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Purpose: Diffusion-weighted steady-state free precession (DW-SSFP) is shown to 
provide a means to probe non-Gaussian diffusion through manipulation of the flip 
angle. A framework is presented to define an effective b-value in DW-SSFP.
Theory: The DW-SSFP signal is a summation of coherence pathways with different 
b-values. The relative contribution of each pathway is dictated by the flip angle. This 
leads to an apparent diffusion coefficient (ADC) estimate that depends on the flip 
angle in non-Gaussian diffusion regimes. By acquiring DW-SSFP data at multiple 
flip angles and modeling the variation in ADC for a given form of non-Gaussianity, 
the ADC can be estimated at a well-defined effective b-value.
Methods: A gamma distribution is used to model non-Gaussian diffusion, embedded 
in the Buxton signal model for DW-SSFP. Monte-Carlo simulations of non-Gauss-
ian diffusion in DW-SSFP and diffusion-weighted spin-echo sequences are used to 
verify the proposed framework. Dependence of ADC on flip angle in DW-SSFP is 
verified with experimental measurements in a whole, human postmortem brain.
Results: Monte-Carlo simulations reveal excellent agreement between ADCs esti-
mated with diffusion-weighted spin-echo and the proposed framework. Experimental 
ADC estimates vary as a function of flip angle over the corpus callosum of the post-
mortem brain, estimating the mean and standard deviation of the gamma distribution 
as 1.50 ⋅10−4 mm2/s and 2.10 ⋅10−4 mm2/s.
Conclusion: DW-SSFP can be used to investigate non-Gaussian diffusion by vary-
ing the flip angle. By fitting a model of non-Gaussian diffusion, the ADC in DW-
SSFP can be estimated at an effective b-value, comparable to more conventional 
diffusion sequences.
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1 |  INTRODUCTION

Diffusion-weighted steady-state free precession (DW-SSFP) 
is a powerful sequence that achieves strong diffusion weight-
ing by maintaining a steady-state in which magnetization 
accumulates diffusion contrast over multiple repetition times 
(TRs).1-4 The DW-SSFP sequence for each TR consists of a 
single radiofrequency (RF) pulse and single diffusion gra-
dient followed by signal acquisition (Figure 1A). The DW-
SSFP sequence has many favorable properties for probing 
the diffusion properties of tissue5,6: it is very signal-to-noise 
ratio (SNR)-efficient,1,7 generates strong diffusion weight-
ing in MR systems with limited gradient strengths1,8,9 and 
yields high-SNR diffusivity estimates in samples with short 
T2.

7,10,11 These properties stem from the steady-state nature of 
the sequence.5 In DW-SSFP, transverse magnetization is not 
spoiled between RF pulses and the short TR (typically TR < T2)  

ensures transverse and longitudinal magnetization persists 
over multiple excitations, leading to numerous signal-forming 
coherence pathways.12,13 The signal received from coherence 
pathways with high b-values8,14 leads to strong diffusion 
weighting. The short TR prevents relaxation from destroying 
the available signal before sampling. Although this saturates 
the magnetization, the large fraction of each TR spent acquir-
ing signal provides a high-SNR efficiency. Here, we describe 
the DW-SSFP variant where the echo is sampled after the 
diffusion gradient (before the subsequent RF pulse), corre-
sponding to the M− signal in Wu and Buxton.6

The DW-SSFP sequence has 2 major challenges to over-
come5: first, it is very sensitive to motion; second, it does 
not have a well-defined b-value. One environment where 
the properties of DW-SSFP are very well suited is imaging 
of fixed, postmortem tissue, which is devoid of motion but 
plagued by low T2 and reduced diffusion coefficients.7,15 

