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Methamphetamine (MA) is a toxic, addictive drug shown to modulate learning and
memory, yet the neural mechanisms are not fully understood. We investigated the effects
of 2 weekly injections of MA (30 mg/kg) on working memory using the radial 8-arm
maze (RAM) across 5 weeks in adolescent-age mice. MA-treated mice show a significant
improvement in working memory performance 1 week following the first MA injection
compared to saline-injected controls. Following 5 weeks of MA abstinence mice were
re-trained on a reference and working memory version of the RAM to assess cognitive
flexibility. MA-treated mice show significantly more working memory errors without
effects on reference memory performance. The hippocampus and dorsal striatum were
assessed for expression of glutamate receptors subunits, GluA2 and GluN2B; dopamine
markers, dopamine 1 receptor (D1), dopamine transporter (DAT) and tyrosine hydroxylase
(TH); and memory markers, protein kinase M zeta (PKMζ) and protein kinase C zeta
(PKCζ). Within the hippocampus, PKMζ and GluA2 are both significantly reduced after
MA supporting the poor memory performance. Additionally, a significant increase in
GluN2B and decrease in D1 identifies dysregulated synaptic function. In the striatum, MA
treatment increased cytosolic DAT and TH levels associated with dopamine hyperfunction.
MA treatment significantly reduced GluN2B while increasing both PKMζ and PKCζ within
the striatum. We discuss the potential role of PKMζ/PKCζ in modulating dopamine and
glutamate receptors after MA treatment. These results identify potential underlying
mechanisms for working memory deficits induced by MA.
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INTRODUCTION
Methamphetamine (MA) is a highly addictive drug of abuse that
is prevalent among young adults (NIDA, 2012; Talbert, 2014).
Clinical studies have identified various cognitive deficits after
chronic MA exposure even when followed by years of absti-
nence (Nordahl et al., 2003; Monterosso et al., 2005; Simon et al.,
2010; and Morgan et al., 2012) producing deficits in attention,
episodic memory, information processing, and impulse control.
MA also produces memory deficits (Simon et al., 2002; Hoffman
et al., 2006; Gonzalez et al., 2007) concomitant with reducing
hippocampal volume (Orikabe et al., 2011). More surprising
is that clinical studies have also identified cognitive-enhancing
effects from low doses of MA resulting in enhanced learn-
ing and memory performance involving visuospatial perception
and response speed after limited and low dose stimulant expo-
sure (Johnson et al., 2000; Silber et al., 2006; Mahoney et al.,
2010; Marrone et al., 2010; Hart et al., 2011; Kirkpatrick et al.,
2011).

Rodent studies have also found enhancing, short-term effects
on cognition from low doses of MA (Moenk and Matuszewich,
2012), an effect specific to adolescent but not adult rats. Low
doses of MA exposure during adolescence were found to produce
short-term improvements in spatial acquisition but with deficits
in spatial short-term working memory performance (McFadden
and Matuszewich, 2007). Conversely, exposing rats postnatally
over several days impairs spatial reference memory (Vorhees et al.,
2000; Williams et al., 2002), but not working memory in adult-
hood (Williams et al., 2003). These studies indicate that various
MA doses can selectively impair reference and working memory,
but these effects are dependent on when the drug is delivered and
when the behavioral assessments are conducted.

Various MA treatment paradigms are used in rodents to exam-
ine the acute and chronic effects on the brain (see reviews Cadet
and Krasnova, 2009; Hart et al., 2011). Early signs of neurotoxic
damage after MA treatments show selective damage to dopamin-
ergic terminals within the dorsal striatum (Ricaurte et al., 1982,
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1984; O’Callaghan and Miller, 1994; Pereira et al., 2002, 2006) and
hippocampus (Nash and Yamamoto, 1992; Rocher and Gardier,
2001). Concomitant with dopaminergic terminal damage is a
decrease in TH (Sonsalla et al., 1996; Fumagalli et al., 1998;
Wallace et al., 1999; Armstrong and Noguchi, 2004; Cadet et al.,
2011; North et al., 2013) and DAT levels (Hastrup et al., 2003;
Baucum et al., 2004). Correlating these neurochemical effects
of MA exposure to cognitive function has identified differences
between bolus, binge, and escalating doses of MA exposure
(Tulloch et al., 2011b). Several studies show that multiple doses
of MA reduced dopamine levels within the striatum but did not
result in cognitive impairment (Bisagno et al., 2002; Marshall
et al., 2007; Belcher et al., 2008; North et al., 2013) while single
day regimens produced cognitive deficits (Friedman et al., 1998;
Chapman et al., 2001; Belcher et al., 2005; Marshall et al., 2007;
Belcher et al., 2008). These reports suggest that multiple dosages
across days may provide some neuroprotection and/or delay the
long-term damage (Segal et al., 2003; O’Neil et al., 2006).

