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ABSTRACT
....................................................................................................................................................

Objectives Drug repurposing, which finds new indications for existing drugs, has received great attention recently. The
goal of our work is to assess the feasibility of using electronic health records (EHRs) and automated informatics methods
to efficiently validate a recent drug repurposing association of metformin with reduced cancer mortality.
Methods By linking two large EHRs from Vanderbilt University Medical Center and Mayo Clinic to their tumor registries,
we constructed a cohort including 32 415 adults with a cancer diagnosis at Vanderbilt and 79 258 cancer patients at
Mayo from 1995 to 2010. Using automated informatics methods, we further identified type 2 diabetes patients within
the cancer cohort and determined their drug exposure information, as well as other covariates such as smoking status.
We then estimated HRs for all-cause mortality and their associated 95% CIs using stratified Cox proportional hazard
models. HRs were estimated according to metformin exposure, adjusted for age at diagnosis, sex, race, body mass in-
dex, tobacco use, insulin use, cancer type, and non-cancer Charlson comorbidity index.
Results Among all Vanderbilt cancer patients, metformin was associated with a 22% decrease in overall mortality com-
pared to other oral hypoglycemic medications (HR 0.78; 95% CI 0.69 to 0.88) and with a 39% decrease compared to
type 2 diabetes patients on insulin only (HR 0.61; 95% CI 0.50 to 0.73). Diabetic patients on metformin also had a 23%
improved survival compared with non-diabetic patients (HR 0.77; 95% CI 0.71 to 0.85). These associations were repli-
cated using the Mayo Clinic EHR data. Many site-specific cancers including breast, colorectal, lung, and prostate dem-
onstrated reduced mortality with metformin use in at least one EHR.
Conclusions EHR data suggested that the use of metformin was associated with decreased mortality after a cancer di-
agnosis compared with diabetic and non-diabetic cancer patients not on metformin, indicating its potential as a chemo-
therapeutic regimen. This study serves as a model for robust and inexpensive validation studies for drug repurposing
signals using EHR data.
....................................................................................................................................................
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INTRODUCTION
The pharmaceutical industry faces a productivity problem to
smoothly deliver new drugs to market. Current de novo drug
discovery and development is costly, time-consuming, and
risky.1 Developing a new drug is estimated to cost over
US$800 million and to take anywhere from 10 to 17 years,2

with a success rate of less than 10%.3 Therefore, pharma-
ceutical companies and public-sector researchers are both
seeking more creative methods for drug discovery. Recently,
drug repurposing (also called repositioning or re-profiling),

which finds new indications for existing drugs, has received
great attention.1,4–7 Drug candidates for repurposing have of-
ten been through the pre-clinical and clinical stages and,
therefore, have known safety profiles which can substantially
reduce the risk, cost, and time of drug development, which
offers the possibility of solving the productivity dilemma.
Successful stories of drug repurposing have been reported1

and the need for drug repurposing is well recognized by lead-
ers in industry, academia, and government.8 For example,
The Learning Collaborative9 aims to advance therapies for
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blood cancers through developing a drug repurposing frame-
work across different organizations.

Recently, there has been a growing effort to develop com-
putational approaches to predict drug repurposing associa-
tions.10,11 With the availability of comprehensive compound
databases containing structure, bioassay, and genomic infor-
mation, such as NIH’s Molecular Libraries Initiative,12,13 new
computational methods that utilize high-throughput data to pre-
dict drug repurposing signals have been developed, including
structure-based virtual screening,14 and analysis of side effect
profiles,15,16 genomic and gene expression data,5,17,18 and the
biomedical literature.19 More and more potential drug repur-
posing signals are being predicted; however, how to further
validate these potential signals and determine the appropriate
next steps (eg, to conduct a clinical trial or not) remains chal-
lenging. Here we propose the use of large electronic health re-
cord (EHR) databases to validate potential drugs for
repurposing. Over the past decade, rapid growth in the clinical
implementation of large EHRs has led to an unprecedented
expansion in the availability of dense longitudinal clinical data-
sets of large populations, which are ideal for quantifying drug
outcome. Large EHRs have emerged as a valuable resource,
enabling clinical and translational research,20,21 including drug
outcome studies, for instance for pharmacovigilance.22–25