F I G U R E  1  Comparison of DW-SSFP and DW-SE sequences under non-Gaussian diffusion (e.g., due to restricting barriers). A, The 
DW-SSFP sequence consists of a single RF pulse and diffusion gradient per TR (this depiction neglects imaging gradients, which are generally 
refocused to have zero net area) that achieves the equivalent of Stejskal-Tanner gradient pairs over multiple TR periods. C, In systems with 
non-Gaussian diffusion, here represented by diffusion restricted between 2 parallel barriers, changing the flip angle results in a different level 
of signal attenuation. B, With the DW-SE sequence, gradient pairs are explicitly included on either side of the refocusing pulse. D, By changing 
the strength of the applied diffusion gradient, we can achieve a similar sensitivity to restricted diffusion. E, DW-SSFP signal can be represented 
as a summation of coherence pathways, each of which has a well-defined diffusion time representing the number of TR periods between the 
experienced diffusion gradients. The relative contribution of coherence pathways is a function of flip angle. F, Normalizing these coherence 
pathways in (E) to the pathway with Δ=TR (i.e., the spin-echo pathway) provides insight into the sensitivity of DW-SSFP to non-Gaussian 
diffusion. Reducing the flip angle increases the contribution of coherence pathways with longer diffusion times, which are more sensitive to non-
Gaussian diffusion. All simulations performed under the two-transverse-period approximation (Equation 1), defining D=3.5 ⋅10−4 mm2/s, diffusion 
gradient amplitude = 5.2 G/cm and diffusion gradient duration = 13.56 ms (q = 300 cm−1). For the DW-SE sequence, Δ= 100 ms. For the DW-
SSFP sequence, TR = 28.2 ms, T

1
 = 600 ms and T

2
 = 20 ms. C,D, are simulated with a model of diffusion restricted between 2 parallel barriers as 

described in Tanner and Stejskal.16 E,F, are calculated assuming Gaussian diffusion
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Nevertheless, interpretation of these postmortem data suf-
fer from the lack of a well-defined b-value, which is a direct 
result of the signal reflecting a summation of numerous 
coherence pathways, each with a different b-value.5,8 As dif-
fusive motion in tissue is generally non-Gaussian, this poorly- 
defined b-value prevents comparisons between diffusivity 
estimates obtained with the DW-SSFP and more conven-
tional measurements using the diffusion-weighted spin-echo 
(DW-SE) sequence (Figure 1B).

Formation of the steady state in DW-SSFP is a function 
of both experimental parameters (flip angle and TR) and 
sample properties (relaxation and diffusivity). However, un-
like the DW-SE sequence, the diffusion-weighted terms in 
DW-SSFP are not readily separable as a simple multiplica-
tive term.8 Instead, alterations in the prescribed flip angle, 
TR, and relaxation times alter the relative weighting of each 
coherence pathway and, hence, result in a different diffusion 
weighting.5 This surprising result highlights the fact that in 
DW-SSFP, there is not a standalone diffusion preparation 
(gradients and their timings) that determines the degree of 
diffusion weighting, as is the case for spin- and stimulated- 
echo sequences.

Looking at this from a different perspective, the idiosyn-
crasies of the DW-SSFP signal formation mechanism pres-
ent us with an opportunity: to probe the diffusion properties 
of tissue without any modification to the diffusion encoding 
gradients. Figure 1C, D simulates the received DW-SSFP 
and DW-SE signal for diffusion restricted between 2 paral-
lel barriers.16 Signal attenuation is altered by changing the 
flip angle in DW-SSFP (Figure 1C), similar to changing the 
b-value in DW-SE (Figure 1D).

In this work, we show that we can probe different diffusion 
time (and, therefore, b-value) regimes by varying the flip- 
angle in DW-SSFP. As with varying b-values in more con-
ventional diffusion measurements, this flip angle dependence 
changes the apparent diffusion coefficient (ADC) estimates in 
systems with non-Gaussian diffusion. Based on this concept, 
we propose a method to translate quantitative diffusivity esti-
mates derived with DW-SSFP, in which b-values are not well 
defined, into ADC estimates at a single effective b-value, as 
would be measured using more conventional sequences such 
as DW-SE. This is achieved by defining DW-SSFP signal 
behavior under a model of non-Gaussianity and translating 
the measured DW-SSFP signal at multiple flip angles into 
an ADC at an equivalent, well-defined b-value. The specific 
model presented here combines a gamma variate distribution 
of diffusivities with the Buxton model of DW-SSFP signal,8 
but can be adapted to other forms of non-Gaussianity17 and 
alternative signal models.4,18 The derived signal model is ver-
ified with Monte-Carlo simulations of both DW-SSFP and 
DW-SE signal evolution, and the expected signal dependence 
is demonstrated using DW-SSFP datasets acquired at multi-
ple flip angles in postmortem brain tissue.

