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Abstract

Background: The last decade has seen a major increase in the availability of genomic
data. This includes expert-curated databases that describe the biological activity of
genes, as well as high-throughput assays that measure gene expression in bulk tissue
and single cells. Integrating these heterogeneous data sources can generate new
hypotheses about biological systems. Our primary objective is to combine
population-level drug-response data with patient-level single-cell expression data to
predict how any gene will respond to any drug for any patient.

Methods: We take 2 approaches to benchmarking a “dual-channel” random walk with
restart (RWR) for data integration. First, we evaluate how well RWR can predict known
gene functions from single-cell gene co-expression networks. Second, we evaluate
how well RWR can predict known drug responses from individual cell networks. We
then present two exploratory applications. In the first application, we combine the
Gene Ontology database with glioblastoma single cells from 5 individual patients to
identify genes whose functions differ between cancers. In the second application, we
combine the LINCS drug-response database with the same glioblastoma data to
identify genes that may exhibit patient-specific drug responses.

Conclusions: Our manuscript introduces two innovations to the integration of
heterogeneous biological data. First, we use a “dual-channel” method to predict
up-regulation and down-regulation separately. Second, we use individualized
single-cell gene co-expression networks to make personalized predictions. These
innovations let us predict gene function and drug response for individual patients.
Taken together, our work shows promise that single-cell co-expression data could be
combined in heterogeneous information networks to facilitate precision medicine.
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Introduction

Advances in high-throughput RNA-sequencing (RNA-Seq) have made it possible to
quantify RNA presence in any biological sample [1], producing a gene expression sig-
nature that can serve as a biomarker for disease prediction [2—4] or surveillance [5, 6].
Over the last few years, single-cell RNA-Seq has risen in popularity [7]. Compared with
conventional bulk RNA-Seq, which measures the average gene expression for an indivi-
dual sample, single-cell RNA-Seq (scRNA-Seq) measures gene expression for an individ-
ual cell. This new mode of data makes it possible to explore tissue heterogeneity, notably
tumor heterogeneity [8], by producing multiple data points per individual (i.e., one for
each cell). Since genes are often understood to work in cooperative modules, the analysis
of gene co-expression networks is commonplace. For bulk RNA-Seq, a gene co-expression
network describes how genes co-occur for a population of individual samples. For scRNA-
Seq, the network describes gene co-expression for a population of single cells. When these
cells belong to an individual patient, the scRNA-Seq network is a kind of personalized
network that one could use for precision medicine tasks.

Gene co-expression networks can be integrated with outside information to combine
general knowledge (in the form of a relational database like Gene Ontology [9]) with
specific knowledge about a sample (in the form of a co-expression network). For exam-
ple, weighted gene co-expression network analysis is a popular method for functionally
characterizing parts of the network, or the network as a whole [10, 11]. Although these
coarse descriptions are useful, one could also combine general- and specific knowledge to
make finer-level predictions about the behavior of individual genes. By representing each
modality as a graph, multiple data streams can be combined into a heterogeneous infor-
mation network, and then analyzed under a unified framework based on the principle of
“guilt-by-association” [12] (e.g., if “a” is connected to “b” and “b” is connected to “c’, then
“a” is probably connected to “c). When the general knowledge is gene-annotation associ-
ations, we can (a) impute the function for genes with no known role or (b) select the most
important known function. When the general knowledge is gene-drug response, we can
predict the response of any gene to any drug. Since these inferences are tailored to the co-
expression network used, they can be made personalized by using the single-cell network
of an individual patient.

