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Simple Summary: Aspirin and related drugs with anti-inflammatory effects have lung cancer pre-
vention effects in laboratory studies and through their use in populations at risk for lung cancer. We
studied aspirin plus zileuton compared to two placebo pills for 3 months in smokers. We studied
genes associated with lung cancer, smoking, and lung disease. We used nasal swabs to collect nasal
cells that were smoke exposed to look for changes in these genes. We found that most of the gene
panels in the nasal cells related to smoking and lung cancer lung disease did not change in a favorable
way, but we did see a favorable change in a gene panel representing abnormal squamous cells that
may progress to lung cancer. We think this finding is of interest and can be studied further using deep
lung biopsies to understand if this drug effect occurs where squamous cell lung cancer actually starts.

Abstract: The chemopreventive effect of aspirin and other non-steroidal anti-inflammatory drugs
(NSAIDs) on lung cancer risk is supported by epidemiologic and preclinical studies. Zileuton, a 5-
lipoxygenase inhibitor, has additive activity with NSAIDs against tobacco carcinogenesis in preclinical
models. We hypothesized that cyclooxygenase plus 5-lipoxygenase inhibition would be more effective
than a placebo in modulating the nasal epithelium gene signatures of tobacco exposure and lung
cancer. We conducted a randomized, double-blinded study of low-dose aspirin plus zileuton vs.
double placebo in current smokers to compare the modulating effects on nasal gene expression and
arachidonic acid metabolism. In total, 63 participants took aspirin 81 mg daily plus zileuton (Zyflo
CR) 600 mg BID or the placebo for 12 weeks. Nasal brushes from the baseline, end-of-intervention,
and one-week post intervention were profiled via microarray. Aspirin plus zilueton had minimal
effects on the modulation of the nasal or bronchial gene expression signatures of smoking, lung cancer,
and COPD but favorably modulated a bronchial gene expression signature of squamous dysplasia.
Aspirin plus zileuton suppressed urinary leukotriene but not prostaglandin E2, suggesting shunting
through the cyclooxygenase pathway when combined with 5-lipoxygenase inhibition. Continued
investigation of leukotriene inhibitors is needed to confirm these findings, understand the long-term
effects on the airway epithelium, and identify the safest, optimally dosed agents.
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1. Introduction

Lung cancer is the leading cause of cancer-related deaths both in men and women in
the US and worldwide. An estimated 228,820 new cases of lung cancer and 135,720 deaths
due to lung cancer are projected to occur in the US in 2020. [1]. While the prevention
of tobacco use and tobacco cessation efforts remain the most effective means to reduce
the incidence of lung cancer, the risk of developing this disease is still elevated for years
after successful quitting compared to never smokers. Moreover, relapse is high even with
state-of-the art cessation methods. Effective and well-tolerated chemoprevention strategies
for lung cancer are urgently needed.

Interest in aspirin (ASA) as a chemopreventive agent is based on epidemiologic cohort
and case control studies showing a reduction in precancerous lesions and cancers in lung,
colon, breast, and prostate tissue [2–4]. An analysis of eight randomized trials of daily
ASA for a mean duration of ≥4 years versus no aspirin reported a significant decrease in
lung adenocarcinoma mortality with ASA use (HR = 0.68, 95% CI 0.50–0.92) [5]. In a large
cohort study (VITamin and Lifestyle Study), total NSAID use (>10 years) was associated
with a borderline reduction in the risk of lung cancer (HR 0.82; 95% C.I. 0.64–1.04), with
the strongest association for adenocarcinoma (HR 0.59); this effect was limited to men (HR
0.66) and to long-term (≥10 years) former smokers (HR 0.65) [5]. The effects of ASA are
also supported in chemically induced murine models of lung cancer, in which it inhibits
tumorigenesis and reduces pulmonary tumor multiplicity [6,7].

Zileuton is a potent inhibitor of 5-lipoxygenase (5-LOX) [8,9]. It has been approved by
the FDA for the treatment of asthma based on the downstream suppression of leukotrienes,
including leukotriene B(4) (LTB(4)), leukotriene C(4) (LTC(4)), leukotriene D(4) (LTE(4)),
and leudotriene E(4) (LTE(4)), which are inflammatory mediators of asthma. 5-LOX and
leukotrienes appear to be relevant therapeutic targets for lung chemoprevention based
on the findings of higher levels of 5-LOX metabolites in a number of human solid tu-
mors, including lung cancer and leukemias, compared to normal tissues [10]. Additional
supporting evidence for the use of 5-LOX as a chemoprevention target is evidence that
mRNA for 5-LOX and 5-LO activating protein (FLAP), which is required for activation of
5-LOX, is expressed in lung cancer cell lines and that mRNA for 5-LOX is expressed in lung
cancer tissues [11].

In preclinical studies, 5-LOX inhibitors, including zileuton, have inhibitory activity in
a number of lung cancer models [12,13]. In an A/J mouse lung chemoprevention model
using vinyl carbamate induction, the administration of zileuton 1200 mg/kg in the diet
(equivalent to a clinically relevant human dose) starting 2 weeks after carcinogen exposure
caused a significant reduction in tumor multiplicity (24% at 13 weeks and 28% at 43 weeks)
and reduced the size of lung tumors [14].

The combination of ASA and zileuton may be additive or synergistic in inhibiting
the arachidonic acid (AA) pathway of inflammatory mediators related to lung carcino-
genesis. In an NNK-induced model of lung carcinogenesis, ASA plus the 5-LOX inhibitor
A-79175 was more effective than either drug alone, suggesting that concurrent inhibition of
both 5-LOX and cyclooxygenase (COX) is more effective than inhibition of either pathway
alone [12]. A study of the combination of zileuton and the selective COX-2 inhibitor cele-
coxib in smokers reported a significant reduction in the levels of prostaglandin E metabolite
(PGE-M) and LTE(4), suggesting that the combination resulted in inhibition of both the LOX
and COX proinflammatory pathways of AA metabolism [15]. The combination of celecoxib
with zileuton led to a 62% reduction in PGE-M levels compared to an 18% reduction in
PGE-M with zileuton alone; furthermore, the addition of celecoxib to zileuton did not affect
the inhibition of LTE(4) by zileuton alone.

