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Abstract
Subject training is crucial for acquiring brain–computer interface (BCI) control. Typically, this requires collecting user-specific calibration 
data due to high inter-subject neural variability that limits the usability of generic decoders. However, calibration is cumbersome and 
may produce inadequate data for building decoders, especially with naïve subjects. Here, we show that a decoder trained on the data 
of a single expert is readily transferrable to inexperienced users via domain adaptation techniques allowing calibration-free BCI 
training. We introduce two real-time frameworks, (i) Generic Recentering (GR) through unsupervised adaptation and (ii) Personally 
Assisted Recentering (PAR) that extends GR by employing supervised recalibration of the decoder parameters. We evaluated our 
frameworks on 18 healthy naïve subjects over five online sessions, who operated a customary synchronous bar task with continuous 
feedback and a more challenging car racing game with asynchronous control and discrete feedback. We show that along with 
improved task-oriented BCI performance in both tasks, our frameworks promoted subjects’ ability to acquire individual BCI skills, as 
the initial neurophysiological control features of an expert subject evolved and became subject specific. Furthermore, those features 
were task-specific and were learned in parallel as participants practiced the two tasks in every session. Contrary to previous findings 
implying that supervised methods lead to improved online BCI control, we observed that longitudinal training coupled with 
unsupervised domain matching (GR) achieved similar performance to supervised recalibration (PAR). Therefore, our presented 
frameworks facilitate calibration-free BCIs and have immediate implications for broader populations—such as patients with 
neurological pathologies—who might struggle to provide suitable initial calibration data.

Significance Statement

In this manuscript, we show for the first time how inter-subject transfer learning approaches enable inexperienced users to imme-
diately operate a noninvasive brain–computer interface (BCI), thus avoiding the need for the standard individual calibration session. 
Acquisition of calibration data to build the BCI decoder is expensive and error-prone since naïve subjects may likely generate brain 
signals with inadequate discriminant power due to the lack of feedback. Consequently, the resulting decoder will perform poorly, 
thus hampering BCI training. Our approach provides a solution to this issue as it relies on a subject-independent decoder built on 
data of one single expert subject that renders calibration unnecessary. The efficacy of the proposed approach was demonstrated 
in online continuous and discrete feedback tasks.

Introduction
Noninvasive brain–computer interfaces (BCI) based on electroen-
cephalography (EEG) have proven efficient in applications such as 
neurorehabilitation (1, 2), robotics (3, 4), communication (5, 6), or 
virtual reality (7, 8). Motor imagery (MI)—mental rehearsal of a 
limb movement without execution—is a common EEG–BCI mo-
dality. MI elicits distinct sensorimotor rhythms (SMR) for different 
movements (9, 10); however, online decoding suffers from the 
nonstationary nature of EEG. Although complex machine learning 
(ML) models can alleviate this problem, a significant portion of 
subjects often exhibits a classification performance close to 

chance level (11), thus, subject’s learning of the BCI skill— 
generation of distinctive SMR—also seems crucial to operate 

brain-controlled devices (12–15). Consequently, mutual learning 

—building ML models that promote subject’s acquisition of BCI 

skills—has gained increasing attention (13, 15–21) and remains 

an open problem in BCI.
Training a BCI subject customarily starts with an offline cali-

bration session to collect data to build an individual decoder. 

Apart from being time-consuming, this initial decoder might be 

inefficient as subjects do not receive feedback that helps them 

to elicit proper SMR during calibration. A solution is to leverage 
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pre-recorded data to build subject-independent MI–BCI decoders. 
In the BCI field, this phenomenon is commonly referred to as 
inter-subject transfer learning (22), in analogy with the more com-
mon understanding of transfer learning in the ML field literature 
as transferring the knowledge of a model trained on one domain 
to another domain (23). Inter-subject transfer learning strategies, 
however, need to cope with across-subject SMR variability and re-
quire an expensive data collection effort, which may include sub-
jects with poor BCI performance due to nondiscriminable SMR. 
Here we propose a Riemannian incremental domain adaptation 
framework, which performs statistical matching between SMR 
distributions across subjects (22, 24), for inter-subject transfer 
learning based on pre-recorded data from a single expert BCI sub-
ject (Fig. 1). We hypothesized that our framework supports longi-
tudinal MI–BCI training and promotes learning of naïve subjects.

Our framework assumes that different subjects have their SMR 
covariance features shifted on the Riemannian manifold (22) 
(Fig. 1a). Our approach matches the data distributions of the ex-
pert and the naïve subjects in real time using first-order statistics 
(Fig. 1b). As a result, the BCI provides contingent robust feedback, 
thus enabling participants to operate the brain-controlled device 
immediately and acquire their BCI skills via longitudinal training. 
A key element is that the matching, or recentering, process is un-
supervised and takes place continuously for the naïve subject, 
thus coping also with the intra-subject SMR variability over time 
—within and across BCI sessions. Nevertheless, it could be the 
case that recentering might not suffice to handle a strong inter- 
and intra-subject SMR variability. Therefore, we tested two variants 
of our inter-subject transfer learning framework. The first one, 
Generic Recentering (GR), keeps the decision boundary of the expert 
decoder fixed throughout the entire experiment (Fig. 1c). Our se-
cond framework, Personally Adjusted Recentering (PAR), extends 
GR by tuning the parameters of the expert decoder with a small 
chunk of the incoming naïve subject data (Fig. 1d).

To test our hypothesis, we recruited 18 BCI-naïve, healthy vol-
unteers (N = 9 for each GR and PAR group) to participate in a 
5-day training program (Fig. 1e). We assessed the efficacy of GR 
and PAR in two different settings (Fig. 1f): a standard bar task 
and the Cybathlon car racing game (25), a more realistic applica-
tion. In the first task, controlled synchronously, BCI feedback 
was continuous, while the game provided discrete feedback 
when subjects asynchronously delivered a turning command 
for the car. In each training session, participants completed mul-
tiple runs with the bar task followed by the racing game. Of note, 
the expert data was acquired in the bar task and the expert never 
played the car racing game. We show that subjects could learn to 
operate their MI–BCI in both GR and PAR frameworks following 
the longitudinal training for both tasks. Moreover, we provide 
evidence that improvement in BCI control was partly due to sub-
jects acquiring the skill of producing increasingly discriminant 
neurophysiological features, which not necessarily matched 
those of the original expert subject. Finally, contrary to the 
popular belief that personalization or supervised tuning of de-
coders would lead to better BCI performance (24), subjects in 
the GR and PAR groups reached statistically similar performance 
in both tasks.

Results
Acquiring BCI control: the bar task
In a trial subjects performed left- or right-hand MI. A trial ended 
when the cumulative probability for a certain MI class exceeded 

a predefined threshold for command delivery or when a timeout 
period elapsed. During the task execution period of each 
trial, subjects received continuous visual feedback reflecting 
the accumulated evidence by the decoder. We used Cohen’s kap-
pa (26) (κ ∈ [ − 1, 1], chance level = 0) to characterize command 
delivery performance, which was then adjusted for the number 
of timeout trials [normalized kappa value (NKV)]. Since the first 
run of the PAR framework uses the ground truth labels of the tri-
als to adjust the decoder parameters, that run was excluded 
from analysis. We also measured the command latency (CL) 
to quantify how long it took to subjects to deliver a correct 
command.

Participants achieved significant NKV improvement over train-
ing in both GR (start: 0.2636 ± 0.1351, end: 0.4694 ± 0.2293, N = 9, 
P = 0.02) and PAR frameworks (start: 0.4045 ± 0.2857, end: 
0.6802 ± 0.2526, N = 9, P = 0.001). Moreover, NKV improvement ex-
hibited a statistically significant increasing trend for GR and PAR 
(Fig. 2a and b). Although subjects in the PAR group showed gener-
ally higher NKV scores on average over the training sessions, the 
difference between the two groups never reached statistical sig-
nificance (Supplementary material, Complementary statistical 
analysis). Similar to NKV, subjects improved their CL over ses-
sions and exhibited a significantly decreasing trend in both frame-
works (Fig. 2c and d). CL between GR and PAR were statistically 
similar across sessions (Supplementary material, Complementary 
statistical analysis).