We focus our experiments on identifying the progressive
effects of MA exposure using weekly spatial working memory
assessments to characterize short- and long-term consequences of
MA bolus dosages on cognitive function. Our behavioral results
show that adolescent mice treated with a bolus dose of MA
demonstrate cognitive enhancing effects on a spatial working
memory test 1 week after treatment. In the subsequent weeks,
these mice were further tested for a spatial cognitive flexibil-
ity task in which MA-exposed mice show significantly more
working memory errors but not reference memory errors com-
pared to controls. Following all the behavioral assessments we
focus our molecular analyses on protein expression patterns
within the hippocampus and striatum across three distinct cat-
egories that are affected by MA exposure: (1) dopamine recep-
tor 1 (D1), dopamine transporter (DAT) and the precursor
to dopamine, tyrosine hydroxylase (TH); (2) glutamate recep-
tors: L-Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate
(AMPA) GluN2B subunit and N-methyl-D-aspartate (NMDA)
GluA2 subunit; (3) atypical protein kinase C zeta (PKCζ) and
protein kinase M zeta (PKMζ). We focus on these molecular
markers since MA selectively damages DA terminals and is known
to produce excitotoxic effects involving both AMPA and NMDA
receptors (Bowers et al., 2010; Kalivas and Volkow, 2011). PKMζ

is an atypical kinase that is important for spatial learning and
long-term memory (Serrano et al., 2008; Sebastian et al., 2013b),
and increases expression concomitant with improved memory
(Sebastian et al., 2013a). Our results identify that 6 weeks after
MA abstinence, there are significant protein effects within the
hippocampus and striatum, which identify dysregulated expres-
sion of dopamine, glutamate, and PKMζ. These data could iden-
tify the long-term damage associated with limited MA exposure
across multiple brain regions.

METHODS
SUBJECTS
Male C57BL/6 mice from Taconic Farms (Germantown, NY) were
purchased at 7 weeks of age. Subjects were randomly assigned to
2 treatment conditions: MA (n = 4) and Saline (n = 4). We have
used similar sample sizes to evaluate behavioral performance and

protein expression as previously reported (Tulloch et al., 2011a;
Sebastian et al., 2013a,b). Mice were housed at the Hunter College
animal facility for 1 week prior to beginning any behavioral
assessments with food and water ad libitum prior to behavioral
shaping. Mice were housed individually and kept on a 12/12 h
light/dark cycle. All housing conditions conform to the Hunter
College guidelines outlined by the Institutional Animal Care and
Use Committee (IACUC).

RADIAL 8-arm MAZE SHAPING
The radial 8-arm maze (RAM) was used to assess both work-
ing memory (experiment 1), and reference and working memory
(experiment 2). The RAM consists of a center platform (15.24 cm
diameter) with 8 equivalently sized arms radiating outward. Each
arm was 38 cm in length, 6.35 cm wide with a submerged food
cup (2.0 cm diameter) at the end of the arm. Maypo (Homestat
Farm, Dublin, OH), a sweetened oatmeal, was mixed in water to
make a wet mash that was used as a food reward (0.02 g portions),
as previously described for rats (Serrano et al., 2008; Sebastian
et al., 2013c). Prior to working memory assessments, all animals
were shaped on the RAM. Mice were food restricted to 85% of
free feeding weight before being placed on the RAM for 10 min
to acclimate to the maze and room cues. One hour later, all mice
were given a second trial with sweetened oatmeal in the food cups.
After 3 days of shaping (2 trials per day), mice were eating the food
rewards and finding all 8 baits within a 15 min maximum latency.