Moreover, informatics approaches that can efficiently and ac-
curately extract and analyze clinical information from heteroge-
neous data sources within EHR databases have also been
developed and applied to facilitate cost-effective clinical studies
using EHRs.26–30

As a first step to assess the use of EHRs for drug repurpos-
ing, we conducted a study to validate a recently reported asso-
ciation of metformin, a first-line therapy for type 2 diabetes
mellitus (DM2), with reduced cancer mortality. A growing body
of evidence suggests metformin improves cancer survival31,32

and decreases cancer risk33–36 when compared to other
glucose-lowering therapies, suggesting metformin may have
clinical promise as an antineoplastic agent.33,37 A recent study
of incident cancer patients from primary care clinics in the UK
showed that metformin was associated with reduced mortality
compared with cancer patients not exposed to metformin.32

Specific cancers, such as pancreatic or colorectal cancer, may
have improved survival with metformin use especially for early
stage disease.38,39 As a result, metformin is being evaluated
for use as a cancer therapeutic agent40,41 and requires confir-
mation in an independent clinical setting.

In this study, we used two state-of-the-art EHR databases
at Vanderbilt University Medical Center (VUMC) and Mayo Clinic
to conduct a retrospective cohort study to evaluate the associa-
tion between metformin and overall mortality among incident
cancer cases. The purpose of our study was twofold: (1) to vali-
date the association between metformin use and cancer mor-
tality using comprehensive EHRs; and (2) to demonstrate the
use of informatics tools in automated data extraction tasks for
EHR-based drug repurposing studies. To the best of our knowl-
edge, this is the first study that aims to apply EHR data to drug
repurposing research.

METHODS
Data sources
We conducted a retrospective cohort study from January 1,
1995 to December 31, 2010 using the EHRs at VUMC and
Mayo Clinic. At VUMC, the Synthetic Derivative (SD), a compre-
hensive and de-identified image of the EHR at VUMC,42 was
used for this study. The SD is updated regularly as new clinical
information, including inpatient and outpatient billing codes,
laboratory values, laboratory reports, medication orders, and
clinical notes, is accrued in the EHR. As of May 2013, the SD
contained information on about 2.2 million individuals with
dense electronic medical record data dating back to the early
1990s, while the Mayo Clinic EHR contained information on
about 7.4 million patients.

Patients were eligible for the study if: (1) they had an inci-
dent cancer diagnosis (excluding non-melanoma skin cancers
because they have a much better prognosis than other types of
cancers) between January 1, 1995 and December 31, 2010
identified using the Vanderbilt tumor registry which is linked to
the Vanderbilt EHR; and (2) were aged 18 years or older at the
time of tumor diagnosis. Cancer patients were identified using
ICD-O (International Classification of Diseases for Oncology)
codes and their corresponding date of diagnosis in the
Vanderbilt tumor registry, which was initiated in the early
1980s and is regularly maintained by trained nurse abstractors
for all cancer patients diagnosed or with their first course of
treatment at Vanderbilt. We included only the first incident can-
cer in individuals having multiple primary tumors. We excluded
patients with congestive heart failure (CHF) or chronic kidney
disease (CKD) prior to tumor diagnosis, resulting in a total of
42 165 cancer patients in this study, since heart failure and
kidney disease are considered contraindications for metformin
use. CHF was excluded by removing patients with an ICD-9
code of 428.* at any point before the date of tumor diagnosis
and CKD was excluded by removing patients with a creatinine
level >1.5 mg/dL before the tumor diagnosis date. (Since CHF
and CKD can both occur as complications from cancer treat-
ment, we did not remove patients who developed these condi-
tions after cancer diagnosis.)

From the date of their cancer diagnosis, patients were fol-
lowed for overall mortality. Mortality status was assessed by
linkage with the local tumor registry. For example, the
Vanderbilt tumor registry follows the NAACCR (North American
Association of Central Cancer Registries) Death Clearance
Manual43 when ascertaining death information for cancer
patients.

Study design and data extraction
Figure 1 shows the overall design and workflow of this study.
Four exposure groups were identified among the Vanderbilt
cancer patients based on DM2 disease status and medication
status following their cancer diagnosis. The four exposure
groups were as follows: (1) DM2 patients using metformin (in-
cluding patients exposed to both metformin and other DM2
drugs); (2) DM2 patients using other oral hypoglycemic medi-
cations (and never metformin); (3) DM2 patients using insulin
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only; and (4) non-diabetic patients with no use of diabetes
drugs. Construction of the study cohort, identification of ex-
posed/unexposed individuals, and ascertainment of covariates
was done automatically by using existing or newly developed
EHR selection algorithms44 incorporating techniques such as
natural language processing (NLP).