BCI control in a realistic scenario: car racing
While the bar task is controlled synchronously and provides con-
tinuous feedback, it does not reflect real-life settings that may in-
volve discrete feedback only upon the delivery of asynchronous 
BCI commands. Therefore, the performance of the participants 
was further assessed in the Cybathlon car racing game, used in 
other studies (27–29). The racing track was modified to consist 
only of right and left turn patches. Since a player with higher effi-
cacy (i.e. better accuracy and shorter latency) in BCI command de-
livery finishes the race faster, we used the race competition timing 
(RCT) as the primary metric. We also report the NKV scores and CL 
for the sake of completeness.

Participants finished the races significantly faster after longitu-
dinal training for both GR (start: 203.63 ± 18.07 s, end: 
162.61 ± 22.15 s, N = 9, P = 0.00012) and PAR (start: 192.23 ± 23.22  
s, end: 164.92 ± 35.86 s, N = 9, P = 0.018). RCT values showed a sig-
nificantly negative trend across sessions for the two frameworks 
(Fig. 3a and b). RCTs of all subjects were significantly lower 
when compared to the upper bound of the metric (378.88 s); i.e. 
when no or only incorrect commands are delivered during race 
completion.

Similar to RCT, participants also exhibited a significantly in-
creasing trend of their NKV scores over the sessions for both GR 
and PAR (Fig. 4a and b). Moreover, subjects improved their CL 
over sessions, showing a statistically significant decreasing trend 
in both the frameworks (Fig. 4c and d).

RCT, NKV, and CL scores indicate that the longitudinal training 
with both the GR and PAR frameworks promotes acquisition of 
MI–BCI control in a realistic scenario with high cognitive demand 
(i.e. playing racing games). While all performance metrics (RCT, 
NKV, and CL) showed insignificantly better scores in the PAR 
framework at the beginning of the training, the cross-group differ-
ence in those scores was considerably minimized at the end of the 
training, and eventually reverted slightly for RCT (Supplementary 
material, Complementary statistical analysis).
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Fig. 1. Longitudinal frameworks for inter-subject BCI transfer learning. a) Differences in individual EEG results in covariate shifts of MI sample 
distributions across subjects. A decoder built on expert data leads to biased classification on naïve subject data. b) Domain adaptation to match the 
sample distributions of the expert and naïve subjects improves classification. c1.1) Generic Recentering (GR) framework: the samples of the naïve subject 
are matched with those of the expert in real time during an online session. The transformed naïve subject samples are classified using a fixed decoder 
that is trained on the transformed expert samples. c1.2) Incremental domain adaptation gets better at matching the sample distributions with more 
incoming data. c2) The decoder decision boundary is kept fixed throughout a session. d1.1) Personally Adjusted Recentering framework: after GR, the 
incoming labeled data of the naïve subject is used to adjust the parameters of the expert decoder. d1.2) The parameters of the decoder are updated in 
real-time using labeled data form the first run of a session exclusively. d2) After the first run in each session, the decoder is fixed for all remaining runs, 
and only incremental recentering still continues to remove the nonstationarities due to covariate shift. e) Experimental protocols for the longitudinal 
training frameworks (GR and PAR). Each online session consists of multiple runs in which subjects operate a BCI that provides feedback on their MI skill 
level. f) The two BCI tasks: a bar with continuous feedback (left) and car racing with discrete feedback (right).
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Improved discriminancy of neurophysiological 
features
Although Riemannian geometry classifiers have been used for 
MI–BCIs (22, 24, 30–32), no previous work provided a neurophysio-
logical interpretation of their learned covariance matrices. For 
this purpose, we define the electrode discriminancy score (EDS) 
as a novel measure that characterizes the contribution of each 
cortical location for effective discrimination of the two MI classes.

Figure 5 presents the topoplot visualizations of z-transformed 
EDS values for the expert subject data (Fig. 5a), as well as for the 

GR (Fig. 5b) and PAR (Fig. 5c) groups in the bar task and car racing 

game. For the expert case, electrodes with a statistically signifi-

cant EDS were C4 (z = 2.17) and FC6 (z = 2.55); contralateral chan-

nels C3 and FC5 showed higher than average, yet insignificant, 

EDS values. For the GR group, electrodes with statistically signifi-

cant EDS were C4 (bar: z = 3.46, car racing: z = 1.83) and C3 (bar: 

Fig. 2. BCI performance over bar training sessions. a, b) Subject-wise NKV of command delivery in GR and PAR framework, respectively. Each point 
corresponds to the average NKV across runs of a session for a given subject (GR: N = 4 and N = 3 in online session 1 and online sessions 2–5, respectively; 
PAR: N = 3 and N = 2 in online session 1 and online sessions 2–5, respectively). The colored line represents the grand average across all subjects over the 
online sessions. Correlation analysis using linear mixed effect modeling of GR NKV (r2 = 0.6795, P = 0.002, N = 45), PAR NKV (r2 = 0.7853, P = 0.00002, 
N = 45). c) GR command latency (CL) (start: 2.3540 ± 0.3801 s, end: 2.0833 ± 0.5151 s, r2 = 0.38938, P = 0.0180, N = 45), and d) PAR CL (start: 2.5994 ± 0.7290 s, 
end: 2.2327 ± 0.68085 s, r2 = 0.60879, P = 0.0249, N = 45) across online sessions. Each marker point in the corresponding plot denotes the NKV or CL for a 
specific subject in an online session. The colored line represents the grand average across all subjects over the online sessions. The statistical analysis 
results (linear mixed effect modeling) are reported in the same color.

Fig. 3. Brain-controlled car races. a, b) Subject-wise race completion timing (RCT) in the GR and PAR frameworks, respectively. Each point corresponds to 
the average RCT across races of a session for a given subject. The colored line represents the grand average across all subjects over online sessions. 
Correlation analysis using linear mixed effect (LME) modeling of GR RCT (r2 = 0.7620, P < 1 × 10−5, N = 45). Pearson Correlation between online sessions 
and PAR RCT (r2 = 0.1007, P < 0.05, N = 45). ϒ denotes that correlation modeling didn’t undertake into account the random effects of subjects as normality 
criteria was not satisfied on the LME.
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z = 2.40, car racing: z = 3.34). For the PAR framework, average sig-
nificant EDS were at C4 (z = 3.48) and FC5 (z = 2.01) in the bar task 
and at C4 (z = 1.90), and F8 (z = 2.80) for the car racing. 
Importantly, all the electrodes with significant EDS correspond 
to neurophysiologically relevant locations recruited during MI of 
left- or right-hand movements (9–11, 33). Remarkably, EDS pat-
terns for naïve subjects in both groups differed from the original 
EDS pattern for the expert subject (see also Figs. S9–S12).

With evidence supporting the neurophysiological relevance of the 
covariance features, we assess the evolution of their discriminability 
[feature distinctiveness (FD)] to substantiate subject learning (13, 15, 
21, 34). Subjects in both groups exhibited a significantly increasing 
trend in FD for both tasks (Fig. 6). There was no statistical difference 
in FD between the GR and PAR groups for any of the tasks in any ses-
sion (except for first online session in races, see also Fig. S13).

Pseudo-online inter-subject transfer learning
We compared our proposed inter-subject transfer learning ap-
proaches, termed Expert-Subject below, against two other 
subject-specific BCI decoders in a post hoc pseudo-online setting:

• Subject-Specific-Fix: We built a Riemannian MDM de-
coder using the calibration data of the corresponding subject, 
which then remained fixed during the online sessions.

• Subject-Specific-Adapt: We also built this Riemannian 
MDM decoder from the calibration session of each of the sub-
jects, which was then adapted during the online sessions ac-
cording to the corresponding adaptation framework of the 
subject group; i.e. GR or PAR.