WORKING MEMORY ASSESSMENT
Baseline working memory assessment (WMA) occurred over 6
days in which individual mice were tested every other day (3 tri-
als/day) with a 1 h home cage period between trials. Each trial
started with all food cups baited. Prior to beginning each trial,
mice were confined for 30 s to the center platform with a plas-
tic cylinder. The sequence of arms entered to retrieve the food
rewards was recorded. To prevent a non-hippocampal strategy,
mice were allowed to collect baits from up to 3 sequential arms
before the experimenter interrupted the chaining strategy. Errors
were recorded as re-entries into arms where the food reward had
been collected. Maximum latency was set at 15 min. After col-
lecting baseline data on working memory assessment, all mice
were injected with either MA (30 mg/kg) or saline, delivered
intraperitoneally (IP). Weekly working memory assessments were
conducted on all mice for 5 weeks following MA treatment. These
weekly assessments required that mice only be food restricted the
day before testing. On the remaining days all mice were given food
chow ad libitum.

REFERENCE AND WORKING MEMORY ASSESSMENT/COGNITIVE
FLEXIBILITY
After 5 weeks of weekly working memory assessments, all mice
were then trained on a reference and working memory (RWMA)
version of the RAM (Serrano et al., 2008; Sebastian et al., 2013a).
This paradigm had 4 baited and 4 unbaited arms in a pattern that
was specific to each animal that remained constant throughout
the experiment. Mice were given 6 consecutive trials per day for 10
days (60 trials total). Between trials mice were confined to the cen-
ter platform while the arms were re-baited and the maze cleaned.
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The sequence of arm entries was recorded. A reference memory
error reflected an entry into an arm that was never baited, while
a working memory errors reflected re-entries into an arm where
the bait had already been collected. Mice were only allowed to
enter up to 3 sequential arms to prevent the non-hippocampal,
chaining strategy. This version of the RAM required mice to
relearn room cues associated with the baited and unbaited arm
sequence. The training room and room cues were identical to that
used for the WMA. One hour after their 60th trial, brains were
microdissected, snap frozen and stored at −80◦C.

METHAMPHETAMINE TREATMENT
All mice received a 200 μl injection of either saline or 30 mg/kg
(+)—methamphetamine hydrochloride (Sigma Aldrich) deliv-
ered IP. Injections of MA or saline took place twice, delivered 1
week apart.

TISSUE FRACTIONS
Tissues from hippocampus and dorsal striatum were prepared
into cytosolic and synaptic fractions as previously reported
(Sebastian et al., 2013a). Briefly, tissues were thawed from
frozen and homogenized in a TEE (Tris 50 mM; EDTA 1 mM;
EGTA 1 mM) buffer containing a SigmaFast, protease inhibitor
cocktail (Sigma Aldrich) diluted to contain AEBSF (2 mM),
Phosphoramidon (1 μM), Bestatin (130 μM), E-64 (14 μM),
Leupeptin (1 μM), Aprotinin (0.2 μM), and Pepstatin A (10 μM).
Tissues were homogenized in 200 μl of the TEE-homogenization
buffer using 20 pumps with a motorized pestle (Sacktor et al.,
1993). Homogenates were transferred to Eppendorf tubes and
centrifuged at 3000 g (5 min at 4◦C), to remove the nuclear pel-
let. The resulting supernatant was centrifuged at 100,000 g for
30 min. After ultracentrifugation, the supernatant was collected
and stored as the cytosolic fraction. The remaining pellet was
resuspended in 100 μl of homogenizing TEE buffer containing
0.001% Triton X-100, incubated on ice for 1 h and then cen-
trifuged at 100,000 g for 1 h at 4◦C. The resulting pellet was
resuspended in 100 μl of TEE buffer and stored as the synaptic
fraction (Noguès et al., 1994). The Pierce bicinchoninic acid assay
(BCA) (Thermo Scientific, Rockford, IL) was used to determine
protein concentration for each sample. Samples were reduced
with 4× Laemmli sample buffer equivalent to 25% of the total
volume of the sample and then boiled and stored frozen at −80◦C
(Sacktor et al., 1993).