Random walk (RW) is a popular method that offers a general solution to the analysis of
heterogeneous information networks [12, 13]. There are many variants to RW, including
random walk with restart (RWR), where each step has a probability of restarting from the
starting node (or a neighbor of the starting node) [14]. RW and RWR are often used in
recommendation systems [15—17], but can also perform other machine learning tasks like
image segmentation [18, 19], image captioning [20], or community detection [21, 22]. One
advantage of RW is that it can handle missing data [23], making it a good choice for pro-
cessing sparse gene annotation databases. RW and RWR have both found use in biology to
find associations between genes and another data modality. For example, the “InfAcrOnt”
method used an RW-based method to infer similarities between ontology terms by inte-
grating annotations with a gene-gene interaction network [24]. Similarly, the “RWLPAP”
method used RW to find IncRNA-protein associations [25], while others have used RW
to predict gene-disease associations [26]. Meanwhile, RWR has been used to identify
epigenetic factors within the genome [27], key genes involved in colorectal cancer [28],
novel microRNA-disease associations [29], infection-related genes [30], disease-related
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genes [31], and functional similarities between genes [32]. Bi-random walk, another ran-
dom walk variant, has been used to rank disease genes from a protein-protein interaction
network [33].

In contrast to the previous works, which make use of population-level graphs, we apply
RWR to patient-level graphs, allowing us to make predictions about gene behavior that
are personalized to each patient. We take 2 approaches to benchmarking “dual-channel”
RWR for data integration. First, we evaluate how well RWR can predict known gene
functions from single-cell gene co-expression networks. Second, we evaluate how well
RWR can predict known drug responses from individual cell networks. We then present
two exploratory applications. In the first application, we combine the Gene Ontology
database with glioblastoma single cells from 5 individual patients to identify genes whose
functions differ between cancers. In the second application, we combine the LINCS drug-
response database with the same glioblastoma data to identify genes that may exhibit
patient-specific drug responses. Taken together, our work shows promise that single-
cell co-expression data could be combined in heterogeneous information networks to

facilitate precision medicine.

Methods

Overview

In the medical domain, gene expression can be used as a biomarker to measure the func-
tional state of a cell. One way in which drugs mediate their therapeutic or toxic effects is by
altering gene expression. However, the assays needed to test how gene expression changes
in response to a drug can be expensive and time consuming. Imputation has the poten-
tial to accelerate research by “recommending” novel gene-drug responses. Random walk
methods can combine sparse heterogeneous graphs based on the principle of “guilt-by-
association” [12]. Figure 1 provides an abstracted schematic of the proposed framework.
Figure 2 provides a visualization of the input and output for the random walk with restart
(RWR) method. Figure 3 presents a bird’s-eye view of the data processing, validation, and
application steps performed in this study.

Data acquisition
The gene expression data come from two primary sources.

First, we acquired single-cell RNA-Seq (scRNA-Seq) expression data for 5 glioblastoma
multiforme tumors [34] using the recount2 package for the R programming language [35]

General Gene Activity Knowledge

- Relates genes to biological activity

- Curated from literature or experiments
- Bipartite graph

\ Random Walk with Restart AM—Q—S ecific Gene ACUV? KnOWIGd_ E
- Relates genes to biological activity
/ (using dual channels) - Personalized to individual patient
- Fully-connected graph

Specific Gene Regulation Knowledge
- Relates genes to genes

- Generated for an individual patient

- Fully-connected graph

Fig. 1 An abstracted schematic of the proposed framework. Expert-curated databases like Gene Ontology
(GO) and the Library of Integrated Network-Based Cellular Signatures (LINCS) can provide some general
knowledge about biological activity. High-throughput single-cell sequencing assays can provide specific
knowledge for an individual patient. Random walk with restart (RWR) can combine these heterogeneous
data sources to provide specific knowledge about biological activity for an individual patient. This framework
allows us to predict how any gene will respond to any drug for any patient
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Fig. 2 Our goal is to combine a generic gene-based bipartite graph with the auxiliary knowledge of a
fully-connected personalized graph. RWR will impute the missing links (and update the existing links) by
“walking through” the auxiliary information. The left panel shows a (sparsely-connected) gene-drug graph
combined with a (fully-connected) gene-gene graph, where d; represents the drugs and g; represents the
genes. The example gene-drug network has missing links. The right panel shows the output of RWR: a
complete network of newly predicted gene-drug interactions. Here, the missing link between any drug d;
and any gene g; is replaced with a new link. The method works based on the principle of
"guilt-by-association”: the value of the new d; — g; links will be large if g; is strongly connected to genes that
are also connected to d;. When the gene-drug graph is fully-connected, RWR will instead “update” the
importance of each connection. Note that, with respect to this figure, the gene-annotation bipartite graph is
conceptually equivalent to the gene-drug bipartite graph, except that many edges will have zero weight