To identify DM2 patients, we used an existing algorithm45,46

previously developed by the eMERGE (electronic Medical
Records and Genomics) Network.47 The algorithm identifies pa-
tients with and without diabetes using three types of clinical in-
formation: (1) ICD-9 codes for DM2; (2) medications for DM2;
and (3) clinical laboratory results (glucose >200 mg/dL or he-
moglobin A1c >6.5%). DM2 individuals met at least two of the
three requirements for diagnosis, while non-diabetic patients
had none of the three criteria in their records. Prior research
has demonstrated that this algorithm has a positive predictive
value (PPV) of 98% for DM2 and a PPV of 100% for non-diabe-
tes.45 Patients not meeting either DM2 or non-diabetic defini-
tions were excluded (eg, a single ICD-9 code for diabetes
without other supporting evidence; N¼ 7452).

Diabetic individuals were divided into three exposure groups
based on medication use after their cancer diagnosis.

To identify metformin and other DM2 drug exposure, we used
both structured (eg, electronic physician orders) and unstruc-
tured (eg, clinic visit notes) medication information in the EHR.
MedEx,48,49 an existing high performance NLP system, was
used to extract medication names and signature information
from unstructured clinical text. We required that subjects have
two or more mentions of the diabetes medications in the EHR
and at least one mention within 5 years after their cancer diag-
nosis date to classify subjects by medication use; subjects
lacking this information were excluded (N¼ 2298). Metformin
medications included monotherapy and combination therapy,
such as metformin with thiazolidinediones (eg, Actoplus Met or
PrandiMet). Cancer patients without DM2 were included as an
additional unexposed comparison group.

Clinical covariates were selected a priori and included pa-
tient age at cancer diagnosis, sex, race, body mass index
(BMI), insulin use, tobacco use, tumor type, and tumor stage.
Some covariates were found in structured fields in the EHR or
the Vanderbilt tumor registry (eg, age at diagnosis, tumor type,
and tumor stage). For covariates that were not available in
structured formats, we used NLP algorithms to extract the in-
formation from clinical narratives. To determine tobacco use,

Figure 1: The study design and data extraction workflow for patients in the Vanderbilt electronic health record (EHR) system
from January 1995 to December 2010.

RESEARCH
AND

APPLICATIONS
Xu H, et al. J Am Med Inform Assoc 2015;22:179–191. doi:10.1136/amiajnl-2014-002649, Research and Applications

181



we utilized a recently developed smoking status extraction al-
gorithm, which achieved a PPV of 93% for determining smok-
ing status in Vanderbilt medical records.50 Height and weight
were extracted from patient records within 2 months before
and 1 month after cancer diagnosis date and used to estimate
BMI. Although structured fields of height and weight exist in
the EHRs, these data were often missing (42% individuals were
missing height information and 36% were missing weight). To
reduce the number of missing values for height and weight, we
developed a regular expression-based program to extract
height and weight information from clinical notes. Our manual
review of 100 random NLP-extracted weights and heights re-
vealed the PPV was 100%. Use of the NLP method reduced
the percentage of missing data for height and weight to 33%
and 16%, respectively. In addition, Deyo adaptation of the
Charlson comorbidity index was calculated using ICD-9
codes.51 Since cancer mortality is the primary response
and subcancer type was either adjusted in the regression
model or was the group in the subgroup analysis, ICD-9 codes
of cancer diagnoses (140–239) were excluded. All non-cancer
ICD-9 codes before or within 30 days after the date of cancer
diagnosis were used for the Charlson comorbidity index
calculation.

To verify the accuracy of our automated data extraction al-
gorithms for drug exposure, a stratified random sample was
selected from each exposure group (N¼ 50 for each group)
and two thoracic oncology nurses independently reviewed the
medical charts to determine drug exposure. Discrepancies be-
tween the two nurse reviewers were reconciled by a third phy-
sician reviewer (JCD), thus forming a ‘gold-standard’ to
compare with the automated algorithms. Metformin, other DM2
drug, and insulin groups achieved PPVs of 0.98, 0.95, and
0.92, respectively.