IMMUNOBLOTS
Samples (25 μg) were loaded onto a Tris/Gly 8% gel to resolve
GAPDH (37 kDa), GluA2 (100 kDa), D1 (48 kDa), and GluN2B
(166 kDa), or a 4–20% gradient gel to resolve GAPDH (37 kDa),
PKMζ (55 kDa)/PKCζ (70 kDa), TH (58 kDa), and DAT (50 kDa).
Gels were transferred to nitrocellulose membranes and were then
incubated in blocking solution containing 4% bovine serum
albumin (BSA) in Tris Buffered Saline with Tween-20 (TBST;
0.1% Tween-20 in TBS) for 1 h at room temperature. Samples
were incubated with the following primary antibodies overnight:
GluN2B (1:1000; AbCam, Cambridge, MA), D1 (1:500; AbCam,
Cambridge, MA) and with the following primary antibodies
for 3 h at room temperature: PKMζ/PCKζ (1:5000; Santa Cruz

Biotechnology, Santa Cruz, CA); TH (1:2000; EMD Millipore,
Billerica, MA); DAT (1:1000, Santa Cruz Biotechnology; Santa
Cruz, CA); GluA2 (1:1000; EMD Millipore, Billerica, MA);
and GAPDH: (1:2000, EMD Millipore; Billerica, MA). Blots
were rinsed and probed with alkaline-phosphatase coupled sec-
ondary antibody and developed with BCIP/NBT substrate (KPL,
Gaithersburg, MD). Membranes were scanned for quantifica-
tion with NIH Image J (Rasband, 2014). Refer to Supplementary
Figure 1 for representative immunoblots for target proteins with
corresponding molecular weight markers.

STATISTICS
For behavioral analyses, a repeated measure, Two-Way ANOVA
was used (Prism GraphPad 5.0b Statistical Package, La Jolla,
California). Post-hoc analyses used a Bonferroni-corrected t-test.
Western Blot analyses between MA and control treatments used
independent samples t-tests.

RESULTS
For experiment 1, groups of mice were injected with MA
(30 mg/kg; 200 μl) or saline. One week post-injection mice were
assessed for a working memory version of the RAM. Twenty-
four hours before the second working memory assessment, mice
were injected again with MA (30 mg/kg; 200 μl) or saline. For
the remaining 3 weeks, mice were assessed weekly for working
memory performance, as illustrated in the timeline (Figure 1A).
We evaluate the % correct score for each trial, which is calcu-
lated as the number of total arm entries required to collect all 8
food rewards divided by the number of food rewards retrieved.
We show the % correct scores in two separate analyses to illus-
trate the differences in number of errors committed while finding
the first 4 food rewards (Figure 1B) when the working memory
load is low, compared to the last 4 food rewards (Figure 1C)
when the working memory load is high. The results shown
in Figure 1C illustrate an overall significant effect of training
[F(7, 49) = 3.67, n = 4/group, p = 0.003], an overall significant
improvement from MA [F(1, 49) = 5.85, n = 4/group, p = 0.04]
and a significant post-hoc effect at 1 week (Bonferroni corrected
t-test = 3.23, p < 0.05). In collecting baits 1–4, mice from both
treatment conditions perform equivalently (Figure 1B). Latency
to complete the task shows an overall significant improvement
over testing weeks [F(7, 49) = 4.2, n = 4/group, p = 0.0001], no
significant effects of drug treatment and no significant post-hoc
comparisons (Figure 1D).

For experiment 2, all mice were re-trained on the RAM using a
new configuration of four baited and four unbaited arms, which is
different from having all arms baited as described in experiment
1. Mice were given 6 consecutive trials per day for 10 days. The
results in Figure 2A show an overall significant improvement in
% correct scores over training days [F(9, 54) = 9.3, n = 4/group,
p < 0.01]. There were no significant effects of drug treatment and
no significant post-hoc analyses. Analyses for working memory
errors (Figure 2B) show a significant overall reduction in errors
over training days [F(9, 54) = 3.0, n = 4/group, p = 0.01] and a
significant increase in working memory errors in MA treated mice
[F(1, 54) = 6.0, n = 4/group, p < 0.05]. Analysis of reference
memory errors (Figure 2C) show a significant overall reduction
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FIGURE 1 | MA enhances working memory performance acutely.