Exposure to cigarette smoke injures the cells that line the respiratory tract and creates
an airway field of injury. Gene expression alterations in the airway field have been identified
that are associated with smoking [16,17], smoking cessation [18,19], COPD [20,21], bronchial
premalignant lesions [22–24], and lung cancer [25]. There is significant overlap between
bronchial and nasal smoking- and lung cancer-associated gene expression changes [26,27],
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suggesting the ability to detect lung disease-related biology throughout the intra- and extra-
thoracic airway. We previously reported on the effect of a low-dose (LD) ASA intervention
for 3 months on gene expression in the nasal epithelium in current smokers [28]. The
ASA intervention had minimal effects on known carcinogenesis gene signatures in the
nasal epithelium. However, gene set enrichment analysis (GSEA) showed that the ASA
intervention led to an enrichment of genes in pathways related to the biology of ribosomes,
histones, proteasomes, chemokines, the mitochondrial electron transport chain, cellular
signaling, and immune function.

Given the efficacy of combined COX- and 5-LOX inhibition in preclinical lung carcino-
genesis models and human studies showing that dual COX and LOX inhibition decreased
the respective metabolites of the AA pathway in smokers, we sought to evaluate the effects
of LD ASA and zileuton on the airway field of injury via gene expression profiling of
nasal brushings. Here, we present a study of current smokers randomized to a 12-week
intervention of ASA and zileuton vs. double placebo (NCT02348203) with gene expression
from nasal brushings profiled at baseline, at the end of the intervention, and at one-week
post intervention.

2. Materials and Methods
2.1. Study Design

This study was a single-center, randomized, double-blinded, placebo-controlled trial
to determine the modulatory effects of combined treatment of ASA and zileuton on nasal
epithelium gene expression and AA metabolism in current smokers. The primary endpoint
was changes in a smoking-associated gene expression signature derived using bronchial
and nasal brushings (n = 119 genes) [29] in the combined ASA and zileuton group vs.
placebo control.

Secondary endpoints included: (1) the effects of the treatment with ASA and zileuton
vs. placebo on the modulation of additional gene expression signatures, including: a
nasal lung cancer signature (n = 535 genes; abbreviated signature n = 35 genes) [29]; a
bronchial smoking signature (n = 81 rapidly reversible genes upon smoking cessation) [30];
a bronchial lung cancer gene signature (n = 23 genes) [31]; a PI3K pathway activity signature
observed in bronchial brushings from smokers and lung cancer patients (n = 183 genes) [23];
a bronchial COPD signature (n = 98 genes) [20]; a bronchial signature associated with the
presence of squamous dysplasia (n = 280 genes) [22]; and a signature associated with
premalignant lesion severity derived from endobronchial biopsies (n = 200 genes) [24];
(2) persistence of the changes in the smoking gene expression signature in the nasal ep-
ithelium one week off agent intervention; (3) changes in cyclooxygenase (COX) and 5-
lipoxygenase (LOX)-mediated arachidonic acid (AA) metabolism; (4) safety of 12-week
exposure to ASA and zileuton vs. placebo in current smokers; (5) exploratory analysis
of a gender effect in the modulatory effects of ASA and zileuton on the smoking-related
gene expression signature; (6) modulation of the metabolomics profile of the AA pathway
by ASA and zileuton; and (7) unbiased discovery of the effects of ASA and zileuton on
whole-genome gene expression.

2.2. Study Drugs

ASA 81 mg and matched placebo were provided by the National Cancer Institute,
Division of Cancer Prevention (NCI DCP) and packaged and supplied to the study site
by the NCI DCP Drug Repository, MRIGlobal, Kansas City, MO. Zileuton (Zyflo CR™,
Cary, NC, USA) 600 mg was purchased from commercial sources and repackaged by the
University of Arizona Cancer Center Investigational Pharmacy in bottles supplied by the
NCI DCP Drug Repository. A not fully matched zileuton placebo was packaged and
supplied by NCI DCP Drug Repository.
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2.3. Study Population

Current smokers at least 18 years of age with a ≥20 pack year tobacco exposure
history and an average daily use of ≥10 cigarettes per day were recruited from the greater
Tucson and Phoenix areas. Inclusion criteria included normal hematologic, biochemical,
and coagulation parameters and an ability to participate in the trial and sign informed
consent. Exclusion criteria included: allergy to aspirin or NSAIDs; gastric intolerance to
ASA or NSAIDs; history of gastric ulcer; ASA or NSAID use for more than 5 days per
month within 3 months of enrollment; unwilling or unable to refrain from use of non-study
ASA or NSAID; adult asthma; current, recent, or chronic use of leukotriene antagonists or
glucocorticoids (systemic, topical and/or nasal sprays); requiring chronic anticoagulation
or anti-platelet therapy; history of a bleeding disorder or hemorrhagic stroke; history of
chronic sinusitis or recent nasal polyps; history of, or current, active or chronic liver disease;
unwilling or unable to limit alcohol consumption; pregnant or lactating; inability to absorb
an oral agent; uncontrolled intercurrent illness; invasive cancer within five years except
non-melanoma skin cancer; or taking drugs known to interact with zileuton, including
theophylline, warfarin, and propranolol.

2.4. Study Procedure

Participants underwent a physical exam, clinical laboratory analysis (CBC and CMP),
and assessments of medical history, concurrent medications, NSAIDs use, and tobacco
use history at the eligibility evaluation. Participants who had taken NSAIDs within the
preceding 2 weeks underwent a 4-week washout period before baseline specimen collection.
Participants underwent baseline specimen collection of nasal brushing, urine, blood, and
buccal cells. Participants were then randomized (1:1) to receive ASA (81 mg QD) and
zileuton (Zyflo CR™) two 600 mg extended-release tablets BID or placebo pills for 12 weeks.
For study visit scheduling conflicts, the agent intervention was extended for 2 weeks until
the rescheduled visit. Two interim study visits were conducted at 4 and 8 weeks for hepatic
function testing, compliance check, AE review, and a current tobacco use assessment.
Following the agent intervention, an end-of-intervention visit was conducted for safety
labs (CBC and CMP), compliance check, current tobacco use assessment, and collection of
nasal brushing, urine, blood, and buccal cells. Biospecimen collection was also performed
7–10 days post-intervention visits. The safety of the agent intervention was assessed
by self-reported AEs and clinical laboratory analysis. AEs were graded using the NCI
Common Terminology Criteria for Adverse Events (CTCAE) v. 4.0. Upon study completion,
participants were provided information on the Arizona Smokers’ Helpline to assist in
smoking cessation.