The same study design was applied to the Mayo Clinic EHR.
The tumor registry at Mayo Clinic is also linked to the EHR to
identify cancer patients and obtain tumor-specific information.
The same algorithm was used to identify patients with and
without diabetes in the Mayo EHR. The MedEx tool was used to
process Mayo clinical data to identify different DM2 drug expo-
sure groups. A locally developed program,52 similar to the
Vanderbilt algorithm, was used to identify the smoking status
of patients in this study.

Statistical analysis
Characteristics of the study population were summarized using
median, IQR, and percent. Kaplan–Meier plots were used to vi-
sualize the unadjusted cancer survival probabilities of the four
exposure groups. To formally assess the influence of metformin
on cancer mortality, we used stratified Cox regression models,
stratifying on tumor stage, and adjusting for age, sex, race,
BMI, tobacco use, insulin, cancer type, and non-cancer
Charlson index. Similar stratified Cox regression models were
created to evaluate the effect of metformin on cancer survival
in the patient population with breast, colorectal, lung, or pros-
tate cancer, although tumor stage 0 and 1 were combined for
lung and prostate cancers due to the limited sample sizes in

these two stages. In all the aforementioned models, age,
BMI, and Charlson index were modeled as restricted cubic
spline functions with four knots. The covariate sex was re-
moved from the analytical model when breast cancer and pros-
tate cancer were being examined since these models were
restricted to females and males, respectively. For the overall
and individual cancer survival analysis, multiple imputation
with 20 imputations was implemented for missing BMI mea-
surements following the guidance described by White et al.53

Two-sided p values less than 0.05 were considered statistically
significant. All analyses were conducted using R 2.13.1 with
the survival, Hmisc, and rms packages (http://www.r-project.
org).

RESULTS
We identified 42 165 individuals with an incident cancer diag-
nosis (excluding skin cancer and CHF/CKD, and age �18 years
old) between January 1, 1995 and December 31, 2010
(figure 1) at Vanderbilt. Among these cancer patients, 28 917
did not have diabetes, and 3498 had DM2 matching one of the
three target medication exposure groups. Of these, 63% used
metformin, 26% used other oral DM2 medications, and 11%
were on insulin monotherapy. Vanderbilt cancer patients had a
median age of 59 years, approximately half (57%) were male,
and 93% were white (table 1). Median BMI was 27 kg/m2 and
53% of cancer patients were ever smokers. DM2 patients had
a median hemoglobin A1c of 7.6%. At Mayo Clinic, we identi-
fied 79 258 patients in four exposure groups (figure 2 and
table 2). Figure 3 presents the Kaplan–Meier survival curves
and associated 95% CIs for the four exposure groups at
Vanderbilt University and Mayo Clinic. Cancer patients on met-
formin drugs had significantly improved 5-year survival com-
pared to patients on other oral hypoglycemic agents
(p<0.001), insulin only (p<0.001), or without diabetes
(p<0.001). Adjusting for age, sex, race, BMI, tobacco use, in-
sulin use, cancer type, and Charlson index, metformin signifi-
cantly reduced overall mortality compared to diabetic patients
on other oral hypoglycemic (HR 0.78; 95% CI 0.69 to 0.88) and
diabetic patients on insulin only (HR 0.61; 95% CI 0.50 to
0.73). Reduced mortality was also observed for metformin
compared to cancer patients without diabetes (HR 0.77; 95%
CI 0.71 to 0.85) (figure 4). We replicated our findings for overall
mortality after a cancer diagnosis in the Mayo Clinic cohort
with HRs and 95% CIs as follows: HR 0.70 (95% CI 0.63 to
0.77), HR 0.65 (95% CI 0.58 to 0.73), and HR 0.59 (95% CI
0.54 to 0.65) (figure 4), comparing the metformin group versus
other drugs, insulin only, and non-diabetic groups,
respectively.