(ID: SRP042161). Since scRNA-Seq data are incredibly sparse, and since the random walk
with restart algorithm is computationally expensive, we elected to remove genes that had
zero values in more than 25% of cells. After pre-processing, our data contain 3022 gene
features and 676 single cells. These cells belong to 5 patients, with 192, 97, 97, 193, and 97
cells per patient, respectively. Finally, we randomly split the cells into 5-folds per patient
so that we could estimate the variability of our downstream analyses.

Second, we acquired gene expression data from the Library of Integrated Network-
Based Cellular Signatures (LINCS) [36] using the Gene Expression Omnibus (GEO) [37]
(ID: GSE70138). We split these LINCS data into smaller data sets based on the cell line ID
under study. We a priori included the A375 (skin; malignant melanoma), HA1E (kidney;
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(Figure 5) Random Walk Integration Random Walk Integration
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(for each cell-line)
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Predict Drug-Gene

response for an individual patient|

Update importance of Gene-GO| | (Figure 78B)

connection for each patient

(Figures 6 & 7A) Calculate accuracy of the
predicted Drug-Gene response|

(for the hold-out cell-line)

(Table 1)

Fig. 3 A bird's-eye view of the data collection, integration, and analysis steps performed in this study. We use
RWR to combine general knowledge with some specific knowledge about a sample. We separately use gene
function and drug-response data as the source of general knowledge. We use co-expression networks as the
source of specific knowledge. By combining the drug-response data with an individualized single-cell
network, we can make predictions about gene behavior that are personalized to each patient. Concept
nodes are colored by activity type: data processing (gray), validation of gene-annotation prediction (green),
validation of gene-drug prediction (yellow), and exploratory application (orange)
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embryonic), HT29 (colon; adenocarcinoma), MCF7 (breast; adenocarcinoma), and PC3
(prostate; adenocarcinoma) cell lines because they were treated with the largest number
of drugs.

Defining the gene co-expression network graphs

Although correlation is a popular choice for measuring gene co-expression, correlations
can yield spurious results for next-generation sequencing data [38]. Instead, we calculate
the proportionality between genes using the ¢ metric from the propr package for the R
programming language [39]. Although this does not offer a perfect solution [40], study-
ing gene-gene proportionality has a strong theoretical justification [38] and empirically
outperforms other metrics of association for scRNA-Seq [41].

The proportionality metric describes the dissimilarity between any two genes, and
ranges from [ 0, 00), where 0 indicates a perfect association. We converted this to a sim-
ilarity measure ¢; that ranges from [0, 1] by max-scaling ¢; = (max(¢s) — ¢5)/max(¢s),
such that ¢; = 1 when ¢ = 0. A gene-gene matrix of ¢; scores is analogous to a gene-
gene matrix of correlation coefficients, and constitutes our gene co-expression network.
We calculated the ¢; co-expression network for the entire sScRNA-Seq data set (1 net-
work), for 5 folds of 5 patients (25 networks total), and for each of the 5 LINCS drug-free
cell lines (5 networks total). All co-expression networks are available from https://zenodo.
org/record/3522494.