2.5. Nasal Brushing for Gene Expression Analysis

Nasal epithelium brushings were collected using a nasal speculum to spread one nostril
while a standard cytology brush was inserted underneath the inferior nasal turbinate. The
brush was rotated in place for 3 s and immediately placed in RNAProtect Cell solution.
A second brushing from the same nostril was similarly collected and processed. Samples
were stored at −80 ◦C prior to analysis.

2.6. Analysis of Urinary Biomarkers of Arachidonic Acid Metabolism

Prostaglandin metabolite E2 (PGE2) is a major COX-mediated AA metabolism product.
The major urinary metabolite of PGE2, 11α-hydroxy-9,15,-dioxo-2,3,4,5-tetranor-prostane-
1,20-dioic acid (PGEM), was quantified by a sensitive and specific liquid chromatography
tandem mass spectrometry (LC-MS) assay as previously described [32].

The urinary LTE4, the terminal product of 5-LOX-mediated AA metabolism, was
quantified by a sensitive and specific liquid chromatography tandem mass spectrometry as-
say [33]. Briefly, 5 mL urine was acidified to pH 3 with 1M HCl and mixed with the internal
standard ([2H3]LTE4 (1 ng)) and extracted with C18 solid-phase extraction columns. The
eluate from solid-phase extraction was dried and reconstituted in an aliquot of methanol
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and filtered using a 0.2 µm Spin-X filter. The filtrate was dried and reconstituted in an
aliquot of methanol/water (50/50) prior to injection onto the LC-MS system. The chromato-
graphic separation was achieved by a C18 reverse-phase column and a gradient mobile
phase of ammonium acetate, acetic acid, and acetonitrile. The mass spectrometer was
operated in negative ion mode utilizing electrospray ionization. Detection was achieved
using selected reaction monitoring, with the transition of m/z 438 to 333 monitored for
LTE4 and the transition of m/z 441 to 336 for the internal standard. The assay was linear
over the range of 6.25–2500 pg/mL with an assay accuracy of >90% and an inter-assay
coefficient of variation of <12%.

Urinary biomarker levels were normalized by urinary creatinine concentrations mea-
sured using a creatinine assay kit (Diazyme Laboratories).

2.7. Microarray Data Acquisition and Data Preprocessing

Total RNA was isolated from nasal brushings using a Qiagen miRNeasy Mini Kit
following the manufacturer’s instruction. Quality control and quantification of the RNA
samples were performed using an Agilent BioAnalyzer and NanoDrop spectrophotometer.
The total RNA was processed and hybridized to Affymetrix Human Gene 1.0 ST Arrays.

Gene expression values were generated for each Human Gene Arrays 1.0ST CEL
file (n = 127 samples, n = 43 subjects) using R statistical software (version 3.6.0) and
the Robust Multiarray Average (RMA) algorithm (affy package) [34] with Entrez Gene-
specific probeset mapping (version 23.0.0) from the Molecular and Behavioral Neuroscience
Institute (Brainarray) at the University of Michigan [35]. Standardized RNA quality metrics
were assessed, including the normalized un-scaled standard error (NUSE, cutoff > 1.05)
and relative log expression (RLE, cutoff > 0.1). Additionally, we conducted a principal
component analysis (PCA) across all genes and samples and excluded samples that were
greater than 2 standard deviations from the mean of the first principal component. Samples
with more than one failed quality metric were excluded from analysis (n = 4). limma [36]
was used to remove the effect of the variable RNA quality based on RNA integrity (RIN)
values. The sex annotation of each sample was verified using the expression levels of
Y-chromosome specific genes.

2.8. Calculation of Gene Expression Signature Scores

For each previously published gene expression signature (“signature data”), the corre-
sponding processed gene expression data used to derive the signatures was downloaded
from the Gene Expression Omnibus (GEO). Specifically, we downloaded the following
datasets: GSE16008 for the smoking-associated gene expression signature derived from
nasal and bronchial brushings, GSE80796 for the lung cancer-associated gene expres-
sion signature derived from nasal brushings, GSE7895 for the smoking-associated gene
expression signature derived from bronchial brushings, GSE12815 for the PI3K activity
signature, GSE37147 for the COPD-associated gene expression signature derived from
bronchial brushings, GSE79209 for the squamous dysplasia-associated signature derived
from bronchial brushings, and GSE109743 for the proliferative molecular subtype signa-
ture derived from endobronchial biopsies and reflected in the bronchial brushings. For
GSE79209 and GSE109743 (endobronchial biopsies in the discovery cohort (n = 190)), resid-
ual gene expression values, as previously described [22,30], were used in this analysis.
For each gene expression dataset (“signature data”), ComBat [37] was used to remove
batch effects between the signature data and the study gene expression data. As noted
above, prior to conducting ComBat, the effect of RIN was removed from the study gene
expression data prior to performing ComBat with the signature datasets. However, prior to
performing ComBat with the GSE79209 and GSE109743 signature datasets, residual gene
expression values were calculated in the study dataset using limma, adjusting for batch
and RIN. ComBat-adjusted gene expression values were z-score normalized across the
combined study data and signature data. For each gene signature, principal component
analysis was conducted across the signature data, and the first principal component was
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applied to the study data to generate gene signature scores (Supplementary Figure S3,
Supplementary Methods). Additionally, we generated scores from a lung cancer-associated
gene expression signature derived from bronchial brushings using the classifier described
by Whitney et al. [31] to score the study data.