Comparison against Subject-Specific-Fix decoders allows 
to assess the importance of domain adaptation through the 

proposed incremental recentering approach. Comparison against 
Subject-Specific-Adapt decoders allows to quantify the bene-

fits of a subject-specific BCI with domain adaptation. We com-
pared the three decoders on the bar task at the sample level. 
The reason to evaluate performance at the sample level instead 
of the trial level (delivery of a BCI command) is to avoid tuning 
the evidence accumulation hyperparameters that, if not done 
properly for each algorithm, could bias results. We limit the ana-
lysis to the bar task because in the car racing task it is not known 
when subjects start MI to deliver a BCI command.

To test the statistical significance, we performed paired t-tests 
(across all subjects and all online runs) between the three types of 
decoders. For the GR framework (Fig. 7a), a paired t-test or 
Wilcoxon signrank test (where normality was not satisfied) 

revealed a statistically significant difference between Expert- 
Subject and Subject-Specific-Fix (P = 6.18 × 10−8, 0.3777 ± 
0.2908 vs. 0.2345 ± 0.2884, N = 144). Furthermore it shows a strong 
trend towards statistical significance between Expert-Subject 
and Subject-Specific-Adapt (P = 0.051, 0.3777 ± 0.2908 vs. 
0.3283 ± 0.3262, N = 144). Finally, we observe a statistically 
significant difference between Subject-Specific-Adapt and 
Subject-Specific-Fix decoder (P = 1.17 × 10−8, 0.3283 ± 0.3262 
vs. 0.2345 ± 0.2884, N = 144). For the PAR framework (Fig. 7b), we 
observe a similar trend where both Expert-Subject 

(0.6249 ± 0.3312, N = 99) and Subject-Specific-Adapt 

(0.6149 ± 0.3432, N = 99) were significantly better than Subject- 

Specific-Fix (0.2929 ± 0.3289, N = 99) (P = 6.86 × 10−15 and 
P = 8.34 × 10−15, paired t-test and Wilcoxon signrank test, respect-
ively;). However, we do not find any statistical difference between 
Expert-Subject and Subject-Specific-Adapt.

Importantly, performance of the Expert-Subject decoder 
was competitive since the very first session (Fig. 7), thus delivering 

Fig. 4. Closed-loop BCI performance throughout races. Grand average visualization of the group-level distribution of a) GR NKV (start: 0.1354 ± 0.1288, end: 
0.4128 ± 0.2328, r2 = 0.7807, P < 2 × 10−5, N = 45), b) PAR NKV (start: 0.2875 ± 0.1319, end: 0.4535 ± 0.3355, r2 = 0.804, P = 0.0013, N = 45), c) GR command 
latency (CL) (start: 7.6361 ± 1.4602 s, end: 4.7100 ± 1.8369 s, r2 = 0.66656, P = 2.8737 × 10−6, N = 45), d) PAR CL (start: 6.3719 ± 2.7751 s, end: 4.4406 ± 2.2214 s, 
r2 = 0.75553, P = 2.5537 × 10−4, N = 45) during the races of the online sessions. Each marker denotes the NKV (or CL) averaged across races for a given subject 
in an online session. The colored line represents the grand average across all subjects over online sessions for corresponding metric.
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consistent feedback that enabled subjects to acquire BCI control. 
For the GR framework (Fig. 7c), a paired t-test revealed a statistic-
ally significant difference between Subject-Specific-Adapt and 
Subject-Specific-Fix decoder (P = 0.0012, 0.2855 ± 0.2557 vs. 
0.1869 ± 0.2320, N = 36), while Expert-Subject (0.2576 ± 0.2498, 
N = 36) performed similarly to Subject-Specific-Adapt and to 
Subject-Specific-Fix. For the PAR framework (Fig. 7d), both 
Expert-Subject (0.4574 ± 0.3803, N = 27) and Subject- 
Specific-Adapt (0.4970 ± 0.3747, N = 27) were significantly better 
than Subject-Specific-Fix (0.2468 ± 0.2864, N = 27) (P = 0.0012 
and P = 0.0005, paired t-test and Wilcoxon signrank test, respect-
ively). However, we do not find any statistical difference between 
Expert-Subject and Subject-Specific-Adapt.

GR transfer learning with common spatial 
patterns
Having demonstrated transfer learning with Riemannian MDM 
decoders, we also investigated the adaptability of the GR frame-
work to common spatial pattern-based (CSP) classifiers, which is 
widely used in MI–BCIs (35, 36).

We name CSP-Expert-Subject the decoder trained on the ex-
pert subject data using the proposed GR-CSP framework. Figure 7e 
and f presents the sample-wise kappa value comparison between 
the Riemannian MDM-Expert-Subject (originally referred as 
Expert-Subject) and the formulated CSP-Expert-Subject 
the first online session as well as over all the online sessions. 
We observe that there is no statistical difference in online ses-
sion 1 (MDM-Expert-Subject: 0.2576 ± 0.2498 vs. CSP-Expert- 

Subject: 0.2919 ± 0.2189, N = 36). We did not observe either any 
statistically significant difference over all the online sessions 
(MDM-Expert-Subject: 0.3777 ± 0.2908 vs. CSP-Expert- 
Subject 0.3727 ± 0.2924, N = 144).

Finally to highlight the importance of adaptation and compati-
bility of the proposed incremental GR-CSP framework, we mim-
icked the scenario of subject-specific adaptation and a CSP 
decoder without any adaptation. For that purpose, we use the fol-
lowing two decoders:

• CSP-Subject-Specific-Adapt: We built this GR-CSP de-
coder from the calibration session of each of the subjects in 
the GR framework, which was then adapted during the online 
sessions.

• CSP-Subject-Specific-Fix: We built a CSP decoder using 
the calibration data of the corresponding subject, which 
then remained fixed during the online sessions.

In Fig. 7g, we observe that in first online session CSP- 
Expert-Subject is statistically significantly better than 
CSP-Subject-Specific-Fix (P = 0.0013, 0.2919 ± 0.2189 vs. 
0.1521 ± 0.1889, N = 36). However, there was no significant differ-
ence between CSP-Expert-Subject and CSP-Subject- 
Specific-Adapt (0.2072 ± 0.2229, N = 36). Figure 7h shows the 
comparison of three decoders over all the online sessions. 
Interestingly, we observe that CSP-Expert-Subject 
(0.3727 ± 0.2924, N = 144) significantly outperforms both the CSP- 
Subject-Specific-Fix (0.3727 ± 0.2924, N = 144, 1.05 × 10−10) 

Fig. 5. Neurophysiological interpretation of covariance features. Topoplots show z-score values of electrode discriminancy scores (EDS) corresponding to 
each electrode. a) z-statistics of the EDS for the expert subject. b,c) z-statistics of the EDS for the GR and PAR groups (N = 9) in each BCI task (bar and race), 
respectively. EDS were averaged across the last two online sessions of each subject, followed by averaging across the subjects in the corresponding 
framework (GR or PAR) in each BCI task (bar and race).
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and CSP-Subject-Specific-Adapt (0.3727 ± 0.2924, N = 144, 
P = 7.22 × 10−5) decoders. Finally, we also observe that 
CSP-Subject-Specific-Adapt is significantly better than 
CSP-Subject-Specific-Fix (P = 0.005).

Our pseudo-online results with the GR-CSP framework empha-
size the significance of using the GR framework for incremental 
unsupervised adaptation in longitudinal BCIs. Both of the 
adaptive frameworks, namely CSP-Expert-Subject and CSP- 
Subject-Specific-Adapt outperformed the nonadaptive de-
coder CSP-Subject-Specific-Fix (Fig. 7b). More importantly, 
the adaptive decoders demonstrate superior performance com-
pared to fixed CSP decoders right from the first online session 
(Fig. 7e). Furthermore, there is no observable difference in 
performance between the MDM-Expert-Subject and CSP- 
Expert-Subject methods across both the initial online session 
and all subsequent online sessions (Fig. 7). We postulate that 
our integration of the GR framework with the CSP approach re-
sults in a stable estimation of spatial filters in a recentered space 
and the online incremental adaptation, following the alignment 
of signal covariances, aids in mitigating nonstationarities, ultim-
ately improving classification.