(A) Timeline for experiments 1 and 2 are illustrated across days. (B) Percent
correct scores for retrieving the baits 1–4 were not significantly different
between conditions and did not significantly change over time. (C) Weekly
working memory assessments (WMA) show no significant changes in saline

controls over the 5 weeks. MA injected mice show significant working
memory improvements 1 week after the first injection (∗p < 0.05). Over the
remaining weeks, the elevated performance in MA treated mice returns to
baseline. (D) Latency to complete the task shows a significant effect of time
but no significant effects of drug or post-hoc analyses.

in errors over training days [F(9, 54) = 12.92, n = 4/group, p <

0.01] and no significant drug treatment effects. Analyses of
latency to complete the trial shows an overall significant reduc-
tion in latency over training days [F(9, 54) = 14.05, n = 4/group,
p < 0.01] and no other significant differences (Figure 2D).

Immediately following the 60th RAM trial, all brains were
microdissected for hippocampus and dorsal striatum. Figure 3
shows the protein expression differences between MA and saline
treatments for D1, TH, and DAT. The results in the hippocampus
show that D1 decreased in the hippocampus after MA exposure
[t(8) = 3.47, p < 0.01] without significant differences between
groups in the dorsal striatum (Figures 3A,D). TH expression
shows significant increases in the dorsal striatum after MA [t(6) =
3.71, p < 0.001], without significant differences between treat-
ment groups in the hippocampus (Figures 3B,E). Compared to
saline controls the expression of DAT increased significantly after
MA in both the hippocampus [t(7) = 2.17, p < 0.05] and dorsal
striatum [t(6) = 3.31, p < 0.01] (Figures 3C,F).

The protein expression for the NMDA receptor subunit
GluN2B, and the AMPA receptor subunit, GluA2, after saline
or MA treatments are shown in Figure 4. The expression of
GluN2B significantly increased within the hippocampus [t(6) =
2.51, p < 0.05] and significantly decreased within the dorsal stria-
tum [t(6) = 3.66, p < 0.01] after MA treatment compared to
controls. In the hippocampus GluA2 expression was not signif-
icantly different between conditions, while in the dorsal stria-
tum MA treatment significantly decreased GluA2 [t(6) = 2.08,
p < 0.05].

Protein expression for PKMζ and PKCζ within the hippocam-
pus and dorsal striatum after saline or MA treatments is shown in
Figure 5. The results show a significant decrease in hippocampal

PKMζ [t(6) = 2.39, p < 0.05] expression with a concomitant
increase in the dorsal striatum compared to control treatment
[t(6) = 2.58, p < 0.05] (Figures 5A,C). PKCζ did not change sig-
nificantly between conditions in the hippocampus (Figure 5B)
but significantly increased after MA treatment in the dorsal
striatum [t(6) = 5.53, p < 0.01].

DISCUSSION
MEMORY ENHANCING EFFECTS OF MA
Behaviorally we show that MA improves working memory perfor-
mance 1 week after the first MA bolus injection (30 mg/kg). This
effect is consistent with clinical studies identifying short-term
cognitive enhancing effects for learning and memory, visuospatial
perception, and response speed after limited and low-dose stim-
ulant exposure (Johnson et al., 2000; Silber et al., 2006; Mahoney
et al., 2010; Marrone et al., 2010; Hart et al., 2011; Kirkpatrick
et al., 2011). Conversely, chronic MA users have cognitive deficits
in sustained attention, episodic memory, information processing,
and impulse control (Nordahl et al., 2003; Monterosso et al., 2005;
Simon et al., 2010; Morgan et al., 2012). Many of these results are
also shown in rodent studies (Mahoney et al., 2010; Hart et al.,
2011). We also show that 7 weeks after MA exposure there are sig-
nificant cognitive deficits on the reference and working memory
version of the 8-arm radial maze. In this assessment the RAM had
only 4 baited arms, which is different from the initial configura-
tion of the maze where all arms were baited. This required mice to
relearn the RAM during the 10 consecutive days of training with 6
daily trials, which tests cognitive flexibility. The behavioral results
show that MA-treated mice produce significantly more working
memory errors during training days. This is consistent with the
behavioral effects of MA that have been reported in both humans
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FIGURE 2 | MA increases working memory errors for cognitive flexibility

task. (A) Percent correct scores for both treatment conditions show an
overall significant improvement over training days (#p < 0.01). There were no
other significant effects. (B) Working memory errors show a significant
overall reduction in errors over training days (#p = 0.01) and a significant

increase in working memory errors in MA treated mice compared to controls
(∧p < 0.05). (C) Reference memory errors show a significant overall effect of
training (#p < 0.01) and no other significant differences. (D) Latency to
complete the trial shows an overall significant reduction in latency over
training days (#p < 0.01) and no other significant differences.