2.9. Identification of Gene Expression Changes Associated with Aspirin and Zileuton Treatment

A linear mixed effect model implemented in limma was used to identify differentially
expressed genes associated with ASA plus zileuton at the end-of-treatment or one-week
post-treatment points. The main effects in the model were treatment (ASA plus zileuton or
placebo), timepoint (baseline, end-of-treatment, one-week post-treatment), the interaction
between treatment and timepoint, RIN, and batch (samples were processed in 3 batches).
Patient was modeled as a random effect using the limma ‘duplicateCorrelation’ function.
Genes signatures associated with ASA plus zileuton at the end-of-treatment and one-week
post-treatment points were identified based on empirical Bayes moderated t-statistics
and their associated p-values for the interaction terms (p-value < 0.01, via the limma
topTable function). The relationship between the differentially expressed genes with ASA
plus zileuton treatment at the end-of-treatment and one-week post-treatment points was
assessed using Gene Set Enrichment Analysis (GSEA) [38] using ranked gene lists based
on the moderated t-statistic and gene signatures for the interaction effects (FDR < 0.05).
Additionally, the ranked lists for each interaction effect were used for pathway enrichment
analysis via GSEA using the Molecular Signatures Database (MSigDB) [39] hallmark gene
set (FDR < 0.25). Finally, we evaluated the correlation (Spearman) between gene scores
computed using Gene Set Variation Analysis (GSVA) [40] for each gene signature (ASA plus
zileuton at end-of-treatment and one-week post-treatment up- and downregulated genes)
and PGEM, LTE4, and cotinine analyte measurements. Correlation metrics were computed
using changes in the gene scores and analyte measurements for each patient between
the end-of-treatment and baseline or one-week post-treatment and baseline points, and
correlation metrics were computed separately for placebo and drug arms across subjects
with samples from all three timepoints (n = 38 subjects, n = 114 samples).

2.10. Statistical Methods

For a given endpoint, evaluable participants were defined as those that received the
intervention and had three time points available for deriving changes within the same
subject and then comparing the changes between the two groups. A two-sided two-sample
t-test was used to test for significant differences in changes in the gene signature scores
between the treatment and placebo groups. Based on a sample size of 20 per group,
the power will be at least 85% to detect an effect size of ≥1 (i.e., ≥1 standard deviation
difference in the mean changes between the 2 groups) at a significance level of 5%. A two-
sided two-sample t-test was also used to compare the baseline values of the gene signature
scores between the intervention arms and the baseline values of PGEM and LTE4 and
changes in the PGEM and LTE4 levels between the intervention arms. A two-sided paired
t-test was performed to evaluate the changes in the gene signature scores, PGEM, and
LTE4 overall, by intervention arm, and by gender. All secondary analyses are considered
exploratory so no correction for multiple comparisons was used. The Fisher’s exact test
was used to compare the frequency of adverse events (AEs) between the intervention and
placebo arms.

The protocol is available at: https://clinicaltrials.gov/ProvidedDocs/03/NCT02348
203/Prot_SAP_000.pdf (accessed on 19 April 2022).

3. Results
3.1. Participant Demographics

From January 2016 to December 2018, 123 participants were consented and 63 enrolled
and randomized to ASA and zileuton (n = 31; 18 male/13 female) or placebo (n = 32;
18 male/14 female) (see consort diagram, Figure 1).

https://clinicaltrials.gov/ProvidedDocs/03/NCT02348203/Prot_SAP_000.pdf
https://clinicaltrials.gov/ProvidedDocs/03/NCT02348203/Prot_SAP_000.pdf
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Figure 1. Consort flow diagram.

In total, 21 (68%) participants in the combined ASA and zileuton arm and 22 (69%) in
the placebo arm completed the study intervention with complete sets of biospecimens. The
baseline characteristics of the randomized participants are summarized in Table 1.

Table 1. Baseline characteristics of the randomized participants; data is presented as
mean ± standard deviation.

Variable All (n = 63) ASA + Zileuton
(n = 31)

Placebo
(n = 32) p b

Age 51.57 ± 9.85 49.55 ± 8.64 53.53 ± 10.67 0.11

BMI 28.23 ± 7.02 28.69 ± 6.60 27.78 ± 7.48 0.61

Packyears 34.67 ± 12.42 32.74 ± 12.52 36.53 ± 12.22 0.23

Male 36 (57.14%) a 18 (58.06%) 18 (56.25%) 1.00

Female 27 (42.86%) 13 (41.94%) 14 (43.75%) 1.00

White 52 (82.54%) 28 (90.32%) 24 (75.00%) 0.15

Hispanic 7 (11.11%) 3 (9.68%) 4 (12.50%) 1.00
a frequency (%). b derived from a two-sample t-test for continuous variables and Fisher’s exact tests for
categorical variables.

In total, 21 (68%) participants in the combined ASA and zileuton arm and 22 (69%) in
the placebo arm completed the study intervention with complete sets of biospecimens. The
baseline characteristics of the randomized participants are summarized in Table 2.

Nasal specimens from 19 (61%) and 21 (66%) participants in the combined ASA and
zileuton arm and placebo arm, respectively, yielded high-quality RNA and microarray
data across all three time points (baseline, end-of-intervention, and post-intervention)
and thus constituted the evaluable cohort for changes in the gene signature scores. The
baseline characteristics of the cohort evaluable for gene signature scores are summarized in
Supplementary Table S1. The majority of participants were white non-Hispanic; 11% of
all participants were Hispanic. The mean age of all randomized participants was 50 and
54 years, respectively, for the ASA and zileuton and placebo arms; there was a significant
difference in age (50 vs. 56 years, respectively, p = 0.03) between the intervention arms for
participants with gene signatures. There were no significant differences by the intervention
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arm for body mass index (BMI), pack year tobacco exposure, or race/ethnicity for all
participants or for those with evaluable gene signatures.

Table 2. Baseline characteristics of the randomized participants; data is presented as
mean ± standard deviation.

Variable All (n = 63) ASA + Zileuton
(n = 31)

Placebo
(n = 32) p b

Age 51.57 ± 9.85 49.55 ± 8.64 53.53 ± 10.67 0.11

BMI 28.23 ± 7.02 28.69 ± 6.60 27.78 ± 7.48 0.61

Packyears 34.67 ± 12.42 32.74 ± 12.52 36.53 ± 12.22 0.23

Male 36 (57.14%) a 18 (58.06%) 18 (56.25%) 1.00

Female 27 (42.86%) 13 (41.94%) 14 (43.75%) 1.00

White 52 (82.54%) 28 (90.32%) 24 (75.00%) 0.15

Hispanic 7 (11.11%) 3 (9.68%) 4 (12.50%) 1.00
a frequency (%). b derived from a two-sample t-test for continuous variables and Fisher’s exact tests for
categorical variables.

