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OncomiRs are microRNAs that are associated with early onset of specific cancers. To identify microRNAs involved in
pediatric acute lymphoblastic leukemia (ALL) subtypes T-ALL and B-ALL, peripheral blood and bone marrow samples
were independently subjected to microarray analysis using two different high-fidelity array platforms. The unique and
common gene signatures from both arrays were validated by TaqMan individual assays in 100 pediatric ALL samples.
Survival studies were carried out in the test set and validation set with 50 randomly selected samples in each set.
MicroRNA expression profile revealed characteristic signatures for distinguishing T and B lineages and identified 51
novel microRNAs in pediatric ALL. Interestingly, the present study also revealed endogenous similarities and differ-
ences between blood and bone marrow within each ALL subtype. When Cox regression analysis was carried out
with these identifiedmicroRNAs, 11 of them exhibited expression levels significantly correlated with survival. Valida-
tion of some of the common and relevant microRNAs from both arrays showed that their targets are involved in key
oncogenic signaling pathways. Thus, this study suggests that microRNAs have the potential to become important diag-
nostic tools for identification and monitoring clinical outcomes in ALL patients.
Introduction

Acute lymphoblastic leukemia (ALL) represents a heterogeneous dis-
ease characterized by various underlying genetic abnormalities that block
B- or T-cell differentiation and abets abnormal cell proliferation and sur-
vival [1]. Among acute leukemias in children, about 60% is ALL, of which
80%-85% cases are of B-lineage and the rest are of T-lineage [2–4]. Current
diagnostic regimen involves the use of flow cytometric immunotyping on
peripheral blood (PB) or bone marrow (BM) specimens which is cumber-
some [5]. Thus, there is an imminent need for the development of molecu-
lar markers for diagnostic and prognostic purpose. MicroRNAs are small
noncoding RNAs that play an important role in the regulation of gene ex-
pression. Abnormal gene expression by microRNAs is correlated with the
initiation and progression of many cancer types [6,7] and is referred to as
OncomiRs. They have been shown to regulate both lymphoid and myeloid
lineages in the hematopoietic system [8]. Distinct signatures of microRNA
expression are so fine-tuned in hematopoietic cell differentiation that
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their deregulation might contribute to leukemogenesis [9,10]. Studies re-
vealed that overexpression of miR-155 in transgenic mouse showed en-
hanced B-cell proliferation and eventually developed ALL [11].
MicroRNA expression signatures differentiate ALL fromAcuteMyeloid Leu-
kemia (AML), and combinations could discriminate both cases with an ac-
curacy of 97%-99% [12]. Such studies have also revealed the
involvement of microRNAs in hematopoietic stem cell and leukemic stem
cell functions [13]. SeveralmicroRNAswere also correlatedwith drug resis-
tance in ALL, implicating another major role of microRNAs in tumorigene-
sis [14]. Such tangible evidence of microRNAs acting as regulators in
shaping tumor pathophysiology and its progression provided the impetus
for us to profile the entire complement of microRNAs associated with
ALL. Therefore, we aimed to identify novel signatures that could be used
to classify the T and B subtypes and establish blood-based microRNAs for
potential diagnostic and prognostic markers for childhood ALL in future.
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outcome of this study was the common and unique signatures of
microRNAs of PB and BMwithin the same subtype. The expression pattern
of 11 microRNAs was associated with patient survival in both test and val-
idation data sets. We opine that potential miRNA biomarkers identified in
this study would further help in classification of subtypes and determina-
tion of clinical outcome of ALL.

Material and Methods

Patient Database and Sample Collection

A total of 50 Ph-negative ALL patients having more than 90% blast cells
as per May-Grünwald-Giemsa staining of children aged between 3 and
14 years reported to Regional Cancer Centre (RCC), Trivandrum, were se-
lected for the study. Equal number of peripheral blood and bone marrow
samples of same patients was included in all experiments. Controls
consisted of 20 samples, 10 PB (healthy volunteers), and 10 BM reported
to RCC for various other reasons. Patients were treated in a risk adaptive
manner based on age, WBC count, and prednisone response. For collection
of RBC free clear pellet, BM and PB samples were mixed with RBC lysis
buffer for 15minutes at room temperature followed by 10-minute centrifu-
gation at 2500 rpm. Pellet was washed in phosphate-buffered saline,
suspended in RNAlater (Invitrogen, USA), and stored at −80°C until RNA
isolation.