The impact of metformin on mortality varied by cancer type
and also by exposure group (figure 4). In the Vanderbilt cohort,
reduced mortality with metformin use was observed across all
four of the most frequent cancers, specifically breast, colorec-
tal, lung, and prostate. Among diabetic patients with breast
cancer, the greatest benefit was observed with metformin use
compared to use of other diabetes drugs or insulin only. A re-
duced but not statistically significant HR was observed when
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metformin diabetic patients with breast cancer were compared
to non-diabetic breast cancer patients. For colorectal cancer,
metformin was beneficial compared to patients with diabetes
on other drugs and cancer patients without diabetes. Lung can-
cer and prostate cancer mortality was not significantly im-
proved with metformin, although the HRs did show an overall
trend toward reduced mortality. Associations showed a similar
protective benefit of metformin in the Mayo cancer population
and most associations by cancer type (breast, colorectal, lung,
and prostate) were statistically significant, likely due to larger
sample sizes in the Mayo cohort. Metformin was also associ-
ated with improved survival in other cancers types in at least
one EHR, including bone marrow, gynecologic, genitourinary,
and gastrointestinal (see online supplementary appendix
figure 1). We present the adjusted overall cancer survival
curves for each tumor stage in figure 5. Metformin reduced
mortality irrespective of tumor stage. Predicted survival curves
for colorectal, lung, breast, and prostate cancer show patients
on metformin had improved survival for each specific cancer
(figure 6).

DISCUSSION
Using two independent study populations, we validated the re-
cently reported drug repurposing association of metformin with
cancer survival. Our data demonstrate that metformin improves
overall cancer survival compared to other hypoglycemic thera-
pies in patients with DM2 and compared to patients without di-
abetes. These findings included a total of 111 673 patients and
demonstrated a metformin survival benefit for individuals with
breast and colorectal cancer in both the Vanderbilt and Mayo
cohorts. Evidence for lung and prostate cancer showed a re-
duced mortality in both the Vanderbilt and Mayo populations,
which was statistically significant only in the Mayo cohort,
likely due to its larger sample size. Mortality improvements
were also seen for a number of other cancers and for all cancer
stages. Thus, our data support a broad role for metformin in
many cancer types and, potentially, for patients with and with-
out diabetes.

We leveraged study site-maintained tumor registries com-
bined with advanced informatics techniques examining the full
text of the EHR. Prior studies have shown such methods lead to

Table 1: Descriptive characteristics of the Vanderbilt cohort (all cancers, 1995–2010)

N DM2
Metformin
N¼ 2218

DM2
Other drugs
N¼ 903

DM2
Insulin
N¼ 377

Non-diabetic
patients
N¼ 28 917

Combined
N¼ 32 415

Age, years 32 415 54, 62, 69* 56, 64, 70 48, 55, 65 48, 58, 67 49, 59, 67

Male 32 413 58% 61% 54% 57% 57%

White 29 371 88% 90% 86% 93% 93%

Body mass index (kg/m2) 27 352 27, 31, 36 26, 31, 35 25, 30, 35 23, 27, 31 24, 27, 32

Hemoglobin A1c 1 069 7.1, 7.6, 8.5 7.1, 7.6, 8.4 7.1, 7.7, 8.6 NA 7.1, 7.6, 8.5

Tobacco use (ever/never) 22 885 58% 60% 61% 53% 53%

Insulin use 32 415 27% 27% 100% 0% 4%

Tumor type 32 415

Colorectal 8% 7% 3% 6% 6%

Breast 9% 4% 3% 10% 9%

Lung 7% 8% 5% 8% 8%

Prostate 14% 9% 2% 18% 18%

Other 63% 71% 86% 58% 59%

Tumor stage 27 017

0 5% 4% 2% 6% 6%

1 28% 25% 22% 26% 26%

2 or 3 46% 44% 32% 47% 47%

4 21% 27% 43% 21% 22%

*Lower, median, and upper quartile for continuous variables.
N is the number of non-missing values.
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more accurate results than use of administrative data alone, as
has been used in previous studies.44,46 These informatics
methods, applied at both study sites, interrogated patient re-
cords to provide information on detailed medication exposures
and important cancer risk factors such as smoking histories
and BMI—detail not commonly afforded in retrospective claims
data. With the future ubiquity of available EHR data, such data
mining may provide an important tool for drug repurposing,
pharmacovigilance, and comparative effectiveness research.