All but three participants had high baseline urinary cotinine levels consistent with self-
reported current heavy tobacco use, with similar levels between arms and which remained
high over the duration of the study (data not shown).

3.2. Adherence and Safety

Participants in both arms took greater than 90% of the assigned pills on average by
pill count. The ASA plus zileuton intervention was overall well tolerated. All adverse
events (AEs) were grade 1 or 2 events treated with supportive care intervention and were
self-limited (Table 3). There were no AEs related to GI bleed, a well-known side effect of
ASA, reported for the ASA and zileuton arm, although one event of anemia was reported
for the placebo arm. Dyspepsia was more frequent in the ASA and zileuton arm than the
placebo arm, as were other GI-related AEs (nausea, vomiting, diarrhea). Abnormal liver
tests were very rare for both arms and not significantly different. AEs of headache, mania,
fatigue, and rash were noted for ASA and zileuton, most likely related to zileuton.

Table 3. Summary of study intervention-related adverse events.

Adverse Event
Aspirin + Zileuton

(n = 32)
Placebo
(n = 31)

Grades 1, 2 (%) Grades 1, 2 (%)

Blood and Lymphatic System Disorders

Anemia 1 (3.23)

Blood and lymphatic system
disorders—Other-Hematocrit Low 1 (3.23)

Gastrointestinal disorders

Abdominal pain 1 (3.23)

Diarrhea 1 (3.13)

Dyspepsia 4 (12.5) 4 (12.9)

Nausea 1 (3.13)

Stomach pain 1 (3.13) 1 (3.23)

Vomiting 1 (3.13)

General disorders and administration site conditions
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Table 3. Cont.

Adverse Event
Aspirin + Zileuton

(n = 32)
Placebo
(n = 31)

Grades 1, 2 (%) Grades 1, 2 (%)

Fatigue 1 (3.13)

Investigations

Alkaline phosphatase increased 1 (3.23)

Blood bilirubin increased 1 (3.13) 1 (3.23)

Investigations—Other-Macrocytosis 1 (3.13)

Alanine aminotransferase increased 1 (3.13)

Aspartate aminotransferase increased 1 (3.13) 1 (3.23)

Metabolism and nutrition disorders

Dehydration 1 (3.23)

Nervous system disorders

Dizziness 1 (3.13) 1 (3.23)

Headache 2 (6.25) 1 (3.23)

Psychiatric disorders

Mania 1 (3.13)

Skin and subcutaneous tissue disorders

Rash maculo-papular 1 (3.13)

The attrition rate for the ASA and zileuton arm was 10/31 and 10/32 for the placebo
arm; reasons included lost to follow-up, withdrew consent, non-compliance, and AE. The
two AEs that were associated with participant withdrawal from the study were abdominal
pain grade 2 (1 participant, placebo arm; attribution possibly related to intervention) and
seizure grade 2 (1 participant with history of seizures, ASA + zileuton arm; attribution
unrelated to intervention).

3.3. ASA and Zileuton Do Not Modulate the Smoking-Associated Gene Expression Signature;
However, They Do Modulate a Bronchial Squamous Dysplasia Signature

Gene expression data from the nasal brushings of participants in the ASA and zileuton
and placebo arms was scored based on several lung-associated gene expression signatures,
including signatures associated with smoking, lung cancer, COPD, and bronchial dysplasia,
derived from bronchial and nasal brushings and endobronchial biopsies (see Supplemen-
tary Methods). Participants with high-quality microarray data across all three time points
(baseline, end-of-intervention, and post-intervention) were used to evaluate changes in
the signature scores associated with ASA plus zileuton (n = 19 participants in the ASA
and zileuton arm and 21 participants in the placebo arm). Data for the primary endpoint
analysis of modulation of the smoking-associated gene expression signature score derived
from nasal and bronchial brushings [29] are summarized in Table 4.

There was no significant change in this gene signature score at the end of the inter-
vention compared to baseline in the ASA and zileuton versus placebo groups (change
of −0.15 ± 2.89 vs. 0.26 ± 2.26, respectively, p = 0.26). Scores derived from a bronchial
signature associated with the presence of squamous dysplasia [22], a 280-gene set with
upregulated genes enriched for energy metabolism (OXPHOS, the electron transport chain,
and mitochondrial protein transport), are summarized in Table 5.
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Table 4. Baseline and changes in a smoking-associated gene-expression signature derived from nasal
and bronchial brushings by Zhang [29]; data is presented as mean ± standard deviation.

All Overall (n = 40) ASA + Zileuton
(n = 19) Placebo (n = 21) p a

Baseline 0.31 ± 3.85 0.82 ± 4.00 −0.15 ± 3.75 0.43

Post Intervention (Int.) 0.37 ± 3.72 0.67 ± 4.20 0.11 ± 3.30

1-week Post Int. −0.64 ± 4.10 −0.03 ± 4.45 −1.19 ± 3.79

Baseline—Post Int. 0.06 ± 2.55 −0.15 ± 2.89 0.26 ± 2.26 0.62

Baseline-1-week Post Int. −0.73 ± 3.31 −0.24 ± 3.04 −1.16 ± 3.55 0.40

Female n = 19 n = 8 n = 11

Baseline −0.26 ± 3.05 −1.26 ± 1.40 0.47 ± 3.74 0.18

Post Int. −0.37 ± 3.10 −1.25 ± 3.08 0.27 ± 3.09

1-week Post Int. −1.14 ± 3.52 −2.08 ± 3.49 −0.45 ± 3.54

Baseline—Post Int. −0.11 ± 2.37 0.01 ± 2.93 −0.20 ± 2.01 0.86

Baseline-1-week Post Int. −0.87 ± 2.98 −0.82 ± 3.57 −0.91 ± 2.66 0.95

Male n = 21 n = 11 n = 10

Baseline 0.83 ± 4.46 2.33 ± 4.62 −0.83 ± 3.83 0.11

Post Int. 1.05 ± 4.16 2.07 ± 4.48 −0.07 ± 3.68

1-week Post Int. −0.14 ± 4.66 1.61 ± 4.60 −2.10 ± 4.10

Baseline—Post Int. 0.22 ± 2.76 −0.27 ± 2.99 0.76 ± 2.51 0.41

Baseline-1-week Post Int. −0.58 ± 3.69 0.22 ± 2.66 −1.47 ± 4.58 0.33
a derived from two-sample t-test.