Morphological Evaluation and Sorting by Flow Cytometry

These patients were Ph negative and had undergone similar treatments
according to Berlin-Frankfurt-Münster (BFM)-based chemotherapy regi-
men. To distinguish the two immunophenotypes of ALL, i.e., B-ALL and
T-ALL, morphological characterization of BM and PB samples was per-
formed by flow cytometry [15] using a panel of fluorochrome conjugated
monoclonal antibodies. PB and BM smears were stained with Giemsa and
myeloperoxidase stain for morphologic evaluation. Cells (1 × 104) were
stained within 24 hours of collection using whole blood lyse wash tech-
nique. Ten milliliters of diluted antibodies was added to each sample
followed by addition of leukocyte common antigen and incubated for 10
minutes. Two milliliters (1:10) of FACSLYSE solution (BD, Biosciences,
San Jose, CA) was added to all samples, vortexed, incubated again for 10
minutes, and centrifuged carefully at 1500 rpm for 5 minutes, and superna-
tant was discarded. Sheath fluid was added and vortexed well. Six parame-
ters and four-color immunophenotyping of the samples were performed
using FACS Calibur flow cytometer (Becton Dickinson, San Jose, CA).
Datawere analyzed using Cell Quest pro software (Version 6.0; Supplemen-
tary Figure S1).

RNA Extraction and cDNA Synthesis

Total RNA was isolated from a total of 100 ALL samples (50 PB and 50
BM) along with 10 healthy controls using mirVana Kit (ThermoFisher Sci-
entific, USA) as per manufacturer's instructions. Purity and quantity of
RNA were measured using NanoDrop ND 1000 spectrophotometer
(NanoDrop Technologies, USA), and integrity was checked by determining
RNA integrity number using an Agilent Bioanalyzer (2100). Only those
RNA samples with RNA integrity number ≥ 7 were taken for this study.
First-strand cDNAwas synthesized from total RNA (1 μg) using high-capac-
ity cDNA synthesis reverse transcription kit (Applied Biosystems, USA) ac-
cording to manufacturer's instructions.

TaqMan Low-Density Array (TLDA) and Locked Nucleic Acid (LNA) Array
Experiments

TLDA (version 2.0) which contains 667 human miRNAs covering
Sanger miRBase (ver10.0) was performed as per manufacturer’s instruc-
tions. A total number of 48 samples (equal number of B-ALL (24) and T-
ALL (24) lineages, each group consisting of PB (12) and BM (12) samples
2

from the samepatient, were taken for TLDA experiments alongwith 20 nor-
mal (10 PB and 10 BM) samples. The experiment was repeated with LNA
arrays (version 11.0) containing 1372 miRNAs from hmr miRbase 14.0
+ miRPlus from Exiqon, Denmark, following manufacturer's instructions.

TaqMan Individual Validation Assays

Common microRNAs that showed significant up/downregulation from
TLDA and LNA arrays were subjected to double-blind TaqMan individual
validation assays in 100 samples (including array samples) following man-
ufacturer's instructions and MIQE guidelines.