Discussion
We proposed two inter-subject transfer learning frameworks ex-
ploiting domain adaptation for longitudinal BCI training, and we 
demonstrated how they promoted acquisition of individual BCI 
skills. Indeed, participants exhibited the two pivotal elements of 
skill learning, namely increased accuracy and faster execution of 
BCI commands over the sessions (Figs. 2–4). Contrarily to existing 
transfer learning approaches, ours only require data from one 

single expert subject to build the initial decoder. Both frameworks 
proved to be highly efficient, as participants were able to immedi-
ately operate brain-controlled devices BCI-naïve subjects not only 
enhanced their control significantly in a laboratory setting but 
also in a more complex scenario (car racing game). This further 
highlights that the decoding model was transferable across tasks 
as the expert subject never played the car racing game. 
Furthermore, we introduced a novel method for untangling the 
neurophysiological relevance of the features modulated by partici-
pants to control the BCI. This provided evidence of subject learning 
via the consistently improving separability/discriminability of fea-
tures (Fig. 6), which differentiated from those of the initial expert 
subject (Fig. 5) and became subject specific (Figs. S9–S12).

Is inter-subject transfer learning superior to a 
subject-specific BCI?
Although our results strongly support that the typical subject- 
specific calibration session can be omitted, a fundamental ques-
tion arises: how does the proposed inter-subject transfer learning 
framework perform with respect to a subject-specific BCI? To an-
swer this question, we compared our framework against two other 
BCI decoders built with the data of the calibration session of each 
subject in a post hoc pseudo-online setting of the bar task. The 
first decoder remained fixed during the sessions, while the second 
one was adapted during the sessions according to the correspond-
ing adaptation framework of the subject group (GR or PAR).

Although comparing decoders in a pseudo-online setting might 
bias the results towards the decoder used online—as subjects 
attempt to generate patterns aligned with the feedback they 
receive—, the expert decoders in GR and PAR performed statistically 

Fig. 6. Multisession longitudinal closed-loop BCI training enables user learning. Correlation analysis of feature distinctiveness (FD) in, a) GR bar task 
(r2 = 0.7001, P = 0.0001, N = 45), b) PAR bar task (r2 = 0.7145, P = 0.0019, N = 45), c) GR car racing (r2 = 0.8055, P = 0.00082, N = 45), and d) PAR car racing 
(r2 = 0.7109, P = 0.0081, N = 45). Each data point is the FD between the two MI classes (left-hand MI and right-hand MI) in a session in the corresponding 
framework and task condition. The colored line represents the grand average across all subjects over online sessions for corresponding metric. ζ denotes 
that Linear mixed effect modeling was performed on the log transformed feature distinctivness as normality of of residuals are satisfied on log 
transformed response variable.
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better than the subject-specific BCI whose decoder remained fixed 
after calibration but had similar performance to the adaptive, 
subject-specific decoder (Fig. 7a and b). Furthermore, subjects 
achieved statistically similar or better performances with their 
corresponding transfer learning framework than with the subject- 
specific decoders already in the first session (Fig. 7c and d). 
Immediate competitive performance of the transfer learning ap-
proaches is critical to enable subjects to acquire BCI control. 
Moreover, our proposed integration of GR framework with CSP re-
veals that transferring CSP decoders between novice and expert 
subjects using GR framework results in a statistically similar per-
formance to subject-specific CSP decoders even from first online 
session. However, despite CSP and MDM-based classification ap-
proaches yielding similar classification performance, we argue 
that MDM-based approaches are better suited for online BCIs 
due to their ability to perform real-time decoder parameter up-
dates (i.e. the PAR framework). In contrast, updating spatial filters 
in CSP and subsequently incrementally updating the linear dis-
criminant classifier would be a challenging task.

These results confirm that our inter-subject transfer learning 
approaches can eliminate the need for subject-specific calibration 
sessions.

Mutual learning
Training users to acquire MI skills in a longitudinal, closed-loop 
BCI setting seems critical for the successful operation of a 
brain-controlled device (4, 12–16, 18, 21, 27, 28, 37). We 

demonstrated here that our longitudinal inter-subject transfer 
learning frameworks also promoted subject learning. 
Furthermore, there is compelling evidence that acquisition of 
BCI control is grounded on cortical reorganization (12, 13, 15, 16, 
18, 37). Since model parameters were kept fixed throughout the 
experiment in the GR framework and only feature spaces were 
matched using incremental recentering, the subjects had to 
modulate their brain patterns distinctively for both classes to pro-
duce patterns distinguishable by the fixed decoder—thus receiv-
ing concurrent positive feedback. We refer to neuroplasticity 
when subjects improved their distinctive modulation of brain pat-
terns during the training course. Our findings reveal that subjects 
using the GR framework exhibited a significant and increasing 
trend in discriminability within the feature spaces (Fig. 6a), indi-
cating that the generated patterns became more distinguishable 
over time. As another indication of lasting changes in neural activ-
ity, we analyzed the strengthening in event-related desynchron-
ization (ERD) in the fifth online session compared to the first 
online session for subjects in the GR group in the bar task 
(Fig. S2). Even though the extent of the difference did not reach 
the level of statistical significance after multiple comparisons ad-
justment, it is observed that participants were able to evoke a 
stronger ERD at the end compared to the beginning of their train-
ing, further illustrating persisting changes in neural activity. In 
the PAR group of the bar task, even though the decoding model pa-
rameters were adapted using a small amount of data (first run of 
bar task) at the beginning of each session, they remained fixed 
throughout the rest of the online session each day. Our 

Fig. 7. Post hoc pseudo-online analysis. Box plot distribution of the sample-wise classification kappa value of different decoders. Comparison of 
Expert-Subject, Subject-Specific-Fix, and Subject-Specific-Adapt for the two proposed frameworks, a) GR All online sessions, b) PAR All online 
sessions, c) GR first online session, and d) PAR first online session. Decoder comparison of CSP-Expert-Subject and MDM-Expert-Subject over, e) the first 
online session, and f) all the online sessions. Sample wise oerformance of Expert-Subject, Subject-Specific-Fix and Subject-Specific-Adapt with 
GR-CSP, g) the first online session and h) all the online sessions. Each data point corresponds to the kappa value of an online run for a subject. Compared 
to GR (All sessions: N = 144, First Session: N = 36), in the PAR framework (All sessions: N = 99, First Session: N = 27), the first run in each session is removed 
from the analysis as it was used for the supervised update.The box edges are 75th and 25th percentiles, and the horizontal line corresponds to the median 
of the distribution. Note that in the PAR case, the first run in each session is removed from the analysis as it was used for the supervised update. Numbers 
above the bars correspond to the P-value between the distributions of two groups (Δ superscript indicates scenarios when normality of data was violated 
and thus Wilcoxon signrank test was used, while paired t-tests were used otherwise).

8 | PNAS Nexus, 2024, Vol. 3, No. 2

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae076#supplementary-data


incremental recentering framework also helped by aligning the 
feature spaces to ameliorate nonstationarities. However, subjects 
still needed to produce discriminative brain patterns on the cor-
rect side of the hyperplane. Similar to the GR framework, in PAR 
we again observed a significant and consistent improvement in 
feature space discriminability (Fig. 6b). Furthermore, Fig. S3 also 
indicates enhanced ERD over the contralateral side during the 
fifth online session compared to the first online session.

Our results also illustrate a neuroplasticity process whereby 
initial features of an expert subject evolved and became subject 
specific. This latter result—i.e. our inter-subject transfer learning 
frameworks promote acquisition of individual BCI skills—, 
although hypothesized by longitudinal mutual learning, is never-
theless surprising. Since BCIs are based on neurofeedback and 
operant conditioning (5, 38), then naïve subjects would have 
been expected to modulate their SMR to match the target expert’s 
brain (EDS) patterns upon which feedback is based. However, 
compared to usual neurofeedback approaches and early BCI sys-
tems that use univariate analysis, our BCI works with a highly di-
mensional covariance space that offers subjects the possibility to 
modulate their individual SMR differently than the original sub-
ject. In other words, the embedded EDS subspaces of the expert 
and naïve subjects do not need to be similar as far as they lie on 
the same side of the classification hyperplane after adaptive 
matching. To the best of our knowledge, this is the first demon-
stration of this theoretical result in a BCI study.