Table 5. Baseline and changes in a squamous dysplasia-associated gene expression signature derived
from bronchial brushings by Beane [22]; data is presented as mean ± standard deviation.

All Overall (n = 40) ASA + Zileuton
(n = 19) Placebo (n = 21) p a

Baseline −0.14 ± 5.04 a 0.27 ± 5.01 −0.51 ± 5.15 0.63

Post t Intervention (Int.) −0.22 ± 4.48 −2.05 ± 3.50 1.43 ± 4.70

1-week Post Int. 0.27 ± 6.29 −1.56 ± 3.56 1.91 ± 7.72

Baseline—Post Int. −0.08 ± 4.66 −2.31 ± 4.08 1.94 ± 4.28 <0.01

Baseline-1-week Post Int. 0.37 ± 5.90 −1.83 ± 5.37 2.35 ± 5.77 0.03

Female n = 19 n = 8 n= 11

Baseline 0.40 ± 5.12 0.15 ± 5.85 0.58 ± 4.82 0.86

Post Int. −0.58 ± 4.21 −1.33 ± 4.18 −0.04 ± 4.35

1-week Post Int. 0.07 ± 6.84 −2.68 ± 3.37 2.07 ± 8.11

Baseline—Post Int. −0.98 ± 3.58 −1.48 ± 4.82 −0.61 ± 2.56 0.62

Baseline-1-week Post Int. −0.33 ± 5.96 −2.83 ± 6.67 1.49 ± 4.91 0.12

Male n = 21 n = 11 n = 10

Baseline −0.63 ± 5.04 0.35 ± 4.62 −1.70 ± 5.50 0.36

Post Int. 0.10 ± 4.79 −2.57 ± 3.00 3.05 ± 4.75

1-week Post Int. 0.46 ± 5.87 −0.66 ± 3.62 1.71 ± 7.71

Baseline—Post Int. 0.73 ± 5.41 −2.93 ± 3.57 4.75 ± 4.09 <0.001

Baseline-1-week Post Int. 1.06 ± 5.92 −1.03 ± 4.27 3.39 ± 6.84 0.11
a derived from two-sample t-test.
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There was significant modulation of this signature score in a favorable direction
from baseline to the end of the intervention with combined ASA and zileuton compared
to placebo (change of −2.31 ± 4.08 vs. 1.94 ± 4.28, respectively, p < 0.01) (Figure 2).
Data for the modulation of the other gene expression signature scores are summarized in
Supplementary Table S2. No other gene expression signature was significantly modulated
by the intervention vs. placebo.
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post-intervention time points (pos→neg z-score is in the favorable direction) [22].

3.4. ASA and Zileuton Suppresses the 5-LOX-Mediated AA Metabolite LTE4 but Does Not
Suppress the COX-Mediated AA Metabolite PGEM

Urinary PGEM and LTE4 levels were analyzed for the 43 enrolled participants, in-
cluding the 40 participants with evaluable gene expression data. The combined ASA and
zileuton intervention significantly suppressed urinary LTE4 levels compared with the
placebo arm, with a change of −57.62 ± 65.56 vs. 35.17 ± 92.67 pg/mg Cr, respectively,
p < 0.001 (Table 6; Figure 3).

A gender effect was noted in that a significant suppression of LTE4 was seen for
females only (p < 0.001). LTE4 baseline levels were higher for females than males for both
treatment arms. For the combined ASA and zileuton intervention, PGEM levels decreased
from baseline to the end of the intervention, but this was not statistically significant
(Supplementary Figure S1). From the end-of-intervention to one-week post agent time
points, there were non-significant increases in PGEM and LTE4 towards baseline values.
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Table 6. Summary of the change in LTE4 levels by treatment group and by gender.

All Overall (n = 43) ASA + Zileuton
(n = 21) Placebo (n = 22) p b

Baseline 88.17 ± 60.65 a 89.867 ± 68.35 86.55 ± 53.86 0.86

Post Int. c 78.02 ± 90.79 32.25 ± 23.25 121.73 ± 108.97

1-week Post Int. 103.09 ± 97.71 79.57 ± 52.60 125.53 ± 124.01

Baseline—Post Int. −10.14 ± 92.43 −57.62 ± 65.56 35.17 ± 92.67 <0.001

Baseline-1-week Post Int. 14.92 ± 85.67 −10.29 ± 60.02 38.98 ± 100.02 0.06

Female n= 21 n = 10 n = 11

Baseline 104.00 ± 65.78 114.90 ± 74.88 94.09 ± 58.15 0.48

Post Int. 104.07 ± 115.81 27.93 ± 22.90 173.28 ± 123.64

1-week Post Int. 112.65 ± 126.20 73.49 ± 32.00 148.24 ± 167.35

Baseline—Post Int. 0.07 ± 125.66 −86.97 ± 69.20 79.19 ± 113.19 <0.001

Baseline-1-week Post Int. 8.65 ± 111.39 −41.41 ± 65.73 54.15 ± 127.06 <0.05

Male n = 22 n = 11 n = 11

Baseline 73.06 ± 52.39 67.10 ± 55.66 79.01 ± 50.86 0.61

Post Int. 53.17 ± 48.85 36.16 ± 23.95 70.17 ± 61.65

1-week Post Int. 93.96 ± 61.20 85.10 ± 67.39 102.82 ± 56.13

Baseline—Post Int. −19.89 ± 42.92 −30.94 ± 51.40 −8.84 ± 30.96 0.24

Baseline-1-week Post Int. 20.90 ± 52.76 18.00 ± 38.33 23.81 ± 66.01 0.80
a mean ± standard deviation. b derived from two-sample t-test. c Intervention.
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3.5. Aspirin and Zileuton Modulate Nasal Gene Expression

We identified 83 and 139 differentially expressed genes in the nasal epithelium at
the end of the ASA plus zileuton treatment and one week after the ASA plus zileuton
treatment, respectively, compared to baseline (p < 0.01) (Figure 4a,b). For each gene
signature, principal component analysis was conducted across the signature data, and the
first principal component was applied to the study data to generate gene signature scores
(Supplementary Figure S2 and S3, Supplementary Methods).
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(a) In total, 83 genes were associated with the end of the aspirin and zileuton treatment
compared with baseline (p < 0.01). The heatmap shows hierarchal clustering of the
z-score-normalized change in the gene expression between the end-of-treatment and
baseline time points for each subject in the aspirin and zileuton (green) or placebo
(purple) arms (n = 38 subjects).