MicroRNA Target Validation by Quantitative Polymerase Chain Reaction
(qPCR) and Immunoblotting

Genes reported to be involved in ALL were retrieved from different da-
tabases such as KEGG [16], LeGenD (https://www.bioinformatics.org/
legend/legend.htm), LGB (http://lgb.adibiosolutions.com), and COSMIC
[17]. Target prediction of the identified miRNAs was performed with mi-
Randa program [18], TargetScan [19], and PicTar [20] and LeukmiR data-
base [21]. Interaction network between the miRNAs and their targets in
various signaling pathways was generated using sna package in “R” [22].
Relevant and significant 11 microRNAs were selected for target validation
studies. AntimiRs (miR-136, miR-137, miR-143, miR-466) and mimics
(miR-649, miR-200c, miR-105, miR-432, miR-659, miR-662, miR-921)
for these miRNAs, targeting ALL genes involved in key pathways, were pur-
chased from Exiqon, Denmark, and evaluated on their oncogenic targets
such as caspase 3, caspase 8, c-Myc, p53, PAX5, and STAT 3 obtained
from in silico studies through qPCR and immunoblotting techniques. The
quantification and densitometric analyses were done using “Image J” and
presented.

Survival Analysis

A total of 397 differentially expressed and significant microRNAs were
used for this study. One hundred samples from 50 ALL patients were di-
vided into two groups. Fifty patient samples assigned to test set were used
in TLDA/LNA array analysis, and 50 patient samples assigned to validation
set were used for TaqMan individual assays. Cox regression hazard ratio
(HR) was assessed between miRNA expression and overall survival time
in each patient using “survival” package [23] in R (version 3.1.2). MiRNAs
at log-rank P value< .01 andHR> 1were categorized as risky, while those
with HR<1were categorized as protective. The risk score for each protec-
tive and risky microRNA was calculated for each patient belonging to the
test and validation group using the following formula:

Risk score = (regression coefficient of miR-1 × miR-1 expression) +
regression coefficient of miR-nth × miR-nth expression). Further, patients
with risk score greater than 60th percentile were grouped as high risk,
and those with risk score less than 60th percentile were considered as the
low-risk group. Overall survival was estimated by the Kaplan-Meier curve
[24] for these two groups, and log-rank test was used to evaluate the signif-
icance of the difference of overall survival (P value ≤ .05) between high-
risk and low-risk group.

MS/LTQ-Orbitrap Analysis

Proteome analyses of ALL versus normal sampleswere carried out as de-
scribed in Saxena et al. [25].

Statistical Analysis

Statistical analysis of TLDA data was performed using StatMiner
(spotfire) software from Integromics. Differentially expressed microRNAs
were considered as significant and valid for those with FDR-adjusted P
value ≤ .05.

https://www.bioinformatics.org/legend/legend.htm
https://www.bioinformatics.org/legend/legend.htm
http://lgb.adibiosolutions.com


R.A. Nair et al. Translational Oncology 13 (2020) 100800
Results

MicroRNA Signatures Differentiate the Two Hematopoietic Lineages of ALL

Out of a total 667 microRNAs in Taqman low-density arrays, 397 were
detected as valid and significant in ALL and hence taken for further analy-
sis. Of these, 337 (85%) microRNAs were downregulated and 60 (15%)
microRNAs were upregulated (Supplementary Figure S2). Though the
microRNA expression profile indicated a downregulation trend in ALL pa-
tients (Figure 1A, Supplementary Table S1), there were marked differences
in the microRNA composition and degree of expression between T-ALL and
B-ALL subtypes compared to healthy controls (Figure 1, B and C, Supple-
mentary Figure S3). Validation of significantmicroRNAs from each individ-
ual group was carried out in 100 samples using blind TaqMan individual
assays (Supplementary Figure S4). This reconfirmed and validated the re-
sults from both array analyses. MicroRNA expression profile further re-
vealed the common and unique signatures between T-ALL and B-ALL
subtypes (Supplementary Figure S5A, Supplementary Table S2, A and B).
Interestingly, therewere sets ofmicroRNAs thatwere common to these sub-
types but exhibited opposite trends in expression (Figure 2A). Twelve
microRNAs in T-ALL and 22 microRNAs in B-ALL were uniquely and
Figure 1. Expression trend of microRNAs in ALL (A) by TLDA represented as log10R
color in the heat map depicts downregulated microRNAs, and red color represents upre
of microRNA expression using LNA arrays.
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differentially expressed (Figure 2, B and C). The respective fold up- and
downregulation of the microRNAs along with corresponding P values are
shown in Supplementary Tables S3, A and B. Moreover, upregulation of
miR-21 in both PB and BM of T-ALL and B-ALL subtypes was confirmed
by northern blotting (Figure 2D). Our in-silico studies (in press) supported
microarray data that classified 51 of them as novel ALL microRNAs,
which were not reported earlier.