2 |  THEORY

2.1 | Two-transverse-period approximation

The two-transverse-period approximation of DW-SSFP6,8 is 
a signal model that makes the simplifying assumption that 
coherence pathways do not survive beyond 2 periods in the 
transverse plane. This approximation, considered valid when 
TR ≥ ~1.5 ⋅ T2,

8 is particularly helpful for building intuition 
into the dependence of diffusion times on flip angle. Under 
these conditions, the DW-SSFP signal can be described as 
the weighted sum of spin- and stimulated-echo pathways:

where S0 is the equilibrium magnetization, E1 = e
−

TR

T1, E2 = e
−

TR

T2 ,  
� is the flip angle, A1 = e−q2

⋅TR⋅D (D is the diffusion coefficient) 
and q= �G� (� is the gyromagnetic ratio, G is the diffusion 
gradient amplitude and � is the diffusion gradient duration). 
In Equation 1, the first term in the square brackets represents 
a spin-echo pathway (i.e., the magnetization that is in the 
transverse plane in 2 consecutive TRs), and the second term 
describes the stimulated-echo pathways (characterized by 2 
transverse periods separated by n longitudinal periods). The 
diffusion time, Δ, is well defined for each individual pathway 
(spin echo: Δ=TR, stimulated echo: Δ=(n+1) ⋅TR). The 
effect of diffusion time is embodied in A1, with each path-
way attenuated by e−q2

⋅Δ⋅D. Under the two-transverse-period 
approximation, the signal is a weighted sum of contributions 
from different pathways with different diffusion times, with 
relative signal weights that depend on the flip angle (�), TR 
and T1. Changes in T2 do not alter the relative weighting of 
each pathway, because the assumption is that only coherence 
pathways with 2 transverse periods contribute to the signal. 
Example pathways are illustrated in Supporting Information 
Figure S1A-C, which is available online.

Figure 1E visualizes the signal contributions of each 
pathway (amplitudes calculated from individual terms in 
the summation in Equation 1). Pathways with longer diffu-
sion times lead to signals that are more diffusion weighted 
and informative about restrictive diffusion. At intermediate 
flip angles the overall signal contribution from the different 
pathways peaks, leading to increased SNR. We can visualize 
the relative contributions of different pathways at a given 
flip angle by normalizing to the signal from the spin-echo 

(1)
SSSFP

�
�, T1, T2, TR, q, D

�
=

−S0

�
1−E1

�
E1E

2
2

sin �

2
�
1−E1 cos �

�

⋅

⎡⎢⎢⎢⎢⎢⎣

1−cos �

E1

A1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Spin echo

+ sin2
�

∞�
n=1

�
E1 cos �

�n−1
A

n+1
1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Stimulated echoes

⎤⎥⎥⎥⎥⎥⎦

,



876 |   TENDLER ET aL.

(Δ=1 ⋅TR) pathway (Figure 1F). This normalization makes 
it clear that decreasing the flip angle increases the relative 
contribution of simulated-echo pathways with longer dif-
fusion times, leading to an increase in diffusion contrast. 
However, this comes at a tradeoff with overall signal levels 
(Figure 1E).7

The two-transverse-period approximation provides an in-
tuitive way to see that changing the flip angle in DW-SSFP 
alters the diffusion time regime that the signal is sensitive to, 
with an increased flip angle corresponding to a shorter effec-
tive diffusion time. The DW-SSFP signal can be thought as 
a temporally blurred mixture of the “cleaner” diffusion time 
behavior that is captured by more conventional DW-SE (or 
diffusion-weighted  stimulated-echo) signals, corresponding 
to a single point on the Δ axis.

2.2 | Full Buxton model of DW-SSFP

The full Buxton model of DW-SSFP6,8 accounts for all co-
herence pathways, including those that survive more than 
2 TRs in the transverse plane. Summing over all coherence 
pathways yields the expression:

where A2 = e−q2
⋅�⋅D. Definitions of r, s, and F1 are provided in 

the Appendix. This more complete model allows for the ex-
istence of additional coherence pathways, including pathways 
that remain in the transverse plane over multiple TRs, and coher-
ence pathways that give rise to multiple signal forming echoes 
over their lifetime.14 This leads to pathways experiencing more 
than 2 diffusion gradients, including some with a q-value that 
is an even multiple of the q in a single TR period. Here, the 
relative signal weighting of pathways is additionally depen-
dent on T2.