(b) In total, 139 genes were associated with the one-week post aspirin and zileuton
treatment time point compared with baseline (p < 0.01). The heatmap shows hierarchal
clustering of the z-score-normalized change in the gene expression between the one-
week post-treatment and baseline time points for each subject in the aspirin and
zileuton (light green) or placebo (light purple) arms (n = 38 subjects).

(c) Genes that were altered at the end of the aspirin and zileuton treatment compared with
baseline are concordant with the genes that were altered one week after the aspirin
and zileuton treatment by GSEA (FDR < 0.05), suggesting that changes persist for at
least one week post-intervention. Genes were ranked by the moderated t-statistic for
the effect of the end of the aspirin and zileuton treatment versus baseline (x-axis) and
the gene sets represent the genes that were up- and downregulated one week after the
aspirin and zileuton treatment from (b). The black vertical lines represent the position
of the genes in the ranked list (x-axis) and the height corresponds to the magnitude of
the running enrichment score form GSEA (y-axis).

(d) Ranked lists (genes ranked by moderated t-statistics) for the end-of-treatment and
one-week post-aspirin and zileuton treatment versus baseline effects were used for
pathway enrichment analysis via GSEA using the MSigDB hallmark gene set. The scat-
terplot shows the normalized enrichment scores for pathways enriched (FDR < 0.25)
at the end of (x-axis) and one week after (y-axis) the aspirin and zileuton treatment.
Positive and negative scores represent pathways enriched among upregulated and
downregulated genes with the end of (yellow) and one week after (blue) or both
(green) aspirin and zileuton treatment, respectively.

Gene expression alterations associated with the ASA plus zileuton treatment were
relatively weak; however, up- and downregulated genes associated with the one-week post
ASA plus zileuton treatment were significantly and concordantly enriched among genes
associated with the end of treatment ASA plus zileuton (false discovery rate (FDR) < 0.05,
Figure 4c).

Interestingly, pathway analysis also indicated an overlap between the genes that were
modulated at the end of ASA plus zileuton treatment (n = 12 pathways, FDR < 0.25)
and one week after the ASA plus zileuton treatment (n = 29 pathways, FDR < 0.25).
Pathways associated with oxidative phosphorylation, reactive oxygen species, MYC tar-
gets, DNA repair, and MTORC1 signaling were enriched among downregulated genes
and KRAS signaling and myogenesis were enriched among upregulated genes with the
ASA plus zileuton end-of-treatment and one-week post-treatment time points (Figure 4d;
Supplementary Tables S3–S9). The downregulation of oxidative phosphorylation genes
with the ASA plus zileuton treatment is in line with the results above showing modulation
of the squamous dysplasia signature, which is enriched for genes in this pathway [22].
Immune-associated pathways, including complement and IL2/STAT5 signaling, were
downregulated one week after the ASA plus zileuton treatment. We did not identify
significant correlations between changes in the gene signature score and changes in the
LTE4, PGEM, or cotinine analytes between the baseline and end-of-treatment or one-week
post-treatment time points and changes in either the placebo or drug study arms (p > 0.05).

4. Discussion

We investigated the effect of 12 weeks of combined ASA and zileuton versus placebo
in current heavy smokers on nasal gene expression. We tested whether a comprehensive
set of nasal and bronchial epithelium-derived gene expression signatures associated with
smoking, lung cancer, COPD, and bronchial dysplasia were altered by the intervention.
The ASA and zileuton intervention did not significantly modulate smoking, lung cancer,
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and COPD gene expression signatures but did favorably modulate one of two bronchial
gene expression signatures for squamous dysplasia, in the direction of the non-dysplastic
bronchial epithelium. This bronchial squamous dysplasia signature [22] was derived using
normal-appearing bronchial brushes collected from subjects with or without bronchial
dysplasia and is enriched with genes involved in oxidative phosphorylation that were
upregulated in subjects with bronchial dysplasia. Changes in the signature over time
were also shown to be associated with the progression/persistence versus regression of
bronchial dysplasia. Analysis of the differentially expressed genes between baseline and
either the end of the intervention or one-week post-intervention detected relatively few
alterations; however, we observed that the gene expression changes associated with the
intervention persisted at one week post-intervention. GSEA showed downregulation of
pathways relevant to carcinogenesis and oxidative phosphorylation, corroborating the
findings on the squamous dysplasia signature, which is enriched for genes in this pathway.
While the squamous dysplasia signature has yet to be validated in the nasal epithelium, this
signature’s modulation by combined COX- and 5-LOX inhibition is of high interest. Further
study, however, is needed to determine if the bronchial squamous dysplasia signature could
be modulated by other agents as the combination of COX- and 5-LOX or zileuton 5-LOX
inhibitor is challenging for long-term use, given the complex dosing schedule of zileuton
and rare neurotoxicity in otherwise healthy current or former smoker populations. The
results indicate that the effect of the intervention persists after one week, so intermittent
dosing may be possible. It would also be of interest to evaluate other leukotriene inhibitors
with more favorable safely profiles in the modulation of this signature.