Peripheral Blood Profile of T-ALL and B-ALL Revealed Common and Unique
MicroRNAs

Comparative analysis of PB in both T- and B-cell subtypes showed
marked differences in their microRNA expression profiles revealing unique
and common microRNAs expressed in the two subtypes (Supplementary
Figure S5B, Supplementary Table S4, A and B). Analysis of PB of both sub-
types showed that a set of 7 microRNAs and 45 microRNAs was uniquely
expressed in T-ALL and B-ALL, respectively (Figure 3A). Significantly af-
fected microRNAs included hsa-miR-181c*, miR-137, miR-106a*, miR-
504, miR-891a, and miR-518d-3p in T-ALL and hsa-miR-455-5p, miR-
566, miR-708, miR-372, miR-34a*, andmiR-424*in B-ALL (Supplementary
Table S5). Interestingly, among the common ones at same cutoff value,
Q and (B) TLDA heat map depicting gene expression profiles of microRNAs. Green
gulated microRNAs. (C) Heat map illustrating unsupervised hierarchical clustering



Figure 2. MicroRNA expression profile of T-ALL and B-ALL reveals common and unique signatures. (A) Common microRNAs with reverse expression trend (at
log10RQ > 1) between T-ALL and B-ALL (B and C) unique microRNAs at log10RQ > 1.5 in T-ALL and B-ALL, respectively. (D) Northern blot analysis showing an
overexpression of miR-21 in PB and BM of both subtypes compared to healthy individuals.
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miR-24-1*,miR-513-5p, andmiR-887 showed opposite expression patterns
in PB of both subtypes (Figure 3B).

Distinct MicroRNA Signatures Found in T-ALL and B-ALL Bone Marrow
Samples

Differences in the microRNA signatures were also observed in the BM
samples of both T- and B-cell types (Supplementary Figure S5C). A set of 33
microRNAs expressed was unique to T-ALL BM, while 10 were specific to
BM of B-ALL (Figure 3C). The above-mentioned unique expression of
microRNAs in BM of both subtypes was characterized by the most significant
downregulation and upregulation exclusively to T-ALL and B-ALL subtype as
compared to control (Supplementary Table S6). Further analysis revealed an
inverse expression trend of a set of microRNAs between BM of T-ALL and B-
ALL subtypes. Hsa-miR-372, miR-455-5p, miR-511, miR-587, and miR-708
were downregulated in T-ALL BM while they were upregulated in B-ALL
BM, whereas hsa-let-7b* showed an inverse trend (Figure 3D). These
microRNAs with their respective fold change and corresponding adjusted P
values are shown in Supplementary Table S7, A and B, respectively.

MicroRNA Profiling Unfolded Endogenous Differences Between Peripheral Blood
and Bone Marrow Within ALL Subtypes

The most interesting finding of the current study was the endogenous
differences in the expression pattern of a set of microRNAs between PB
4

and BM samples within the same subtype of leukemia (Supplementary Fig-
ure S5,D and E). In T-ALL, 12microRNAs of PB and 59miRNAs of BMwere
identified to be differentially expressed (Figure 4A, Supplementary Table
S8, A and B). Similarly, at the same cutoff value, 23 microRNAs were
unique to PB, and 41 downregulated microRNAs were unique to BM of B-
ALL subtype (Figure 4B, Supplementary Table S9, A and B). Among the
microRNAs that showed similar expression profile in PB and BM of same
subtypes, 15 microRNAs were downregulated in T-ALL subtype (Figure
4C, Supplementary Table S10A), while 20 microRNAs exhibited similar ex-
pression signature in B-ALL subtype (Figure 4D, Supplementary Table
S10B).