Our results illustrate an even more radical manifestation of 
this property of our transfer learning approaches to evolve from 
an initial expert discriminant EEG pattern to individual ones. 
Indeed, subjects acquired BCI skills grounded on distinct EDS pat-
terns for the bar task and car racing (Figs. S9 vs. S11 for the GR 
group, and Figs. S10 vs. S12 for the PAR group) despite both tasks 
being trained at every online session. Notwithstanding that it is 
customary assumed that BCI skills are transferred across tasks 
or enhanced by additional control dimensions, especially from ba-
sic training to control of sophisticated devices (13–15), our results 
illustrate that humans can learn to modulate SMR of the same MI 
movements distinctively for each task and do so in parallel as all 
the subjects practiced both tasks in every online session. It is 
worth noting the emergence of a more frontal EDS pattern for 
the car racing task, especially in the PAR framework. Frontal areas 
under electrodes F7 and F8 are recruited not only when perform-
ing MI of left- and right-hand movements (see, in particular, (33)) 
but also in working memory tasks (39, 40). Since feedback during 
car racing is discrete, subjects must hold relevant information 
about the MI process and task in working memory for longer. 
Emergence of a more prominent frontal EDS pattern for car racing 
in the PAR framework with respect to GR is probably due to the 
additional update of the decoder parameters to better fit the 
new samples at the beginning of each online session. Another 
plausible explanation might be that frontal activity can indicate 
EOG contamination of neural signals; therefore, we performed 
additional analyses to confirm or confute this possibility. Results 
indicate that BCI control was driven primarily by the activity of 
motor channels, and that EOG activity had a low correlation 
with frontal electrodes (Figs. S1–S4).

Some experiments (28, 37, 41–43) have demonstrated how on-
line adaptation of decoder parameters increase classification per-
formance. Yet, they only partially showed that online decoder 
adaptation supports BCI skill acquisition as just selected subjects 
were discussed in terms of their final EEG patterns. Nevertheless, 
other studies found that online decoder adaptation did not sup-
port subject learning even if BCI performance improved (44, 45). 

Intermittent decoder recalibration using data from previous ses-
sions also promoted subject learning (13, 15, 29), although they re-
quired longer number of training sessions than the approaches 
reported in this work. Animal and human studies involving im-
planted BCIs have also illustrated how decoder adaptation (either 
continuously or intermittently) leads to subject learning via neu-
roplasticity (16, 18, 46, 47). Like our PAR framework, these im-
planted BCI studies modified the decoder infrequently and 
required subjects to practice with a fixed decoder during long pe-
riods. Interestingly, our GR framework also yields these desirable 
properties despite not applying supervised decoder adaptation.

Benaroch et al. (27) also employed a Riemannian approach with 
adaptive matching of the feature distributions across sessions to 
train a tetraplegic subject to control the same BCI devices used 
in our study, namely, bar task and car racing game. While both 
studies found a significant improvement in BCI control for the 
bar task, Benaroch et al. did not observe improvements in the 
car racing game for their subject. The success of our transfer 
learning methods can be attributed to two distinguishing ele-
ments. First, whereas we used data from an expert, Benaroch 
et al. relied on the conventional acquisition of calibration data 
of the tetraplegic subject to build the initial decoder. Second, 
our transfer learning approaches enabled subjects to evolve the 
initial EDS pattern of the expert to individual EDS patterns that 
differed for the bar and car racing tasks. This was facilitated be-
cause our incremental adaptation transform was estimated inde-
pendently for each task. However, Benaroch et al. attempted to 
carry over the discriminant patterns from the bar task to car ra-
cing using adaptive matching, which proved not to be successful. 
In this respect, another BCI study that also trained a different 
tetraplegic subject to operate the bar task and car racing game 
found a large shift of the EEG feature distributions associated to 
the two tasks for their subject (28). Another element that might 
have contributed to the training differences of BCI subjects in 
the car racing game for the two studies is that in (27) the subject 
had to operate a 4-class BCI, while in our case subjects trained 
with a 2-class BCI. It remains to be proven whether our approach 
scales to a multiclass BCI. Nevertheless, it is worth noting that the 
winners of the three Cybathlon BCI competitions in 2016 (13), 
2019, and 2020 (29) used a 2-class BCI to control games that re-
quired multiple commands—in particular, the car racing compe-
tition in which Benaroch’s (27) and Hehenberger’s subject (28) also 
participated. In summary, for a practical BCI it seems more effi-
cient to detect a limited number of classes with high accuracy 
than a larger number of classes with lower accuracy.

Inter-subject transfer learning
Despite being a popular topic in the BCI field, inter-subject trans-
fer learning has mainly been explored in offline studies. Actual 
MI–BCI experiments—i.e. involving closed-loop feedback—are 
scarce (43, 44, 48). All three previous studies relied on a 
subject-independent binary classifier built with data from a pool 
of expert subjects. The parameters of the initial classifier were ei-
ther adapted online as EEG samples of the individual participants 
were processed (43, 44) or kept fixed for the whole duration of the 
experiment (48). Vidaurre et al. (43) performed a single-session 
study, where online adaptation was supervised at the beginning 
and then unsupervised. Most participants, 9 out of 14, achieved 
a good BCI control (>70% accuracy) of a bar task at the end of 
the session. Perdikis et al. (44) proposed an unsupervised, 
context-aware adaptive method that performed similarly to a 
fully supervised method. Nine participants run a single session 
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where they directly operated a MI–BCI speller, successfully writ-
ing several words. Nevertheless, as discussed before, adaptation 
was detrimental for participants to learn to modulate their sen-
sorimotor rhythms. Ray et al. (48) trained five participants over 3 
days to modulate EEG rhythms associated to MI vs. happy 
emotional imagery based on feedback from a fixed subject- 
independent BCI classifier. Participants exhibited an increasing 
trend in BCI accuracy in a bar task, reaching better-than-random 
performance.

While these previous works demonstrate the feasibility of 
inter-subject transfer learning for BCI based on the modulation 
of EEG rhythmic activity, MI in particular, collecting data from 
multiple expert subjects is cumbersome and time-consuming. In 
our study, we used only one expert subject and showed how this 
simple subject-independent approach fosters acquisition of indi-
vidual BCI skills over a longitudinal mutual learning setup, enab-
ling participants to operate devices in synchronous as well as 
asynchronous realistic scenarios such as car racing games.

GR or PAR?
Supervised approaches that use labeled samples when recalibrat-
ing the BCI decoder are popular (16, 18, 41, 43, 45–47), as ML theory 
predicts that they would lead to better model fitting and perform-
ance—a result verified in a cross-over BCI study comparing super-
vised vs. fully unsupervised approaches for online decoder 
adaptation (44).

Our bar task results support this view (Fig. 2a–d), where sub-
jects in the PAR group showed higher NKV scores over the training 
sessions. Although the difference between the two groups never 
reached statistical significance (Fig. 7a), the PAR framework seems 
to facilitate faster and better acquisition of the BCI skill. Indeed, 
subjects in the PAR group exhibited higher FD scores and stronger 
trend over their training (Figs. 6 and S13. Nevertheless, the advan-
tage of PAR over GR in the bar task vanishes when comparing an-
other critical element of skill acquisition, namely CL, as GR 
subjects delivered faster correct commands (Fig. 2e and f).

PAR, as compared to GR, also appears to be advantageous at the 
beginning of subjects’ training in the car racing game for every 
performance metric—i.e. RCT, NKV, and CL—, which were insig-
nificantly better (Figs. 3 and 4). Nevertheless, the between-group 
differences were minimized at the end of the training (Fig. S7b) 
and eventually reverted slightly for RCT. Importantly, all subjects 
of the GR group exhibited a decreasing trend of RCT, while this 
was only the case for seven subjects (out of nine) in the PAR group.