The selection of low-dose rather than regular-strength ASA in combination with zileu-
ton, and the relatively short duration of the intervention may have led to the minimal effects
observed on the pre-selected gene expression signatures. While a body of data supports
the development of LD ASA in lung cancer chemoprevention [36,41], it is possible that
regular-strength ASA might have yielded more robust modulation of the gene signatures
in the anticarcinogenic direction. An additional arm of regular-strength ASA would have
strengthened this study by addressing the dose–response in modulating gene expression
associated with tobacco exposure and lung cancer. Additionally, the use of fixed low-dose
ASA may have influenced the modulation of the gene expression signatures, as a recent
analysis of ASA primary prevention trials of cardiovascular events and secondary preven-
tion of colorectal cancer showed an interaction between LD ASA effects and body size, with
the LD ASA effect seen only in participants <70 kg [42]. This study’s small sample size
precludes a well-powered analysis to identify a correlation between body size and changes
in gene signature scores unless the effect were to be strikingly large.

The optimal duration of combined COX and 5-LOX inhibitors to modulate tobacco-
and lung cancer-related gene expression in the nasal epithelium as a surrogate for the
respiratory epithelium is unknown. This study’s relatively short (12 week) intervention is
broadly consistent with a number of preclinical biomarker studies of NSAIDs and other
classes of chemoprevention agents in murine models of cigarette smoke exposure [43,44].
While murine models may not adequately represent the pharmacologic modulation of
human chronically smoke-exposed respiratory epithelium, as murine models require high
doses of both the carcinogen and chemopreventive agent to detect an effect in a short period
of time, our previously reported study of low-dose ASA in a similarly designed study of a
12-week intervention showed modulation of gene expression signatures over this duration
of the intervention [28]. Future studies that include cohorts exposed to longer durations of
the intervention could provide valuable data on optimal dosing strategies.

The combined ASA and zileuton intervention significantly suppressed AA 5-LOX-
derived metabolite urinary LTE4 levels compared with the placebo arm in females only.
While a study of zileuton pharmacokinetics showed that gender effects on the pharmacoki-
netics were absent after a correction for bodyweight differences [45], an effect of androgens
in impeding the biosynthetic 5-LO/FLAP complex assembly required for leukotriene
synthesis has been reported for rodent models and this gender difference in bioactive
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5-LO/FLAP complexes was noted in human leucocytes [46]. The combined ASA and
zileuton did not, however, suppress AA COX-mediated urinary PGEM metabolite levels. It
is recognized that there is complex crosstalk between the three branches of AA metabolism
(COX, LOX, and cytochrome P450 (CYP)) [47]. The inhibition of single or multiple branches
may result in the shunting of AA metabolism through other branches. In a human study,
the administration of a selective COX-2 inhibitor caused shunting of AA metabolism into
the proinflammatory LOX pathway in smokers with high baseline levels of urinary PGE-M.
We showed that combined LD ASA and zileuton was effective in suppressing 5-LOX but
not COX-mediated AA metabolism in high-risk smokers. It is plausible that LD ASA is not
sufficient to suppress the COX-mediated AA metabolism due to potential shunting to the
COX pathway when combined with a potent 5-LOX inhibitor.

LD ASA and zileuton was, in general safe, and well tolerated, with minimal GI toxicity
and no evidence of GI bleeding, in keeping with studies using the NSAID naproxen, which
showed that combined blockade of COX and 5-LOX did not produce additive GI AEs
typically associated with naproxen administration, and reports of reduced GI toxicity
associated with dual COX/5-LOX inhibitors such as licofelone [48]. There was a low
frequency of zileuton-mediated grade 1–2 neurologic and psychiatric toxicities. A high
attrition rate of around 33% in both arms was higher than that observed in our prior studies
in this population and may be in part due to the requirement of 5 pills daily and BID
dosing, which makes further development of this particular COX/LOX combination in the
chemoprevention setting unlikely.

A weakness in the study design is the lack of quality of life (QOL) endpoints, which
could elucidate the impact of this ASA plus zileuton strategy on QOL and thus guide
similar chemoprevention strategies with the goal of, at the most, a modest impact on
QOL in an at-risk but otherwise healthy population. A second weakness in the study
design is the inability to better inform the optimal duration of the intervention to modulate
the study endpoints, given that the single duration intervention was short (3 months).
Additional cohorts utilizing longer durations of intervention (i.e., 6 or 12 months) would
have strengthened the study.

5. Conclusions

Our study showed that LD ASA and zileuton compared to placebo modulated a
bronchial squamous dysplasia gene signature but had no significant effects on other known
carcinogenesis gene signatures in the nasal epithelium of heavy smokers. Inhibition of the
leukotriene pathway remains of interest in the chemoprevention of squamous PMLs. Nasal
gene expression signature determination is a novel approach to biomarker analysis, giving
an approximation of the pulmonary milieu without the requirement of invasive tissue
sampling. Nasal brushing of the nasal epithelium was well tolerated in this study and offers
the potential to perform mechanistic lung cancer prevention studies in a less invasive way.
This approach should be further explored with concomitant bronchial biopsies to determine
if modulation of the squamous dysplasia gene signature can replace bronchoscopic biopsy
for endpoint determination in future chemoprevention trials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14122893/s1, Figure S1: Baseline and changes in urinary
PGEM levels; Figure S2: Boxplots of the gene signature scores in the datasets used to derive the
gene signatures. (A-G); Figure S3: Methodology used to score the aspirin plus zileuton samples for
gene expression signature activation; Supplementary Methods: Gene expression datasets used in the
analysis and scores generated based on the bronchial gene expression-based lung cancer classifier;
Table S1: Baseline characteristics for participants with gene scores; Table S2: Summary of baseline
and changes in the gene-expression signature scores by treatment group; Tables S3–S9: (See Excel
File): Table S3: Gene signature scores for each sample in the ASA plus zileuton trial. Table S4: Genes
associated with ASA plus zileuton treatment. Table S5: Genes associated with one-week post-ASA
plus zileuton treatment; Table S6: Hallmark pathways enriched (FDR) among genes downregulated
one-week post- ASA plus zileuton treatment by Gene Set Enrichment Analysis. Table S7: Hallmark
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pathways enriched (FDR < 0.25) among genes down-regulated with ASA plus zileuton treatment by
Gene Set Enrichment Analysis. Table S8: Hallmark pathways enriched (FDR < 0.25) among genes
up-regulated one-week post-ASA plus zileuton treatment by Gene Set Enrichment Analysis. Table S9:
Hallmark pathways enriched (FDR < 0.25) among genes down-regulated one-week post-ASA plus
zileuton treatment by Gene Set Enrichment Analysis.
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