(Meredith et al., 2005) and other animals (Simões et al., 2007;
González et al., 2014), and particularly in MA-treated animals
learning a cognitive task with changes in reward contingencies
(Stolyarova et al., 2014) and reversal learning (Kosheleff et al.,
2012).

SPECIFICITY OF DOPAMINE TOXICITY BY MA
Rapid effects of neurotoxic dosages of MA are associated with
decreases in DA terminals (O’Callaghan and Miller, 1994;
Sonsalla et al., 1996; Fumagalli et al., 1998; Wallace et al., 1999),
the DA precursor, TH, and the reuptake transporter mechanism,
DAT (Cadet and Krasnova, 2009). Because of these rapid effects
of MA it is expected that there may be compensatory mechanisms
that would change the levels of either the presynaptic mechanisms
involved in dopamine release and/or in postsynaptic dopamine
receptor dynamics. We find that several weeks after MA treat-
ment, both the hippocampus and dorsal striatum show effects
of compensation involving DAT, TH, and D1 expression. It is
important to note that there were no deaths or seizures associ-
ated with either MA injections and no fever was mounted by any
of these animals. The lack of these behavioral indices after MA
exposure is associated with producing lower levels of Fluoro-Jade

positive cells in rats that did not show evidence of blood-brain
barrier disruption concomitant with hyperthermia and seizures
(Bowyer and Ali, 2006). However, due to the longer time points
we examined it would presumably allow deficits to develop over
time.

EFFECTS OF MA-INDUCED DOPAMINE REDUCTION IN HIPPOCAMPUS
AND DOPAMINE INCREASE IN STRIATUM
Within the hippocampus, the D1 receptor is downregulated com-
pared to controls with a concomitant increase in cytosolic DAT
expression. This could reflect enhanced endocytosis or faster DAT
kinetics resulting in lower membrane expression and dampen-
ing the signaling of dopamine consistent with other reports (Silva
et al., 2014). Faster DAT kinetics could also mediate the down-
regulation of D1 by increasing turnover and uptake of dopamine
by the transporter. It is known that excessive levels of dopamine
or moderate levels can impair cognitive performance (Arnsten,
1998). Moreover, downregulation of D1 significantly impairs
spatial learning (Furini et al., 2014). D1-deficient mice show
impairment in associative learning and synaptic plasticity in the
CA3-CA1 synapses (Ortiz et al., 2010), and impairments in CA1
long term potentiation (LTP; Ghanbarian and Motamedi, 2013).
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FIGURE 3 | Expression of dopamine markers. D1, TH, and DAT in the
hippocampus (A–C) and dorsal striatum (D–F) 7 weeks after the first injection
of MA or saline. D1 in the hippocampus significantly decreased compared to
controls (∗∗p < 0.01), without changing expression in the dorsal striatum

(A,D). Compared to controls, TH levels significantly increased in the dorsal
striatum (∗∗p < 0.01) without changing expression levels in the hippocampus
(E,B). DAT increased significantly in both the hippocampus and dorsal
striatum (C,F; ∗p < 0.05; ∗∗p < 0.01).

Additionally, downregulation of DAT disrupts spatial learning
and retention (Del’Guidice et al., 2013) as well as showing deficits
in cognitive flexibility (Morice et al., 2007). We speculate that the
downregulation of D1 and the upregulation of DAT endocyto-
sis occur as a consequence of MA and is a contributing factor in
spatial working memory deficits.