Our findings add to a growing body of knowledge support-
ing a role for metformin in reducing cancer mortality.31,32,54 A
strength of this study is that the same study population was
used to evaluate multiple cancers. Metformin was also statisti-
cally associated with improved survival for less common can-
cers (see online supplementary appendix figure 1), suggesting
future studies with greater statistical power should evaluate
these less frequently observed cancers. Moreover, most prior
epidemiologic studies have used DM2 registries31 or patient
surveys38 to assess the association between metformin and
cancer risk and survival. We were able to utilize two densely
populated EHR-based cohorts in the USA with longitudinal fol-
low-up and linkage with tumor registries. We were also able to

incorporate smoking status into our analyses, an important
consideration for many cancers but not assessed in some other
retrospective studies.38,39 Using NLP for data extraction is an
efficient design for hospital-based epidemiologic studies, sig-
nificantly reducing the time and cost to conduct and replicate
the study since no follow-up of participants is needed. In addi-
tion, our study was replicated in another independent large
EHR (Mayo Clinic), demonstrating the generalizability of both
our findings and the informatics tools used in this study.

The mechanism by which metformin improves cancer sur-
vival either directly (insulin-independent) or indirectly (insulin-
dependent) remains unknown37,40,55,56 but may be related to
mTOR inhibition.57,58 The broad-based effect on multiple can-
cers seen in this study suggests a generalized anticancer ef-
fect. Future studies are needed to unravel the exact
mechanism by which metformin acts and whether metformin
should be targeted to particular patients. Currently, large efforts
are underway to link EHRs across institutions and to standard-
ize the definition of phenotypes for large-scale clinical and ge-
nomics studies of disease and treatment.59–61 Informatics
approaches, such as NLP technologies that are able to extract
standardized clinical information from unstructured clinical

Figure 2: The study design and data extraction workflow for patients in the Mayo Clinic electronic health record (EHR)
system from January 1995 to December 2010.
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text, offer an approach to automate the data extraction process
from EHRs.62 Successful progress has been made in applying
informatics approaches to clinical and translational research,
ranging from identifying patient safety occurrences29 and bio-
surveillance28 to facilitating genomics research such as genetic
epidemiology and pharmacogenomic studies.63,64 In this study,
we further demonstrated the value of NLP tools and electronic
phenotyping algorithms in epidemiologic studies based on
large-scale observational clinical practice data. To improve the
efficiency of EHR-based epidemiologic research, more infor-
matics tools to record and/or accurately extract broad types of
epidemiologic information such as environmental variables (eg,
exercise, diet, and other lifestyle data) are highly desirable.

Limitations caution interpretation of our findings. Our medi-
cation exposures were derived from EHRs instead of pharmacy
fill records. However, we have previously shown that these
methods have both high sensitivity and high PPV and the ability
to replicate known pharmacogenetic signals that require accu-
rate knowledge of the timelines of medications exposures.65,66

Moreover, in comparison to claims data, they are not subject to
biases from low-cost generic prescriptions, for which insurance

claims are often not filed.67 The potential imperfect sensitivity
of our algorithms leads to an inability to classify every patient
as either diabetic or not, or to fully determine their medication
exposures, primarily due to lack of data captured in the EHR.
For example, we cannot exclude remote exposures to particular
antidiabetic medications occurring prior to cancer diagnosis
(eg, a patient with diabetes may have been treatment with
metformin prior to the cancer diagnosis at an outside hospital).
However, these exposures should have limited effect on cancer
prognosis. Our study may be subject to immortal time bias due
to misclassification of exposure time, since we are unable to
discern whether erroneous exposure time was assigned be-
tween cohort entry and mention of medication in the clinical re-
cord.68,69 Excluding CHF and CKD patients could be a potential
limitation of this study as well, as some physicians use metfor-
min for these patients despite FDA warnings in these popula-
tions. We were also unable to stratify by histologic subtype
within each cancer type due to small sample sizes within each
cancer. We did not adjust for chemotherapy treatment regi-
mens due to the lack of treatment information beyond first-line
therapy in the tumor registry. This is a common limitation of

Table 2: Descriptive characteristics of the Mayo Clinic cohort (all cancers, 1995–2010)