Defining the bipartite graphs

Consider a graph G with V' = 1..N vertices, with positive and negative edges. The
graphs used for our analyses are composed for two parts: a (general knowledge) bipartite
graph and a (specific knowledge) fully-connected gene co-expression graph. For a bipar-
tite graph, the vertex set V' can be separated into two distinct sets, V] and V>, such that
no edges exist within either set. For a fully-connected (or complete) graph, there exists
an edge between every pair of vertices within one set. For the graph G, the bipartite and
fully-connected graphs are joined via the common vertex set V7 that contains genes and
V; contains annotations or drugs.

We constructed two types of bipartite graphs: the gene-annotation graph and the
gene-drug graph. First, we made the gene-annotation graph from the Gene Ontology
Biological Process database [9] via the AnnotationDbi and org.Hs.eg.db Bioconductor
packages. An edge exists whenever a gene is associated with an annotation. Second, we
made the gene-drug graphs using the LINCS data. For each cell line, we computed a gene-
drug graph by calculating the log-fold change between the median of the drug-treated
cell’s expression and the median of the drug-naive cell’s expression. This results in a fully-
connected and weighted bipartite graph, where a large positive value means that the drug
causes the gene to up-regulate (and vice versa). All bipartite graphs are available from
https://zenodo.org/record/3522494.

Dual-channel random walk with restart (RWR)

Traditional RWR methods can only perform a random walk on graphs with positive
edge weights [13]. Since the response of a gene to a drug is directional (up-regulated or
down-regulated), we chose to use a modified RWR method, proposed by [42], that han-
dles graphs with both positive and negative edge weights. Random walk requires tran-
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sition probability matrices to decide the next step in the walk. The Chen et al. transition

probability matrices can be computed based on the following equations:
less
P (xilxi)) = =—— (1)
( ’ l) ZleN(xi) leil
P (x*ler> =P (xflx.*) = P(xj|x,') i e >=0
j j 0,

P (x]_ |xl+) =P <x1+|xl_) = P(xjm) »ife; <0
0,

These equations separate out the positive (and negative) transitions, and are used to

otherwise

otherwise

calculate the total positive (and negative) information flow for each node. They are fixed
for all steps.

Though the transition probabilities are computed separately, the information accu-
mulated in a node depends on both the positive and negative information which flows
through the node. For example, the positive information in a node depends on the neg-
ative information of any neighboring node connected by a negative edge weight (think:
negative times negative is positive). Likewise, negative information in a node depends on
the positive information in a neighboring node connected by a negative edge weight, and
vice versa (think: negative times positive is negative). Figure 4 illustrates the information
flow to a node x; from two neighbors.

The flow of information between the positive “plane” of the graph to the negative
“plane” of the graph can be formulated with the equations:

p (xf)k: Z P(x;L)ki1 P(ac/+ | xf) + Z

% €N (x;) & e;;>0 % €N (x;) & e;j<0

P )t P (x5 127

()

Positive plane

o B
eicj s
I

L Negative plane

Fig. 4 This figure illustrates the flow of information between adjacent nodes. Each node belongs to a
postivie and a negative plane. The positive information nodes are yellow and the negative information nodes
are light blue. A positive edge weight is represented by e,;r, while a negative edge weight is represented by
ek’j. The sign of the edge weights determines which information (positive or negative) flows from one node
to another. The positive information of a node x; depends on the positive information of x; when the edge is
positively weighted (think: positive times positive is positive). The negative information of a node x; depends
on the negative information of x; when the edge is positively weighted (think: negative times positive is
negative). Similarly, the negative flow of negative information can contribute to positive information. The
“dual-channel” RWR algorithm incorporates these edge weights. Note that in practice each node will contain
both positive and negative information
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x; €N (x;) & €;;>0 x; €N (x;) & €;;<0

3)

where the probability P <x]+)k is updated at each step k = 2...10000.