14 Examples of these additional pathways are given 
in Supporting Information Figure S1. Under the full Buxton 
model, we, therefore, lose a strict correspondence between 
pathway and diffusion time; instead, changing the flip angle is 
equivalent to probing different b-value regimes, with smaller 
effective b-value at higher flip angle. The DW-SSFP signal 
is a blurred mixture of the “cleaner” b-value behavior that is 
captured by more conventional DW-SE (or diffusion-weighted 
stimulated-echo) signals. As with spin-echo measurements, 
calculating an ADC with DW-SSFP requires estimates of both 
diffusion-weighted and non–diffusion-weighted signals (with 
the caveat in DW-SSFP that a small gradient is still required to 
avoid banding patterns associated with fully-balanced SSFP),19 
in addition to estimates of T1 and T2.

2.3 | Investigating Non-Gaussianity

Diffusion in tissue is restricted and hindered by membranes, 
causing the ADC at higher b-values to be less than one would 
predict using the Gaussian propagator describing free diffu-
sion. As can be inferred from Figure 1C-F, non-Gaussianities, 
which are typically observed as a dependence of diffusiv-
ity on b-value, will give rise to variable apparent diffusion 
coefficients (ADCs) for different flip angles in DW-SSFP. 
Hence, while conventional sequences typically character-
ize non-Gaussian diffusion using measurements at multiple 
diffusion times or q-values, this can also be accomplished 
in DW-SSFP through measurements at multiple flip angles. 
This also provides a route to address the poorly defined b-
value in a DW-SSFP measurement, through translation into 
a more conventional framework with a well-defined b-value.

We demonstrate this concept using a gamma distribution 
of diffusivities (Figure 2A) to describe non-Gaussian diffu-
sion.20,21 The gamma distribution, �

(
D; Dm, Ds

)
, can be de-

scribed in terms of a mean, Dm, and a standard deviation, Ds. 
For DW-SE, the signal for a gamma distribution of diffusivi-
ties is defined as20,21:

where b=q2
⋅ (Δ−τ∕3). This distribution of diffusivities 

can be embedded in the full Buxton signal model of DW-
SSFP as:

This integral can be evaluated using numerical integration. 
Figure 2B depicts how the ADC varies (fitting process de-
scribed in the following section) as a function of flip angle for 
3 different gamma distributions (Figure 2A). As we increase 
the flip angle, we obtain a higher estimate of ADC, consistent 
with our expectations of an increased ADC estimate as we 
decrease the b-value.

2.4 | A framework to translate between  
DW-SSFP and DW-SE measurements

Given quantification of the ADC in DW-SSFP, we can de-
fine an ‘effective’ b-value to be that which yields the same 
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ADC estimate using the DW-SE sequence. Translating ADC 
estimates from DW-SSFP into an equivalent ADC at a single 
b-value can be achieved in the context of a common, underly-
ing non-Gaussianity.

From DW-SSFP data obtained at multiple flip angles, the 
ADC can be uniquely determined at each flip angle by solving 
Equation 2 (Figure 2B, dots), given knowledge of the exper-
imental protocol, T1, T2, and non–diffusion-weighted DW-
SSFP data (to estimate S0). Our diffusion model (Figure 2A) 
can be subsequently fitted to the multi-flip data (Equations 2 

and 4) to uniquely determine a value of Dm and Ds that can 
describe the evolution of ADC with flip angle (Figure 2B, 
dashed lines). We can use the values of Dm and Ds to subse-
quently simulate the ADC at any given DW-SE b-value (Figure 
2C) by comparing Equation 3 with the DW-SE signal under 
the Stejskal-Tanner model (S=S0 exp (−bD)). Alternatively, 
we can determine the equivalent b-value that would yield the 
same estimate of ADC as measured with DW-SSFP (Figure 
2D) at a given flip angle. A detailed processing pipeline is 
provided in Supporting Information Figure S2.

F I G U R E  2  A, Three different gamma distributions with D
m
=3.0 ⋅10−4 mm2/s and D

s
 defined as per the legend. B, The associated evolution 

of ADC with flip angle for DW-SSFP under these distributions. The Buxton model for Gaussian diffusion can be fit to DW-SSFP measurements 
(B, dots) to obtain ADC estimates at multiple flip angles. Comparing Equations 2 and 4, we can then fit a gamma distribution to these ADC 
estimates (B, dashed lines). C, If we wish to translate this gamma variate to the equivalent ADC estimates that would be obtained from DW-SE, we 
can subsequently calculate the ADC for a given b-value assuming the same gamma distribution (solid lines). D, Alternatively, we can define a DW-
SE b-value at any given DW-SSFP flip angle that gives rise to an equivalent ADC. Combining these expressions, we can plot the ADC estimates 
measured with DW-SSFP (B, dots) versus the DW-SE b-value (C, dots). Simulation performed over the range �= 1°-179°, setting the diffusion 
gradient amplitude = 5.2 G/cm & diffusion gradient duration = 13.56 ms (q = 300 cm−1), TR = 28.2 ms, T

