rate changed, considering the changes in
mRNA concentration.

Since the total protein concentration changes can be explained by
infinitely many combinations of the two rate parameters, the statistical
significance score (CPS) is often more diluted in PECA-R than those values
from PECA-pS. However, the PECA-pS model is not applicable unless pulse-
labeled samples are available, and PECA-R is the next best option for non-
pulse-labeled data within the PECAplus package if the estimation of
synthesis and degradation is the ultimate aim of the analysis. See Supple-
mentary Information for the details of the model, estimation procedure,
and the restricted parameter space.

Computation time and data availability

PECAplus can be downloaded from https://github.com/PECAplus (Apache
2.0 license), along with a tutorial and example data sets. The code requires
a Windows, Mac OS X or Linux/Unix environment and enables the
advanced access to the entire functionality of the tool. Second, the
software package is available as a plugin to the widely used Perseus
software (version 1.6.0.2), which was developed as a multi-functional
platform for proteomics data analysis.'? This platform enables researchers
without bioinformatics background to use PECAplus without any code
manipulation. The Perseus platform also allows for easy visualization of the
output. Run times of different modules vary by computer specifications
and also depend on dataset size. With a ~3000 gene input dataset as
discussed here used with default settings on an Windows 10 Home with
Intel(R) Core(TM) i7-4710HQ CPU @2.50GHz, 16GB DDR3L SDRAM
platform, the GP, PECA Core, PECA-pS, and PECA-R modules required ~1
h analysis time. The GSA module produces results instantaneously.

Data availability

The ER stress data is from DatasetEV1 in the Supporting Information of
Cheng et al.* The LPS stimulation data is from Tables S1 and S2 in the
Supporting Information of Jovanovic et al.®> The portion of the data used in
this paper are provided as example data to illustrate software
reproducibility.
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