RWR always considers a probability « to return back to the original nearest neighboring
nodes at each step in the random walk. This is used to weigh the importance of node-
specific information with respect to the whole graph, including for long walks:

Py <xj+)k —(l—a)xP (x].*)k_l faxP (xj)2 @)

Py (x;)k —(l—a)xP (x;)k_l faxP (x;)z ()

where the restart probability P, (xf)/ is updated at each step k = 2...10000, and P (xf)z
K
is the probability after the first update. These equations find the positive and negative

restart information with respect to the node x;. Each P (x4+ is a vector of probabil-

)
ities that together sum to 1. This probability has two parts:lthg global information and
the local information. The local information is the initial probability with respect to the
nearest neighbors of node x;, and is denoted by P (xﬁ)z [or P (x;)z] (i.e., the probabil-
ity after the first update). The restart probability « is chosen from the range [0, 1], where
a higher value weighs the local information more than the global information. We chose
a = 0.1 to place a larger emphasis on the global information. This is also the value used
by [42]. When applied to our synthetic data (see Additional file 1: Appendix), it produced
expected results.

Analysis of random walk with restart (RWR) scores

For each gene, the RWR algorithm returns a vector of probabilities that together sum to
1. According to the guilt-by-association assumption, we interpret these probabilities to
indicate the strength of the connection between the reference gene and each target. Since
we are only interested in gene-annotation and gene-drug relationships, we exclude all
gene-gene probabilities. Viewing the probability distribution as a composition (c.f., [43]),
we perform a centered log-ratio transformation of each probability vector subset. This
transformation normalizes the probability distributions so that we can compare them
between samples [44, 45]. We define the RWR score ;> (or rg_ﬂ) for each gene-annotation

ga
connection as the transform of its RWR probability:

+
r;; =lo p&:; 6)
VIT P;
o = log P g: 7)
VI Pyi
for a bipartite graph describing ¢ = 1...G genes and a = 1...A annotations (or A drugs),
where pg+ = Py (x;,“) = [p;'l,..., pgt\] (i.e., from the final step). These transformed

RWR scores can be used for univariate statistical analyses, such as an analysis of variance
(ANOVA) (c.f.,, analysis of compositional data [46, 47]).

Page 7 of 15



Harikumar et al. BioData Mining (2021) 14:37 Page 8 of 15

Benchmark validation

Validation of gene-annotation prediction

Our strategy to validate RWR for gene-annotation prediction involves “hiding” known
functional associations and seeing whether the RWR algorithm can re-discover them.
This is done by turning 1s into Os in the bipartite graph, a process we call “sparsi-
fication” Our sparsification procedure works in 4 steps. First, we combine the origi-
nal GO BP (or MF) bipartite graph with the master single-cell co-expression graph.
Second, we subset the graph to include 25% of the gene annotations and 25% of
the genes (this is done to reduce the computational overhead). Third, we randomly
hide [10,25,50] percent of the gene-annotation connections from the bipartite sub-
graph. Since this random selection could cause a feature to lose all connections, we
use a constrained sampling strategy: the subsampled graph must contain at least one
non-zero entry for each feature. Fourth, we apply the RWR algorithm to the sparsi-
fied and non-sparsified graphs, separately. We repeat this process 25 times, using a
different random graph each time. By comparing the RWR scores between the hid-
den and unknown connections, we can determine whether our method rediscovers
hidden connections.

Validation of gene-drug prediction

We use a different strategy to validate RWR for drug-response prediction. Since we have
the gene-drug and gene-gene interaction data for 5 cell lines (A375, HA1E, HT29, MCF7
and PC3), we can set aside the known gene-drug responses for 1 cell line (PC3) as a
“ground truth” test set. Then, we can use a composite of the remaining 4 gene-drug graphs
to predict the gene-drug responses for the withheld cell line.