In the dorsal striatum there were no changes in D1 expres-
sion compared to controls, rather, there was a significant increase
in TH levels and DAT endocytosis. This suggests that in the
striatum, MA is upregulating presynaptic mechanisms involving
the synthesis and degradation of dopamine. These presynaptic
changes are potential compensatory mechanisms to the rapid
neurotoxic effects of MA. While MA is known to damage DA
terminals without affecting postsynaptic receptors (Cadet et al.,
2003; Krasnova and Cadet, 2009; Sulzer, 2011), many of these DA

terminals partially recover after MA (Ares-Santos et al., 2014).
The significant increase in TH and the increased endocytosis of
DAT suggests that MA induces DAT hyperfunction in the stria-
tum. DAT hyperfunction has been associated with a model of
attention deficit hyperactivity disorder (ADHD) in rats that also
show a working memory deficit (Ruocco et al., 2014). Together
these data indicate that DAT, TH, and D1 dysregulation within
the hippocampus and dorsal striatum could collectively play a
role in the working memory deficit observed after weeks of MA
abstinence.

EFFECTS OF MA-INDUCED GluN2B INCREASE IN HIPPOCAMPUS AND
DECREASE OF GluN2B AND GluA2 IN STRIATUM
Our results show that MA treatment significantly increased
GluN2B subunit expression in the hippocampus with a
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FIGURE 4 | Expression of glutamate receptor subunits. GluN2B and
GluA2 in the hippocampus (A,B) and dorsal striatum (C,D) 7 weeks after
the first injection of MA or saline. The hippocampus shows significant
increases in GluN2B with MA treatment (∗p < 0.05) with a concomitant
decrease in the dorsal striatum (∗∗p < 0.01; A,C). GluA2 levels significantly
decreased in the dorsal striatum after MA treatment (∗p < 0.05) but did not
significantly change between conditions in the hippocampus (D,B).

concomitant decrease in the striatum. These data are consistent
with reports showing differential effects on glutamatergic excito-
toxicity between the hippocampus and striatum (Yamamoto et al.,
1999). Changes in NMDA receptor expression is expected since
these receptor subunits can regulate excitotoxic effects (Lynch
and Guttmann, 2002; Silva, 2003) and are known to change
in expression after MA exposure (Bowers et al., 2010; Kalivas
and Volkow, 2011). The GluN2B subunits modulate the electro-
physiological properties of the NMDA channels involving Ca2+
permeability (Dingledine et al., 1999). This receptor subunit
forms heterodimers with GluN1 and GluN2B and is impor-
tant for long-term depression (Liu et al., 2004). However, other
reports show that the GluN2B subunit is critical for spatial learn-
ing and LTP (Clayton et al., 2002). Overexpresison of GluN2B
improved spatial learning and enhanced LTP (Tang et al., 1999),
and working memory (Wang et al., 2008, 2013). This suggests that
MA may be interrupting the hippocampal plasticity by increas-
ing the Ca2+ influx through GluN2B NMDA receptor, leading
to excitotoxicity and negatively affecting working memory per-
formance (Nabekura et al., 2002). In our study, MA treatment
occurred during juvenile development. During juvenile develop-
ment the availability of GluN2B is particularly important in the
prefrontal cortex in the expression of LTP (Flores-Barrera et al.,

FIGURE 5 | Expression of PKMζ/PKCζ. PKMζ and PKCζ in the
hippocampus (A,B) and dorsal striatum (C,D) 7 weeks after the first
injection of MA or saline. The hippocampus shows significant decrease in
PKMζ with MA treatment (∗p < 0.05) with a concomitant increase in the
dorsal striatum compared to controls (∗p < 0.05; A,C). PKCζ levels
significantly increased in the dorsal striatum after MA treatment
(∗∗p < 0.01) but did not significantly change between conditions in the
hippocampus (D,B).

2013). These reports suggest that the decrease in GluN2B that
we observe within the striatum may be compromising the devel-
opmental switch from juvenile NMDA function to that of an
adult that involves longer lasting NMDA responses and increased
GluN2B subunit expression (Flores-Barrera et al., 2013). While
our tissues were from the dorsal striatum and not specifi-
cally frontal cortex, these reports may still be relevant to our
findings.

Our results also identify a significant decrease in AMPA GluA2
subunits within the striatum without significant changes in the
hippocampus. Reports show that MA exposure involving escalat-
ing doses for 1 week increases GluA2 protein expression (Simões
et al., 2008), while MA exposure following 2 weeks of escalating
doses decreases GluA2 involving epigenetic factors (Jayanthi et al.,
2013). The latter report is consistent with the effects we show here.
These reports suggest that our acute MA exposure may produce
excitotoxic damage that continues to develop over several weeks
that result in similar effects on AMPA receptor changes that are
associated with 2 weeks of MA exposure (Jayanthi et al., 2013).
It remains to be seen whether the same epigenetic factors are
involved in the downregulation of the GluA2 subunit with acute
MA exposure followed by long-term abstinence as we model here.