1
 = 600 ms, and T

2
 = 20 ms. To eliminate 

the effects of S
0
, the ADC was estimated at each flip angle (B) by fitting to the diffusion-weighted signal divided by the non–diffusion-weighted 

signal

(A) (B)

(C) (D)
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3 |  METHODS

3.1 | Monte-Carlo simulations of DW-SSFP 
and DW-SE signal

Uniformly distributed spin trajectories were generated using 
Camino22 (5 ⋅105 spins, D=3.5 ⋅10−4 mm2/s, 250 time steps), 
modified to produce trajectories that followed a Gaussian 
distribution of displacements per time-step.22 A gamma 
distribution of diffusivities was subsequently generated 
from the trajectories using MATLAB (version 2017a, The 
MathWorks, Inc., Natick, MA) by scaling the displacement 
of individual spin trajectories to modify their diffusion co-
efficient (D) to correspond to a gamma distribution when 
considering the spin ensemble. Here, we set Dm =1.50 ⋅10−4 
mm2/s and Ds =2.10 ⋅10−4 mm2/s for our simulated gamma 
distribution, consistent with the corpus callosum of the post-
mortem brain used in our experiment (see following section 
and the Results section).

The DW-SSFP signal was simulated using in-house 
code written in MATLAB, with approximately the same 
parameters as used in our experimental measurements 
(TR = 28.2 ms, � = 13.56 ms, G = 52 mT/m, q = 300 cm−1, 
flip angles = 10° to 170° in 10°-increments), setting T1 = 568 
ms and T2 = 19.8 ms, the mean over the corpus callosum of 
the postmortem brain. Non–diffusion-weighted DW-SSFP 
data were additionally simulated, setting D=0 mm2/s. A sin-
gle time step corresponded to 1 TR.

A DW-SE signal was additionally simulated (� = 13.56 ms, 
Δ=40 ms, b-values = 0 to 14,000 s/mm2 at 1000 s/mm2 in-
crements, achieved by changing G). A single time step corre-
sponds to 0.4 ms.

3.2 | Experimental demonstration of  
DW-SSFP flip angle dependency

A whole postmortem brain was scanned on a 7T Siemens 
MR system (1Tx/32Rx head coil) with a DW-SSFP se-
quence for a single diffusion direction at multiple flip angles 
(resolution = 0.85 × 0.85 × 0.85 mm3, TR = 28.2 ms, echo 
time  =  21  ms, bandwidth  =  393  Hz/pixel, �  =  13.56  ms, 
G = 52 mT/m, q= 300 cm−1, direction = [0.577, 0.577, 0.577], 
flip angles = 10° to 90° at 5°-increments). At each flip angle, 
an equivalent non–diffusion-weighted DW-SSFP dataset 
was acquired with a small diffusion gradient (q= 20 cm−1)  
to ensure dephasing of the magnetization and to prevent 
banding artefacts.19 T1, T2, and B1 maps23 were additionally 
acquired (details of acquisition and processing provided 
in Supporting Information Table S1) over the postmortem 
brain, which are required for accurate modeling of the DW-
SSFP signal.11

A Gibbs ringing correction was applied to the DW-SSFP 
images.24 To reduce noise floor bias, the mean background 
signal was estimated and removed from the DW-SSFP 
signal.25 All coregistrations were performed using a 6 
degrees-of-freedom transformation with FLIRT.26,27

The voxelwise ADC was estimated over the corpus callosum at 
each flip angle using Equation 2. To eliminate the effects of S0, the 
experimental diffusion-weighted DW-SSFP data were normal-
ized by the non–diffusion-weighted DW-SSFP data and fit with 
SSSFP

(
�, T1, T2, TR, q, ADC

)
∕SSSFP

(
�, T1, T2, TR, 0, ADC

)
 

(noting SSSFP

(
�, T1, T2, TR, 0, ADC

)≠S0). The mean ADC 
over the corpus callosum was subsequently calculated at each 
flip angle and fit to Equation 4 to determine Dm and Ds. Fitting 
was performed in Python28 using the SciPy curve_fit func-
tion, implemented with the Levenberg-Marquardt algorithm.29 
Numerical integration of Equation 4 was performed using the 
SciPy quad command.