This is done in two steps. First, we use the averaged gene-drug data for 4 cell lines (a
general drug graph) and the gene-gene data for PC3 (a specific gene graph) to impute the
gene-drug response for PC3 (a specific drug graph). In the second step, we use the gene-
drug data for PC3 (a specific drug graph) and its corresponding gene-gene data (a specific
gene graph) to calculate the “ground truth” RWR scores for PC (a specific drug graph).
The “ground truth” is the RWR scores when all PC3 drug-response experiments have been
performed. With these two outputs, we can calculate the agreement between the imputed
and “ground truth” RWR scores (using Spearman’s correlation, MSE, and accuracy).

Exploratory application of gene-drug prediction

Having demonstrated that RWR can perform well for single-cell co-expression networks,
and can make meaningful drug-response predictions from composite LINCS data, we
combine these heterogeneous data sources to make personalized drug-response pre-
dictions for individual single-cell networks. This requires some data munging. First,
we transform the ENGS features used by the single-cell data into the HGNC features
used by LINCS (only including genes with a 1-to-1 mapping, resulting in 181 genes).
Second, we build an HGNC co-expression network with ¢; (for 5 folds of 5 patients,
yielding 25 networks total). Third, we combine the composite LINCS gene-drug bipar-
tite graph with each of the 25 HGNC single-cell networks. Fourth, we use our RWR
algorithm to predict how 181 genes would respond to 1732 drugs for each patient
fold. As above, we perform an analysis of variance (ANOVA) to detect inter-patient
differences.
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Results and discussion
Why use single cells?
In this study, we analyze a previously published single-cell data set that measured the
gene expression for 5 glioblastoma patients. A principal components analysis of these
data show that the major axes of variance tend to group the cells according to the patient-
of-origin. Indeed, an ANOVA of gene expression with respect to patient ID reveals that
2204 of the 3022 genes have significantly different expression in at least one patient (FDR-
adjusted p < .05). This suggests that single-cell gene expression is unique to each patient.
Although it is possible to obtain sample-specific gene expression using bulk RNA-
Seq, our approach to data integration exploits the graphical structure of sample-specific
gene co-expression networks. scRNA-Seq, generating multiple measurements per individ-
ual, makes the computation of sample-specific co-expression networks straightforward
(though others have proposed ways to estimate these from bulk RNA-Seq [48, 49]).

Validation of gene-annotation prediction

The Gene Ontology (GO) project has curated a database which relates genes to biologi-
cal processes (BP) and molecular functions (MF) (called annotations). The GO database
has widespread use in bioinformatics for assigning “functional” relevance to sets of gene
biomarkers [50]. Although GO organizes the semantic relationships between annotations
as a directed acyclic graph, we could more simply represent the relationships as a bipartite
graph. By combining a (fully-connected) gene co-expression graph with a (sparsely-
connected) gene-annotation bipartite graph, RWR can predict new gene-annotation
connections.

To test whether the RWR predictions are meaningful, we “hid” a percentage of known
gene-annotation links (by turning 1s into Os in the bipartite graph), and compared the
RWR scores for the hidden gene-annotation links against those for the unknown links
(see Methods for a definition of the RWR score). Figure 5 shows that the RWR scores
for hidden connections are appreciably larger than for the unknown connections, con-
firming that RWR can discover real gene-annotation relationships from a single-cell gene

co-expression network.

Exploratory application of gene-annotation prediction

Since single-cell RNA-Seq assays measure RNA for multiple cells per patient, we can use
these data to build a personalized graph that describes the gene-gene relationships for
an individual patient. In order to estimate the variation in these personalized graphs, we
divided the cells from each sample into 5 folds (giving us 5 networks per-patient). Above,
we show that RWR can discover real gene-annotation relationships. By combining the
personalized graph (a kind of specific knowledge) with a gene-annotation bipartite graph
(a kind of general knowledge), the RWR algorithm will score the gene-annotation con-
nections for a given patient. From this, we can identify genes that may have a different
functional importance in one cancer versus the others.