MicroRNA Signatures Associated with Survival

Cox proportional hazard regression analysis was carried out individu-
ally in 100 ALL samples (50 each in test and validation sets) to identify
the correlation of expression signatures with patients' survival. Out of 397
microRNAs identified with ALL, 11 of them significantly correlated with
overall survival. The risk score for each patient in the test set was calculated
based on the correlation of the identified microRNA signatures to patient
survival, and a score at 60th percentile divided patients into high- and
low-risk groups. The patients in test set having risk score below cutoff
value had low median survival of 18 months and were categorized as
high-risk group, while the patients having risk score above the cutoff had
better median survival of 69 months and thus categorized as low-risk



Figure 3. DifferentialmicroRNA expression signature of PB and BMdistinguishes T-ALL and B-ALL. (A), common significantmicroRNAs in PBwith opposite expression between T-ALL and B-ALL (B), uniquemicroRNAs in BM
of T-ALL and B-ALL (C) and common microRNA in BM with opposite expression between T-ALL and B-ALL (D); log10RQ > 1.5.

R
.A
.N

air
etal.

TranslationalO
ncology

13
(2020)

100800

5



Figure 4. Unique and common microRNA expression signature discloses endogenous differences and similarities within T-ALL and B-ALL subtypes (A), unique microRNA expression signature between PB and BM
distinguishes endogenous differences within T-ALL subtype (B) and B-ALL subtype (C), common microRNA signature reveals endogenous similarities between PB and BM subtype of T-ALL (D) and B-ALL subtype (log10RQ > 1.5).
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group. The validation set confirmed our prediction and showed that pa-
tients in the low-risk group indeed had better survival rates (median sur-
vival: 69 months; HR: 0.76; 95% CI 0.64-0.91; P value = .0033)
compared to high-risk group (median survival: 18 months; HR:1.09; 95%
CI 1.03-1.17; P value = .0038). Among the 11 microRNAs, two of them
were classified as protective and nine of them as risk indicative in patients'
overall survival (P value ≤ .05) in ALL (Figure 5A). Kaplan-Meier curve
was generated against the overall survival in these two risk groups
(Figure 5B).

In Silico Identification and In Vitro Validation of MicroRNAs and Their Targets

In silico pathway analysis using KEGG and GeneGo delineated the inter-
action of microRNAs and their targets in oncogenic pathways (Figure 5C,
Figure 5. Survival analysis of significant miRNAs. (A) Cox regression analyses using surv
Kaplan-Meier curve. (C) sna package of “R” program was used to find oncogenic targets

7

Supplementary Figure S6 and S7). Knockdown probes for miR-136, miR-
137, miR-143, and miR-466 and mimic probes for miR-649, miR-200c,
miR-105, miR-432, miR-659, miR-662, and miR-921 were used for in
vitro validation to elucidate the functional role of microRNAs in leukemia
cell lines. Plausible oncogenic pathway moieties such as caspase-3, cas-
pase-8, and p53 were tested with knockdown probes, and STAT3, c-Myc,
PAX-5, APC, and β-cateninwere tested withmimics. qPCR results indicated
a direct shutdown of caspase-3 by antisense oligonucleotides of miR-136,
miR-137, miR-143, and miR-566 and by mimics of miR-649. Additionally,
a similar regulation with respect to PAX-5, p53, and c-Myc was observed
with all four antisense oligonucleotides and mimics of miR-649. These re-
sults clearly classified them as negative regulators of the respective targets
(Figure 6A) which were further corroborated by immunoblotting studies
(Figure 6B, Supplementary Figure S8).Mimics ofmiR-432 acted as negative
ival package indicating HR and respective P values. (B) Survival analysis depicted by
of microRNAs.
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regulators of APC and Caspase-3, while those of miR-200c, miR-105, miR-
432*, miR-659, and miR-662 defined themselves as positive regulators of
nonphosphorylated form of the oncogene β-catenin. This was further delin-
eated using GeneGo pathway analysis that revealed the direct or indirect
regulation of PAX-5 and BCR/ABL fusion protein by miRs-136, 137, 143,
566, and 649 as well as identified the involvement of diverse range of im-
portant generic enzymes and binding proteins in major oncogenic path-
ways (Figure 6C). Protein profiling of the ALL versus normal samples
revealed differential expression of proteins found in ALL (Supplementary
Figure S9 and S10). T-ALL proteome identified unique proteins specific to
PB and BM samples highlighting endogenous differences between them.
GeneGoMetaCore pathway analysis of the leukemic proteome identified al-
ternative targets which are likely to be involved in the pathogenesis of ALL
(Supplementary Figure S11 and S12).
Figure 6. Effect of mimics and anti-miRs on their oncogenic targets tested in CC
respective targets using selected microRNAs. (B) Immunoblot analysis showing the res
PAX5, and STAT 3. (C) p-53, caspase 3, PAX5, APC, and β-catenin. “Image J” was used