4 |  RESULTS

4.1 | Monte-Carlo simulations of the  
DW-SSFP and DW-SE sequence

Figure 3A,B compares the simulated signal attenuation of 
the DW-SSFP and DW-SE signal estimated for a gamma-
variate distribution (blue circles) to forward calculations 
from Equations 3 and 4 (green lines). Fitting to the Monte-
Carlo signals, we estimated Dm =1.48 ⋅10−4 mm2/s and 
Ds =2.04 ⋅10−4 mm2/s for DW-SSFP, and Dm =1.49 ⋅10−4 
mm2/s and Ds =2.10 ⋅10−4 mm2/s for DW-SE (original values 
Dm =1.50 ⋅10−4 mm2/s and Ds =2.10 ⋅10−4 mm2/s). Similar 
to acquiring DW-SE data at multiple b-values, these simula-
tions suggest that the DW-SSFP signal acquired at multiple 
flip angles is able to encode non-Gaussian diffusion. Fitting a 
Gaussian model assuming a single diffusion coefficient (red 
line) is unable to provide an accurate fit.

By calculating ADC estimates from the signal attenu-
ation using the full Buxton model for DW-SSFP and the 
Stejskal-Tanner model for DW-SE (i.e., both assuming 
purely Gaussian diffusion, shown in Figure 3C,D), we can 
determine the equivalent DW-SE b-value that corresponds to 
the ADC estimate at each DW-SSFP flip angle (Figure 3E).  
These results highlight the substantial range of effective 
b-values achievable with the DW-SSFP sequence by modify-
ing the flip angle alone. With this, we are able to translate our 
DW-SSFP signal, which reflects a blurring of different sig-
nals with well-defined b-values, into a DW-SSFP ADC at a 
well-defined effective b-value, demonstrating the same ADC 
evolution as DW-SE data (Figure 3F). Note that in Figure 3F,  
orange and blue data points were derived from separate 
simulations.
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F I G U R E  3  Results of the Monte-Carlo simulations. A,B, reveal the signal attenuation for the DW-SSFP (A) and DW-SE (B) simulations, 
respectively: Monte-Carlo simulations (blue dots), forward calculations of the DW-SSFP and DW-SE signal under a gamma-variate distribution 
(green lines), fits to the Monte-Carlo solutions (dashed orange lines), and fits assuming only a single diffusion coefficient (dashed red lines).  
C, D, reveal how the estimated ADC varies with DW-SSFP flip angle and DW-SE b-value. By comparing the ADC estimates in (C) and (D), we 
can determine which DW-SSFP flip angle gives rise to an equivalent ADC estimate (E). F, This allows us to transform our Monte-Carlo estimates 
of ADC with the DW-SSFP sequence into the same space as the DW-SE sequence

(A) (B)

(C) (D)

(E) (F)
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4.2 | Experimental validation of DW-SSFP 
flip angle dependency

Figure 4 reveals the variation in ADC over the corpus cal-
losum (Figure 4A) of the postmortem brain (blue crosses in 
Figure 4B), where the ADC estimated at 90° is almost twice 
the ADC estimate at 10°, despite no changes in the diffu-
sion encoding of the sequence. This variation is consistent 
with non-Gaussian diffusion, and inconsistent with Gaussian 
diffusion, which would correspond to a flat line in Figure 
4B. By fitting the ADC estimates to a gamma distribution 
(dashed orange line), we estimated Dm =1.50 ⋅10−4 mm2/s 
and Ds =2.10 ⋅10−4 mm2/s. The corresponding probabil-
ity density function and displacement profile are shown in 
Figure 4C, D.