Frontiers in Behavioral Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 438 | 7

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Braren et al. Methamphetamine-induced working memory deficits

EFFECTS OF MA-INDUCED DYSREGULATION OF PKMζ

We find that MA has significant effects on cognitive flexibility
involving PKMζ, an atypical kinase that is important for long-
term memory maintenance (Pastalkova et al., 2006; Shema et al.,
2007; Serrano et al., 2008; Sebastian et al., 2013a,b). The signif-
icant decrease in PKMζ within the hippocampus of MA mice
compared to controls suggests that MA may be inhibiting PKMζ

directly or indirectly during training. It has been shown that the
expression of PKMζ within the hippocampus is correlated with
memory performance on the RAM (Sebastian et al., 2013a). This
is consistent with our results showing reduced PKMζ in MA-
treated mice that also show increased working memory errors.
In the hippocampus, PKCζ did not change between conditions.
The effects of MA in the striatum upregulate both PKMζ and
PKCζ which we find may be coupled to both D1 and GluN2B
expression.

THE ROLE OF PKMζ/PKCζ IN THE D1/GluN2B COMPLEX
D1 receptors and NMDA receptors co-immunoprecipitate
(Fiorentini et al., 2003) and are co-localized in several brain
structures, including the striatum and hippocampus (Gracy and
Pickel, 1996; Cepeda and Levine, 1998; Sesack et al., 2003). The
D1 receptor stimulates protein kinase A (PKA) and enhances
NMDA GluN2B currents via protein kinase C (PKC)-dependent
mechanisms (Chen et al., 2004; Liu et al., 2007). Moreover, this
effect is reversed by chelerythrine (Gu et al., 2007) at a dose
that selectively inhibits PKMζ (Serrano et al., 2005). This sug-
gests that PKMζ/PKCζ may be involved in the phosphorylation
of D1/GluN2B complexes. In the striatum we show a decrease
in GluN2B with MA treatment suggesting that the ratio between
available GluN2B and D1 receptors is off balance resulting in
reduced receptor function (Gu et al., 2007) and potentially con-
tributing to the deficits in learning we report. Additionally, we
find that within the dorsal striatum, levels of PKMζ and PKCζ

are both significantly elevated with MA treatment. It is known
that increased levels of these kinases can decrease DAT function
(Daniels and Amara, 1999; Melikian and Buckley, 1999) by accel-
erating internalization (Holton et al., 2005; Sorkina et al., 2005),
reducing recycling (Loder and Melikian, 2003), and/or increasing
degradation (Miranda et al., 2005) which could create another
source of dysregulated dopamine function contributing to the
behavioral changes we identify.

CONCLUSION AND CLINICAL IMPLICATIONS
Acute MA administration induced a cognitive enhancing effect
on working memory performance at 1 week post MA admin-
istration. Over the subsequent weeks, this memory enhancing
effect diminished and a working memory deficit manifested dur-
ing a cognitive flexibility test. The protein analysis of tissues from
both the hippocampus and striatum show divergent effects of MA
treatment on all receptors tested: D1, GluN2B subunit and GluA2
subunit, and divergent effects with PKMζ, PKCζ, and TH. Only
the DAT cytosolic expression was consistent between both brain
regions. These data identify that short-term acute bolus dose of
MA followed by long-term abstinence can continue to manifest
deficits in both dopaminergic and glutamatergic signaling involv-
ing PKMζ and PKCζ. Dysregulating dopaminergic signaling with

MA could contribute to dopamine-related pathologies. This is
consistent with the findings that MA addicts with low levels of
dopamine have higher incidents of depression (Zhang et al., 2014)
and cognitive deficits (Obermeit et al., 2013), both of which are
comorbid (Casaletto et al., 2014). These lower levels of DA signal-
ing also create significant risk factors for developing Parkinson’s
disease (Callaghan et al., 2012).
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