In summary, our results demonstrate that the unsupervised GR 
framework can yield performances comparable to those of the su-
pervised PAR framework (see also Supplementary material, 
Complementary statistical analysis). Thus, we favor the GR 
framework over PAR during use of brain-controlled devices be-
cause the former is completely unsupervised. In fact, supervised 
approaches are unfeasible during activities of daily living, where 
ground truth labels are unavailable. Moreover, since PAR frame-
work involves the updation of decoding parameters, its integra-
tion with other decoding methods (4, 35, 49, 50) would be 
computationally expensive rendering it challenging for online 
closed-loop BCIs.

Potential improvements and prospects
While our results demonstrate the significance of longitudinal 
training for improved BCI control in a complex car racing game be-
cause of subjects’ enhanced sensorimotor modulations, practice 
also helps subjects to anticipate and timely deliver BCI commands 

for optimal gameplay which is crucial for subjects to drive better 
(51). To disentangle these two components of practice (BCI profi-
ciency and anticipation), it will be necessary that subjects train 
over longer periods of time than in our current experiment in or-
der to observe when sensorimotor rhythms become stable, and 
yet race time continues to improve.

Our inter-subject transfer learning approaches could be ex-
tended along several directions. Firstly, it would be desirable to en-
large the degrees of freedom and control principles of the BCI. In 
particular, in our current experimental setup a major limitation is 
that subjects performed a binary task relying on conventional left 
vs. right hand MI. For robust control of more complex brain- 
controlled devices (4), the expert subject should able to control a 
multiclass BCI with high accuracy, which has been demonstrated 
to be feasible (41), also in a Riemannian geometry framework (24), 
and to incorporate continuous control of the device (52). It remains 
to be demonstrated that our framework succeeds in these settings.

A second direction is to replace the supervised version of our 
PAR approach, which requires labeled samples, with an unsuper-
vised version that predicts sample labels and avoids the initial re-
calibration run of every session. Two relevant methods are 
pseudo-labeling (53, 54) and context-aware learning (44, 55). 
Both methods have been demonstrated to perform competitively 
to a supervised strategy.

Although we have demonstrated the feasibility of integrating 
the GR framework with CSP-based decoders, it would be interest-
ing to extend the GR framework with source-space-based ap-
proaches as we could get better information on the precise 
anatomical localization of regions relevant for MI decoding (4). 
Additionally, we plan to explore more data-driven transfer learn-
ing approaches, leveraging a database of expert subjects using 
deep learning techniques like EEGNet (49) and TSMNet (50).

Finally, we speculate that our inter-subject transfer learning 
approaches could be beneficial for BCI applications targeting peo-
ple with disabilities who might be unable to modulate properly 
their SMR and provide good calibration data to build their initial 
decoder. Our proposed frameworks might pave the way to exploit 
pre-recorded data of healthy subjects to train patients to operate 
assistive and neurorehabilitation BCI-controlled devices.

Methods
Participants: Eighteen able-bodied healthy participants with nor-
mal or corrected-to-normal vision participated in the study 
(23.22 ± 3.59 years old, seven females). The experimental protocol 
was approved by the local ethics commission (2020-03-0073, The 
University of Texas at Austin, TX, USA). All participants provided 
written informed consent before conducting the experiment, and 
were compensated for their participation to the study.

EEG and EOG recordings: Physiological activity was recorded 
from 22 EEG and 3 electrooculogram (EOG) channels at 512 Hz 
(ANT Neuro eego mylab with bipolar EOG box, waveguard EEG 
cap). EEG electrodes were positioned at F7, F3, Fz, F4, F8, FC5, 
FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, 
and POz locations according to the international 10–10 montage, 
with the ground and reference electrodes placed at AFz and CPz, 
respectively. The three EOG electrodes were placed on the eye 
canthi and the forehead. Participants were asked to minimize 
eye and facial movements during the BCI trials. However, when-
ever an artifact was detected (see “Artifact detection” below), 
the output of BCI was blocked. EEG signals were processed as de-
scribed in “Feature extraction” below.
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BCI training: Subjects were instructed to mentally rehearse the 
kinesthetics, not the visualization, of a movement without overtly 
causing any contraction of their muscles. Training was based on a 
binary-class BCI that differentiated MI of left-hand and right-hand 
movements. Subjects started with an offline calibration session in 
which they were pseudo-randomly cued to perform MI of either of 
the two movement classes. The data collected from this session 
was later used for benchmarking our proposed inter-subject 
transfer learning frameworks against the standard calibration- 
based subject-specific approach. In the following consecutive 
five online sessions, subjects received feedback on their BCI per-
formance. Each online session comprised several runs consisting 
of multiple MI trials in which subjects practiced two tasks, namely 
bar task followed by car racing. Subjects performed four runs of the 
bar task and played at least four car races, each race corresponding 
to a run, in the first online session. Afterwards, in the second to fifth 
online sessions, subjects practiced three runs of the bar task and at 
least five car races (except for one subject due to technical problems 
with the EEG amplifier) to emphasize and assess whether they 
could operate their BCI in a more realistic scenario.

Bar task: This paradigm is a standard feedback method to train 
users to operate MI BCIs (10, 11). A run consists of 10 trials of each 
MI class (left and right hand) in a pseudo-random order. In our 
study, each trial started with a fixation cross which lasted for 1  
s. Next, the cue corresponding to a MI class was presented for 
1.5 s. Following the cue, online visual feedback using a 1D bar 
was presented for a maximum of 7 s during the online runs and 
for 5 s during the offline MI runs. Each trial ended with the presen-
tation of the result of the trial for 2 s, followed by an inter-trial rest 
of 1.5 s. During the offline runs, the bar always moved towards the 
correct side. In contrast, during the online runs, the bar moved 
both ways proportionally to the accumulated evidence of the 
BCI for each MI class (see “BCI controller” below).

Car racing: The car racing game was adopted from the 
International Cybathlon competition (25). The game was adjusted 
for a two-class BCI such that the race track was divided into 
pseudo-random patches of right or left wide turns. The car would 
accelerate through the patches only if the MI of the corresponding 
movement (right or left) was successfully performed—i.e. correct 
command delivery. In the event of an incorrect command deliv-
ery, the car hit the curb and slowed down. The state of the car 
(high or low speed if a correct or incorrect command was deliv-
ered, respectively) was reset after each patch, and subjects re-
ceived discrete feedback whenever a correct command was 
delivered through the right and left headlights of the car.

Feature extraction: We use covariance matrices of EEG signals to 
characterize the spatio-spectral components in bandpass filtered 
EEG. Covariance matrices are commonly used as features or to es-
timate spatial filters for building machine learning models that 
discriminate MI classes (35). In our processing pipeline, we band-
pass filter the EEG signals using a second-order Butterworth filter 
in [8, 30] Hz. We then estimate features on 1-s sliding windows (re-
ferred to as samples) with 1/16 s of step size. Let X ∈ RNc×Nt denote 
an EEG sample where Nc is the number of channels and Nt is the 
number of time points. Its sample wise normalized covariance 
C, which is used as a feature in the Riemannian geometry frame-
work, is expressed as:

Ci =
XXT

trace(XXT)
. (1) 

We used a shrinkage-based covariance estimator for computing 
the covariance features Ci (Ledoit and Wolf method (56)) in order 
to avoid any numerical problems.

Riemannian geometry framework: Within the Riemannian geom-
etry framework, a spatial covariance matrix (1) of EEG signals is 
a feature on a Riemannian manifold. The latter is a smooth, differ-
entiable manifold with each point in its domain having a tangent 
space that is a finite dimensional Euclidean space. Being symmet-
ric positive definite (SPD), the covariance matrices lie on a 
Riemannian manifold (30). This allows building a Riemannian 
geometry classifier as a simple, distance-based classifier that 
uses the notion of distances and means over the manifold for 
classification.