5 |  DISCUSSION

The DW-SSFP signal represents a blurred mixture of signals 
with well-defined b-values. By defining DW-SSFP derived 
ADC estimates in terms of an effective b-value, we can 
transform these estimates into alignment with more conven-
tional diffusion measurements. In the context of postmor-
tem imaging, this could for example facilitate comparisons 
of diffusivity estimates acquired in postmortem tissue with 
DW-SSFP to in vivo diffusivity estimates acquired with 
DW-SE. Monte-Carlo simulations (Figure 3) yield excellent 
agreement between simulated signals for a given gamma- 
distributed system and our forward model. These results 
suggest that the DW-SSFP signal is able to capture non-
Gaussianity and verify the ability to transform DW-SSFP 

F I G U R E  4  A, Sagittal slice of the DW-SSFP data (q = 20 cm−1) acquired over the postmortem brain with the corpus callosum outlined in 
orange. B, By determining the ADC at each flip angle (blue crosses) using Equation 2, we demonstrate that the flip angle in DW-SSFP sensitizes 
us to different b-value regimes, leading to changing ADC estimates. Fitting our gamma distribution model (Equation 4) to the experimental data 
(B, orange dashed line), we estimate D

m
=1.50 ⋅10−4 mm2/s and D

s
=2.10 ⋅10−4 mm2/s in our postmortem brain, with (C) and (D) displaying the 

resulting diffusivity distribution and displacement profile for these parameters. B, Error bars display the standard error of the ADC over the corpus 
callosum, but are not visible for most flip angles

(A) (B)

(D)(C)
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signals into equivalent DW-SE signals. Experimental fitting 
of our model to data acquired in in the corpus callosum of 
a whole postmortem brain (Figure 4) demonstrates that use 
of the original Buxton model produces the predicted flip-
angle dependence of the ADC estimate that is expected for 
non-Gaussian diffusion. Our gamma-distribution model fit 
(Figure 4B – dashed orange line) is able to explain this flip-
angle dependence of ADC.

The observation of flip-angle-based sensitivity to 
non-Gaussian diffusion also suggests challenges to the use 
of DW-SSFP. Previous work has demonstrated that the DW-
SSFP sequence yields improved SNR at 7T versus 3T in post-
mortem tissue with short T2, motivating its use at ultra-high 
field.11 However, B1-inhomogeneity (e.g., at ultra-high field) 
translates into varying effective b-value across a sample, 
leading to spatially varying ADC estimates even when the 

underlying tissue properties are the same. This confound 
prevents a simple interpretation of results between, or even 
within DW-SSFP datasets. One approach is to use the model 
parameters to derive an ADC map with the same effective 
b-value within every voxel regardless of local B1, represent-
ing a common snapshot of restricted diffusion.30 This ap-
proach could additionally account for the variations in T1, T2,  
and the diffusivity of tissue, which will also influence the 
effective b-value (see Supporting Information Figure S2).

An early version of this framework used the two- 
transverse-period approximation of DW-SSFP (Equation 1) to 
derive analytical solutions (see Appendix) for the ADC and 
signal under a gamma distribution.31 However, further analysis 
with Monte-Carlo simulations revealed substantial deviations 
in signal attenuation when the two-transverse-period condition 
(TR ≥ ~1.5 ⋅ T2) is violated (Figure 5). By using numerical 

F I G U R E  5  A-D, Attenuation of the DW-SSFP signal for 4 different values of T
2
, comparing the signal attenuation from Monte-Carlo 

simulations (blue dots) versus analytical solutions of the two-transverse-period (red dashed line),8 full Buxton (green dashed line),8 and the Freed 
(orange dashed line)18 model assuming a gamma distribution of diffusivities. Simulated parameters (except for T

2
) are identical to the Monte-Carlo 

simulations described in the main text. As the T
2
 estimate increases, we observe a substantial deviation of the signal attenuation predicted by the 

two-transverse-period model versus the Monte-Carlo estimates. Similarly, a deviation is seen with the Full Buxton model, particularly at lower flip 
angles. As described by Freed et al,18 under certain experimental regimes the full Buxton model no longer provides accurate estimates of the DW-
SSFP signal. The Freed model, however, provides excellent agreement to the Monte-Carlo simulations across the range of T

2
 values simulated

(A) (B)

(C) (D)
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integration, we can incorporate other diffusivity distributions 
without analytical solutions. Moreover, at longer T2, the gamma- 
distributed Buxton model deviates from Monte-Carlo simu-
lations, whereas the Freed model18 provided excellent agree-
ment (Figure 5). In general, the framework presented here is 
compatible with any DW-SSFP signal model and could be ex-
tended to other models of non-Gaussianity. Furthermore, this 
approach could be extended to other DW-SSFP variants, e.g., 
the diffusion-weighted signal before the diffusion gradient 
(corresponding to the M+ signal in Wu and Buxton6), or even 
more complicated combinations of echoes.32

Subsequent to designing this protocol, we appreciated 
that the use of q = 20 cm−1 in our non–diffusion-weighted 
DW-SSFP datasets provides less than 2� phase across a 
voxel, meaning that the higher-order pathways are not com-
pletely dephased and thus will contribute some net signal. 
However, the fact that positive and negative pathways of the 
same order have opposing phase will lead to partial cancel-
lation. This will have only affected the low q-value data in 
our case, and would result in a spatially varying bias in S0, 
which we eliminate through normalization before fitting. In 
addition, the Monte-Carlo simulations were performed with 
2� phase across the simulated voxel, with results consistent 
with those obtained within our postmortem experiment and 
our proposed framework.