Taking a subset of the 50 genes with the largest inter-patient differences, we use RWR to
compute personalized RWR scores. This results in 25 matrices (for 5 folds of 5 patients),
each with 50 rows (for genes) and 369 columns (for BP annotations). Performing an
ANOVA on each gene-annotation connection results in a matrix of 50x369 p-values.
Figure 6 shows a heatmap of the significant gene-annotation connections (dark red indi-
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Fig.5 The RWR scores for the hidden and unknown gene-annotation connections (faceted by the amount
of sparsity). When known connections are hidden, RWR tends to give higher scores than when connections
are unknown, suggesting that RWR can discover real gene-annotation relationships. Note that GO is an
incomplete database: the absence of a gene-annotation connection is not the evidence of absence. For this
reason, we do know whether the high scoring “Unknown” connections are false positives or previously
undiscovered connections. All t-tests comparing "Hidden” and “Unknown” connections have p < 10~1°

cates a gene-wise FDR-adjusted p < .05). Figure 7A plots the per-patient RWR scores
for 4 annotations of the BCL-6 gene that significantly differ between patients. BCL-6 is
an important biomarker whose increased expression is associated with worse outcomes
in glioblastoma [51]. Our analysis suggests that BCL-6 could have a larger role in inflam-
mation for patients 3 and 5, but a larger role in cartilage development and translational
elongation in patient 1. Of course, this hypothesis requires experimental validation.

Validation of gene-drug prediction

The NIH LINCS program has generated a large amount of data on how the gene expres-
sion signatures of cell lines change in response to a drug. By conceptualizing the baseline
(drug-free) gene co-expression network as a complete graph of specific knowledge, and
by re-factoring the average gene-drug response as a (weighted) bipartite graph of gen-
eral knowledge, we can apply the same RWR algorithm to predict a cell’s gene expression
response to any drug. Since the modified RWR algorithm contains two channels—a
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Fig. 6 This figure shows a heatmap of the predicted gene-annotation connections that are significantly
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22 appear to have some form of patient-specific activity

ID B3 MGH26 £ MGH28 E MGH29 ] MGH30

MGH31

cartilage development

inflammatory response

-0.859

-0.860

-0.861

-0.862

3.4104

. 34051 =g
= O
(== .

3.400 4 -

regulation of immune response

translational elongation

3.408

3.404

Functional Imputation Score for BCL-6
(Normalized to Per-Gene Average)

.
=

3.400

-0.868 1
-0.8694 ﬁ
-0.870

—_—
. -0.8714

o
o ==
= 08721 * E]
o

o

" PatientID

Negative Drug Response Score for EGFR
(Normalized to Per-Gene Average)

ID B9 MGH26 £ MGH28 E MGH29 - MGH30 MGH31
altrenogest.0.041152.um deferiprone.0.041152.um
09450 | == — i ==
0.820
09425 0818
0.94001 o816
0814
wos| 1T O R [
salirasib.0.041152.um valdecoxib.0.37037.um
—_— — 0.856 T g —
08601
0.854
0.858
0.852
08561
0.850
08541 0sis
0852 ———7—— . —
Patient ID

Fig. 7 The personalized RWR scores for 4 biological functions of the BCL-6 gene (left panel) and for the EGFR
response to 4 drugs (right panel). Panel A suggests that BCL-6 may have a larger role in inflammation for
patients 3 and 5, but a larger role in cartilage development and translational elongation in patient 1. Panel B
suggests that the anti-inflammatory drug valdecoxib and the anti-neoplastic drug salirasib may cause a
stronger down-regulation of EGFR in patients 1 and 4 versus the others
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positive and negative channel-we can predict up-regulation or down-regulation events
separately.

To test whether RWR can make accurate predictions about how a gene in a cell would
respond to a drug, we ran the RWR algorithm on the baseline (drug-free) gene co-
expression graph of the PC3 cell line using a composite gene-drug graph of 4 different cell
lines. We then compared these RWR scores with a “ground truth” (i.e., the RWR scores for
when all PC3 drug-response experiments have been performed). The agreement between
the composite gene-drug RWR scores and the “ground truth” gene-drug RWR scores tells
us how well the composite gene-drug map generalizes to new cell types. Table 1 shows
that agreement is high, especially for the top up-regulation and down-regulation events.
This confirms that our composite gene-drug graph is useful for drug-response prediction.