The parametric equation of shortest path (called geodesic for 
curved spaces) between two matrices C1 and C2 on the 
Riemannian manifold can be written as (30):

γ(C1, C2, t) = C
1
2
1(C−1

2
1 C2C−1

2
1 )tC

1
2
1 t ∈ [0, 1]. (2) 

Using the geodesic definition in (2), the distance between two ma-
trices on the manifold can be estimated as:

δr(C1, C2) = ‖ log (C−1
2

1 C2C−1
2

1 )‖F˙ (3) 

Interestingly, the above-mentioned distance metric is invariant to 
affine transformations, also commonly known as Affine Invariant 
Riemannian Metric (31). Let W be an affine invariant transform-
ation, then the Riemannian distance between affine transformed 
covariances and their original raw covariances is preserved:

δr(C1, C2) = δr(WTC1W, WTC2W). (4) 

Riemannian mean: It is simply the notion of center of mass of cova-
riances constrained on a Riemannian manifold. Similar to the es-
timation of the Euclidean mean, where the sum of squared 
Euclidean distances from the Euclidean mean estimator is mini-
mized, the center of mass/karcher mean in a Riemannian frame-
work is estimated as:

C̅ = arg min
C∈Pn

􏽘N

i=1

δ2
r (Ci, C), (5) 

where Pn is the space of n-dimensional SPD matrices. To solve the 
optimization problem in (5), we relied on the approach discussed 
in Ref. (30).

MDM classifier: The BCI decoder corresponds to a minimum dis-
tance to mean (MDM) Riemannian geometry classifier, which is 
similar to a distance based nearest neighbor approach. The fol-
lowing steps are used for training and testing: 

• Training: The covariance class prototypes (C̅k, k ∈ (1, 2)) of MI 
classes are estimated using the Riemannian mean of the ex-
pert subject’s covariance samples corresponding to each class 
from Eq. 5 (see “Domain adaptation” below).

• Prediction: For an incoming EEG sample, its spatial covariance 
(Ci) is estimated using Eq. 1 and classified according to:

ki = arg min
k∈(1, 2)

δr(Ci, C̅k). (6) 

• Prediction probability: For an incoming EEG sample (Ci), we pre-
dict the class probability for both classes according to:

pk =
e−(δr (Ci ,C̅k))2

e−(δr(Ci ,C̅1))2 + e−(δr (Ci ,C̅2))2
k ∈ [1, 2]. (7) 

Domain adaptation: From a data-driven machine learning per-
spective, the proposed inter-subject transfer learning framework 
is a classic scenario of domain adaptation. Simply put, the data 
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of expert and naïve subjects are two different domains. To build a 
robust classifier, we attempt to match the distributions of the 
naïve subject to that of the expert subject. Using the affine invari-
ant property of the Riemannian distance in Eq. 9, we transform 
the covariances of the expert subject and the naïve subject to a 
common space. Since this transform is an affine transformation, 
it preserves the distances between all the covariances (22).

For the expert subject E, the affine invariant recentering trans-
form Ttrain is estimated using (5) on all her/his available covari-
ance samples irrespective of the class. Then, we train an MDM 
decoder on the transformed covariance samples.

For naïve subjects, we use online incremental domain adapta-
tion in the spirit of the offline method proposed in (31) to estimate 
the recentering transform. For online classification of an incoming 
sample Cs

i for naïve subject s, first we estimate the incremental re-
centering affine transformation Ti from (8), which builds on (2):

Ttest
i =

γ Ttest
i−1 , Cs

i ,
1

i+1

􏼐 􏼑
i > 1

Cs
1 i = 1

􏼨

. (8) 

Next, we use the transformation matrix Ttest
i to convert the sample 

Cs
i to C̃s

i such that transformed covariance matches the space of 

expert subject using (9):

C̃s
i = Ti

test
−1
2 Cs

i T
test
i

−1
2
′

. (9) 

Finally, the affine transformed covariance sample is then fed to 
the MDM decoder built with data from the expert subject. The af-
fine transformation (9) has been shown previously to be similar to 
a first-order mean matching (31) and hence reduces the drift in the 
data between the training and test distributions (24). Figure S14
depicts a pictorial overview of the affine transformation 
procedure.

Generic Recentering (GR) framework: In the GR framework, we 
match the distributions of the expert and naïve subjects using 
the domain adaptation technique. For naïve subjects, we set their 
sample counter i = 1 in the first training run on each day for each 
task (bar or car racing) separately. The counter i is incremented by 
1 as new samples are recorded. The reason why we have sepa-
rated counters for each task is that we hypothesize that subjects 
will modulate sensorimotor rhythms differently for each task be-
cause of their dissimilar feedback (richer and discrete in the case 
of the car racing). In the case of the bar task, the sample counter is 
carried over to all the runs of an online session. However, for the 
car racing task, the counter is reset to 1 at the beginning of each 
race so that race times can be compared across an online session. 
Indeed, if the sample counter i were not reset, subjects could fin-
ish later races faster than earlier races simply because the trans-
formation matrix Ttest

i is better estimated as using more samples.
Personally Adjusted Recentering (PAR) framework: In contrast to 

the GR framework where we keep the decoding model fixed in 
the recentered space and only update the recentering transform 
incrementally, in the PAR framework, after recentering and pre-
dicting an incoming sample, we also update the parameters of 
the decoding model—i.e. class prototypes—, according to the 
ground truth label of the incoming sample.

The adaptation scheme to update the class prototype is gov-
erned by the following geodesic interpolation:

C̅k = γ(C̅k, C̃s
i , η) iground = k (10) 

We kept the adaptation parameter η = 0.001 to be constant. The 
choice for this value was based on a pseudo-online simulation 
of the PAR framework using existing in-house BCI datasets. We 

simulated the classification performances for different values of 
η on a logarithmic scale on datasets of two experiments where 
four subjects, different from those who participated in this study, 
operated the bar task using MI of left and right hand movements 
(Fig. S15). We observe that for both the datasets, η = 0.001 yields 
better performance than other values of the learning rate. This ob-
servation is in line with literature suggesting mid-range learning 
rates to be optimal in adaptation frameworks (57).

In each session, we do supervised updates of class prototypes on 
the first run only. The class prototypes are then kept fixed through-
out the remaining runs of the online session. Note that the super-
vised adaptation of the class prototypes is applied in the 
recentered space—i.e. after the recentering step of the GR frame-
work, where the sample counter i is reset to 1 at the beginning of 
each session for the bar task and at the start of each car race.

BCI controller: The BCI decoder estimates the probability distri-
bution of an EEG sample to belong to each MI class. The BCI proc-
esses a 1-s sliding window of EEG signals every 62.5 ms. To deliver 
a command (Right, Left), the BCI accumulates the estimated prob-
abilities over time for each class until the accumulated evidence 
for one of the classes reaches a configurable threshold. If none 
of the thresholds is crossed within a certain timeout period, the 
trial is considered rejected. We use an exponential smoothing ap-
proach to accumulate evidence for all classes (11):

Probi = 0.95 · Probi−1 + 0.05 · pi, (11) 

where Probi is the accumulated probability for a given class and Pi 

is the posterior probability of that class for the ith sample.
The feedback provided by the bar is synchronous in the sense that 

the accumulated evidence for the two MI classes are reset to uni-
form probability distribution at the beginning of each trial. The 
thresholds for the bar task were set after observing the bar dynamics 
in an online mock run before the first online run on each session. 
The thresholds for consecutive bar runs were adjusted so that sub-
jects operating the BCI could maximize the number of correct com-
mand deliveries and minimize incorrect commands or timeouts.

For car races, the probabilities were integrated asynchronously 
until the accumulated evidence of one class crosses its correspond-
ing threshold within the timeout period. If one of the thresholds is 
reached, a UDP message is sent to the game interface to execute 
the corresponding command and the accumulated evidence for 
the two MI classes are reset to uniform distribution for subsequent 
command delivery. In the case of timeout, the accumulated eviden-
ces are also reset to uniform distribution, but no command is sent 
to the game. Also, we set a refractory period of 1 s for evidence ac-
cumulation between consecutive commands or timeouts. Notably, 
evidence accumulation is not reset after the car exits a patch and 
enters the next one. The thresholds for consecutive car races 
were adjusted in a similar fashion to the bar runs.