One limitation of our study is the lack of comparison 
between experimental DW-SSFP and DW-SE data. Such 
a comparison would require acquisition of both DW-SSFP 
and DW-SE data at multiple flip angles/b-values. However, 
DW-SE measurements in postmortem tissue suffer from very 
low SNR and are beyond the scope of this study.

6 |  CONCLUSIONS

By acquiring DW-SSFP data at multiple flip angles, we can 
probe the non-Gaussian diffusion properties of a sample. We 
can additionally disentangle the blurred mixture of diffusion-
weighted signals with different b-values in DW-SSFP. This 
approach enables the transformation of ADC estimates de-
rived from DW-SSFP to more conventional sequences at a 
single effective b-value.
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.

FIGURE S1 In DW-SSFP, repeated application of RF pulses 
decomposes the magnetization into a series of coherence 
pathways, which are sensitized to the diffusion gradient dur-
ing transverse periods. Here we show 5 example coherence 
pathways. The spin-echo pathway (A), stimulated-echo path-
way (B), and long stimulated-echo pathway (C) only survive 
for 2 TRs in the transverse plane, the condition for the two-
transverse-period approximation (1). These pathways all ex-
perience the same q-value, but have different diffusion times, 
defined as Δ=1 ⋅TR (A), 2 ⋅TR (B), and 4 ⋅TR (C). For the 
full Buxton model (1), this condition is no longer required, 
and pathways can experience cumulative sensitization to the 
diffusion gradients over multiple TRs, such as the spin-echo 
pathway in (D), in addition to pathways that generate multiple 
echoes over their lifetime (E). This leads to pathways with 
different q-values, in addition to weighting of the signal by T

2

FIGURE S2 Processing pipeline for (A) 2 samples with 
different diffusion properties but identical relaxation times 
and (B) identical diffusion properties but different T

1
 val-

ues. Experimental DW-SSFP data are acquired at multiple 
flip angles (i, dots) and converted into ADC estimates (ii, 
dots) (Equation 2, main text). To eliminate the effects of S

0
,  

we fit to the DW-SSFP signal attenuation. The DW-SSFP 
signal model incorporating a gamma distribution of diffusiv-
ities (Equation 4, main text) is subsequently fit to the ADC 
estimates at multiple flip angles (by comparing to Equation 2,  
main text) to determine D

m
 and D

s
 (iii). From Equation 3 

in the main text and our fitted values of D
m

 and D
s
, we 

can simulate the estimated ADC with b-value for a DW-SE 
sequence by making comparisons with the DW-SE signal 
under the Stejskal-Tanner model (S=S0 exp (−bD)). From 
this, we can define an equivalent DW-SE b-value, which 
gives rise to the same ADC estimate at each DW-SSFP 
flip angle (iv). Our ADC estimates with DW-SSFP can 
be subsequently plotted versus an effective b-value (v). In 
(A), this leads to distinct evolution of ADC with effective 
b-value for the 2 samples (v). However, in (B), the signal 
evolution is identical (v), despite having a different ADC 
evolution versus flip angle (ii), reflecting differences in the 
weighting of the different coherence pathways due to relax-
ation, leading to different effective b-values along the ADC 
curve (v, dots)
TABLE S1 Acquisition protocols for the T

1
, T

2
 and B

1
 maps. 

Before processing, a Gibbs ringing correction was applied to 
the TIR and TSE data (2). T

1
 and T

2
 maps were derived as-

suming mono-exponential signal evolution. The B
1
 map was 

obtained using the methodology described in (3)
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Full Buxton model definitions
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Two-transverse-period approximation of 
ADC and signal under a gamma distribution
Under the two-transverse-period approximation of DW-
SSFP (Equation 1), we can define:

where:

For a gamma distribution:

where Φ is the Lerch transcendent.33 Derivations are pro-
vided in Supporting Information.
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