Exploratory application of gene-drug prediction

The RWR algorithm can combine specific knowledge and general knowledge from dis-
parate sources to make personalized recommendations. This makes RWR a potentially
valuable tool for precision medicine.

As an exploratory analysis, we combine the personalized gene co-expression networks
with the composite gene-drug graph from LINCS. By running the RWR algorithm on
these two data streams, the RWR scores will now suggest how the expression of any gene
might change in response to any drug for each of the 5 glioblastoma patients. Using an
ANOVA, we identify hundreds of gene-drug connections with RWR scores that differ
significantly between patients (gene-wise FDR-adjusted p < .05).

Figure 7B shows an example of drugs that have different (negative channel) RWR scores
for EGFR. It suggests that the anti-inflammatory drug valdecoxib and the anti-neoplastic
drug salirasib may cause a stronger down-regulation of EGFR (a pan-cancer oncogene
[52]) in patients 1 and 4 versus the others. The Supplementary Information includes
a complete table of the unadjusted ANOVA p-values for the gene-drug inter-patient
differences available in https://zenodo.org/record/3743897.

Limitations

We deployed our framework on only 5 individual patients. As such, we lack a sufficient
sample size to test whether any inter-patient differences could be explained by known
demographic or clinical phenotypes. It is worth noting that cancer cells are very het-
erogeneous and, depending on the location of the sample collection, the composition
of cell types (and thus gene expression profiles) can change dramatically. As such, fac-
tors other than the patient-specific tumour profile, such as batch effects, could account
for differences in the sample-specific gene co-expression networks. Such differences
may be difficult to account for without careful experimental design and standardization.
Although the scope of this paper is to prove the concept, we wish to remind the readers

Table 1 Overall agreement (Spearman’s correlation and MSE) and the accuracy of the overlap (for the
top 5%, 10%, 25%, and 50% predicted scores), as calculated separately for the positive and negative
channels. Overall, agreement is high, especially for the top up-regulation and down-regulation events
Correlation MSE  Top 5% (ACC) Top 10% (ACC) Top 25% (ACC) Top 50% (ACC)
Positive Channel  0.7173 0.2022 09279 0.8857 0.8574 0.8427
Negative Channel 0.5502 0.2176  0.9450 0.8946 0.7578 0.7053
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that much care should be taken when translating the methodology to real-world clinical
problem-solving.

In the absence of experimental validation, we support our analyses using 2 forms of in
silico validation, which together demonstrate that RWR can integrate sparse heteroge-
neous data to discover real biological activity. Although we find the in silico validation
encouraging, we acknowledge that RWR is merely a prediction tool that recommends
hypotheses, and that these predictions may change when the source of general knowledge
changes. Experimental validation is needed to determine whether these hypotheses prove
true in practice. Further work is needed to validate the clinical relevance of the proposed
framework.

Conclusions

This manuscript describes a framework for combining patient-specific single-cell net-
works with public drug-response data to make personalized predictions about drug
response. Importantly, our approach makes use of a generic framework, and so can be
applied to combine many kinds of data. We think the targeted analysis of personalized
single-cell networks is promising, and could offer a new direction for precision medicine
research.

We conclude with some perspectives on what the future of personalized network anal-
ysis may hold. Although RWR can handle sparse heterogeneous data, the positive and
negative information obtained for each node can be infinitesimally small. One might
address this by first transforming the RWR probabilities. Otherwise, we note that RWR
is computationally expensive, making the analysis of high-dimensional data prohibitively
slow. One might address this by pre-training a deep neural network to provide an approx-
imate RWR solution. These improvements could help scale personalized predictions to
larger graphs.
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