For both the bar and car racing runs, the BCI controller blocks 
the evidence accumulation process in two scenarios: 

• Presence of an artifact: The EEG sample window contains an 
EOG or facial artifact.

• Uncertainty of prediction: The highest prediction probability of 
either of the classes does not exceed a preset minimum (0.55).

Artifact detection: Our BCI uses a simple artifact detection criter-
ion for ocular and facial movements based on the analysis of three 
EOG electrodes placed on the eye canthi (EOG 1, EOG 2) and the 
forehead (EOG 3) while being referenced by an electrode on the 
mastoid. The EOG signals were synchronously recorded with 
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EEG using a bipolar box through the eego amplifier and filtered to 
[1, 10] Hz using a second-order Butterworth filter. The presence of 
an artifact is detected whenever the values resulting in EOG chan-
nels due to horizontal or vertical eye movements, exceed a pre-
configured threshold. Also, the average of all three EOG 
channels is monitored to check for facial contractions and eye 
movements (13). In the event that an artifact is detected over a 
1-s EEG sample, the output of the classifier is disregarded and 
the evidence accumulation is paused for that sample.

Adaptive recentering in common spatial pattern: Building upon pre-
vious research (58, 59), we have integrated the GR framework into 
the classical CSP method and evaluated it in a pseudo-online set-
ting. Details of this GR-CSP framework are as follows:

1. Let X ∈ RNc×Nt denote an EEG sample where Nc is the number 
of channels and Nt is the number of time points. Its sample- 
wise normalized covariance Ci, which is used as a feature in 
the Riemannian geometry framework, is estimated from 
Eq. 1. Note that to mimic the actual experiment we used a 
shrinkage-based covariance estimator for computing the co-
variance features Ci.

2. To alleviate the problem of nonstationarities (across sessions 
and subjects), we transform all the offline covariances using 
the Riemannian mean of offline covariances through an af-
fine transformation (Eq. 9).

3. In the transformed space, we estimate the mean covariance 
of both MI classes by computing the Euclidean mean of the 
transformed covariances corresponding to each MI class, de-
noted as Σ1 and Σ2 for Class 1 and Class 2, respectively.

4. The spatial filter matrix, denoted as W having dimensions 
Nc × Nc, is then estimated using the eigenvalue decompos-

ition of Σ−1
1 Σ2, where Nc represents the number of channels. 

We selected a total of K = 6 spatial filters (three from each 
side of the eigenspectrum) to create the spatial filter matrix 

W̅ = [w̅1, w̅2, . . . , w̅6] ∈ R6×Nc .
5. Since the GR framework operates directly on covariance ma-

trices, we perform feature extraction in the covariance space. 

For each trial i, we use its transformed covariance Ctrans
i to es-

timate the variance of the spatially filtered signal k as 

var(k) = w̅Ctrans
i w̅T.

6. Following the approach of Zhang et al. (60), for trial i, we cre-
ate a log-normalized feature vector of spatially filtered trans-
formed covariances, denoted as fi. This feature vector is 
estimated as:

fi =
var1

􏽐6
k=1 vark

,
var1

􏽐6
k=1 vark

, . . .
var6

􏽐6
k=1 vark

􏼢 􏼣

(12) 

This feature vector is then used to build a linear discriminant 
classifier.

7. During the inference stage in pseudo-online simulations, for 
an incoming online sample ion, we first estimate its trace- 
normalized covariance using Eq. 1. Then, the trace- 
normalized covariance is transformed using the incremental 
affine transform (Eq. 9). Subsequently, we estimate a feature 
vector, denoted as fion , which is fed into the linear discrimin-
ant classifier for prediction.

Performance metrics: We have computed a number of metrics to 
exhaustively characterize the performance of the proposed inter- 
subject transfer learning frameworks. 

• Sample level classification: We predict class label on each of the 
1-s covariance samples and compute the confusion matrix 
using the ground truth labels and predicted labels. Note 
that artifact contaminated/rejected samples (see “BCI con-
troller”) are not included in the computation of the confusion 
matrix. From the confusion matrix, we estimate the kappa 
value as a metric of classification performance (26). A kappa 
value of 1 represents a perfect classification and a kappa val-
ue of 0 corresponds to chance level performance.

• Command level classification: This metric represents the accur-
acy of delivered BCI commands (after evidence accumulation) 
that subjects experience as a feedback.

We create a confusion matrix using all trials in a session 
that finished with a correct or incorrect command delivery 
—i.e. timeout trials are not included in the computation of 
the confusion matrix—and estimate the Cohen’s kappa. 
Then, we normalize the kappa value (NKV) to incorporate 
timeout trials as a penalty: Normalized-Kappa=kappa*(1- 

ntimeouts
total−trials).

• Race completion time (RCT): Time taken by the subject to finish 
one race run.

• Command latency (CL): We use this metric to quantify the la-
tency of correct command delivery. The time taken to deliver 
a correct command in a trial in the bar task is estimated as the 
time difference between the start of visual feedback and cor-
rect command delivery. In the car racing game, for each patch 
we take the time difference between the start of that patch 
and the moment the subject delivered the correct command 
for that patch. Then, CL is the average of the correct com-
mand delivery times across all the trials (bar task) or patches 
(car racing) in an online sessions.

• Electrode discriminancy score (EDS): We use a backward elimin-
ation approach to estimate the contribution of each of the 
electrodes to the separability of the two classes in the 

Riemannian manifold. Assume C̅1
22

, C̅2
22 

are the prototypes 
of the two classes in the 22D feature space. We estimate the 
prediction probability P22 of the class prototypes using (7). 
We then remove the ith row and column of the two prototype 
covariance matrices corresponding to channel i and compute 
the prediction probability in this 21D space as P21. Finally we 
estimate the discriminant score ei corresponding to electrode 
i as ei = P22 − P21. We interpret this discriminant score as the 
increase in posterior prediction probability after the inclusion 
of channel i when moving from the 21D space to the 22D 
space. This backward elimination is repeated independently 
for each channel to estimate their EDS. Of note, EDS values 
are computed on the unmatched feature distributions for 
subjects—including the expert.

• Feature distinctiveness (FD): In the spirit of (34, 61), we used the 
distinctiveness metric between the unmatched feature distri-
bution of the two MI classes to quantify the feature space dis-
criminancy (or separability) between the two MI classes. FD 
utilizes the Riemannian distance between the class proto-
types, normalized to the variance of the feature distributions 
of both classes.

Statistical analyses: To compare the statistical difference at the 
beginning and at the end of the longitudinal training for each of 
the two inter-subject transfer learning frameworks, we used a 
paired t-test paired across subjects. For comparison across the dif-
ferent frameworks we utilized an unpaired t-test on each of the 
online sessions. To further scrutinize the trend within each of 
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the frameworks, we performed correlation analysis through lin-
ear mixed effect modeling (LME). We formulated the model as 
metric - 1 + (1|subjects) + group. Here metric is the response 
variable, group is fixed effect and subjects account for random 
effects. The used metric, group pairs for tracking longitudinal 
learning within each of the proposed frameworks are {Bar NKV, 
Race NKV, RCT, FD} and {online session 1,2,3,4,5}, respect-
ively. Normality in each of the statistical analyses was assessed 
with a Lilliefors test. When the normality of the residuals was vio-
lated for LME modeling, we first applied a logarithmic transform-
ation to the response variable ({Bar NKV, Race NKV, RCT, FD}) and 
then used LME again. In cases where, after the log transformation, 
normality of the residuals still remained violated, we instead esti-
mated the correlation coefficient without fitting the LME model— 
Pearson (parametric), or Spearman (nonparametric) depending on 
whether the normality of the response variable was satisfied or 
violated, respectively.
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