N DM2
Metformin
N¼ 3029

DM2
Other drugs
N¼ 1629

DM2
Insulin
N¼ 1462

Non-diabetic patients
N¼ 73 138

Combined
N¼ 79 258

Age, years 79 258 58, 65, 72* 62, 69, 75 57, 65, 72 53, 62, 71 54, 62, 71

Male 79 258 60% 68% 61% 57% 58%

White 70 411 99% 98% 99% 99% 99%

Body mass index (kg/m2) 57 513 28, 32, 36 27, 30, 34 26, 29, 33 24, 27, 30 24, 27, 30

Tobacco use (ever/never) 67 680 52% 50% 46% 37% 38%

Insulin use 79 258 45% 36% 100% 0% 5%

Tumor type 79 258

Colorectal 7% 7% 7% 6% 6%

Breast 12% 7% 7% 11% 11%

Lung 7% 11% 6% 10% 10%

Prostate 19% 17% 7% 22% 21%

Other 55% 59% 74% 50% 47%

Tumor stage 73 224

0 7% 5% 3% 5% 5%

1 30% 26% 31% 26% 27%

2 or 3 46% 48% 42% 49% 48%

4 17% 21% 24% 20% 20%

*Lower, median, and upper quartile for continuous variables.
N is the number of non-missing values.
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Figure 3: Kaplan–Meier (K–M) plot of overall cancer survival for the Vanderbilt and Mayo Clinic cohorts. DM2, type 2 diabe-
tes mellitus.

Figure 4: Adjusted HRs by cancer type for the Vanderbilt and Mayo cohorts. Other, DM2 cancer patients on other drugs;
Insulin, DM2 cancer patients on insulin only; Metf, DM2 cancer patients on metformin; None, cancer patients without DM2.
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epidemiologic studies using tumor registry or SEER data for
cancer treatment information. However, it is likely that diabetic
patients using metformin receive the same cancer treatment as
those not using metformin, thus biasing our results towards
the null. There is no published evidence, to our knowledge, of
disparities in the treatment of diabetic patients with cancer, al-
though the dosages of steroid pre-medications are often re-
duced in an effort to reduce incident hyperglycemia. Future
classes of antineoplastics, for example, phosphoinositide 3-ki-
nase inhibitors, may be specifically contraindicated for diabetic
patients, but these medications are not yet approved for gen-
eral clinical use. Diabetic patients with cancer may have
greater co-morbidities than non-diabetic patients with cancer
and we would expect diabetic patients to have worse survival
after a cancer diagnosis than non-diabetic patients.70 However,
we found in most comparisons for the four major cancers that
diabetic patients on metformin had a better survival compared
to non-diabetic patients, although non-diabetic patients had a
better survival than diabetic patients using other drugs or

insulin only. This observation is consistent with that from a re-
cent study conducted in the UK.32 One possible interpretation
for this finding is that metformin use significantly improved sur-
vival among diabetic patients despite higher prevalence of co-
morbidities. Thus, it is possible that metformin use may be
able to improve survival among non-diabetic cancer patients.
Further studies are needed to address this important issue.

We successfully detected the signal of metformin improving
cancer survival using EHR data and informatics approaches.
However, conducting large-scale drug repurposing studies us-
ing EHRs remains challenging. One of the problems is related
to sample size. We had enough power in this study because
both DM2 and cancer are high prevalence diseases and met-
formin is a first-line therapy for DM2. But the lack of power
would be an issue for low prevalence drugs and indications. In
our stratified analysis for individual cancers (see online supple-
mentary appendix figure 1), we noticed larger CIs for less fre-
quent cancers such as thyroid, most likely due to small sample
size. This problem may be ameliorated by combining EHRs

Figure 5: Adjusted Cox proportional hazards model stratified by tumor stage for the Vanderbilt cohort. All models are based
on cancer survival in a smoking white male, age 58 years, body mass index 27 kg/m2, with a cancer other than the four
most common tumor types, and not using insulin. DM2, type 2 diabetes mellitus.
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and/or complementing EHR data with data provided by drug
manufacturers, drug monitoring agencies (eg, the FDA), and
other ancillary data sources.

CONCLUSION
In this study, we have demonstrated that large EHRs are valu-
able sources for drug repurposing studies. Our findings validate
the beneficial effects of metformin for cancer survival. Ongoing
and future clinical trials of metformin for specific subtypes of
cancer may lead to new opportunities for chemotherapy. This
study serves as a model for using EHRs and informatics
approaches to robustly and inexpensively validate drugs for
repurposing.
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