8

Discussion

We have performed a systematic method of genome-wide microRNA
analysis in pediatric ALL using two different microRNA microarray plat-
forms. Herein, we identified 51 novel microRNAs that have not been re-
ported earlier to be associated with ALL. Unsupervised hierarchical
clustering of microRNA profiles enabled stratification between T-ALL and
B-ALL subtypes and revealed molecular differences between PB and BM
within each subtype. Target validation unveiled direct and indirect interac-
tion between OncomiRs: target networks suggesting a strong role of these
microRNAs in leukemogenesis.

MicroRNA expression profiling exhibited a general trend of downregu-
lation (85%) among the ALL patients. Common and altered expression of
some microRNAs was detected in both T-ALL and B-ALL samples. miR-21,
R5 cell lines. (A) Q-PCR analysis showing the knockdown and over expression of
pective target knockdown and overexpression of caspase 3, caspase 8, c-Myc, p53,
for densitometeric analysis.
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the first microRNA known to be expressed in almost all cancers [26], exhib-
ited similar elevated expression in our study. The let-7 series, well known
for their tumor suppressive attribute in different malignancies, were
found to be downregulated. As observed here, upregulation of hsa-miR-
496 has previously been linkedwith poor prognosis, whilemiR-134 expres-
sion is a favorable prognostic marker in ALL [27,28]. In support of our find-
ings, upregulation of miR-708 and miR-128 has been associated with
pathogenesis of high-risk common precursor B-ALL [29,30] and their sub-
sequent downregulation with pediatric T-ALL [30,31]. The occurrence of
these microRNAs that are common to both B-ALL and T-ALL, although
with differential expression levels, helped in classifying the samples as
ALL. In the present study, distinct microRNA expression in PB and BM sam-
ples was observed within the same subsets of ALL. In a similar study,
Schotte et al. (2012) showed fewof thesemicroRNAs as significantly upreg-
ulated in B-ALL progenitor/stem cells [32], although not much has been re-
ported about endogenous differences in these subtypes. Considering these
observations, it seems likely that the molecular differences observed be-
tween PB and BM may reflect a key role of microRNAs involved in the he-
matopoietic cell differentiation depending upon cell types.

Further in our study, expression of 11 microRNAs was correlated with
overall survival. Negative association of microRNA expression with sur-
vival identified two and nine of them as protective and risk indicative, re-
spectively. We classified downregulation of mir-137 and miR-657 as
protective in the present study; however, upregulation of these miRs has
been reported with poor survival in lung cancer [33] and hepatocellular
carcinoma [34]. The risk-indicative miR-582-5p reported here was ob-
served in high-grade bladder cancer and in other ALL cases [35–37]. Fur-
ther, Fulci et al. (2009) reported that miR-425-5p could discriminate B-
ALL subgroups and its downregulation identified in BCR/ABL+ aberration
[38]. Reduced expression of miR-18b and miR-32 was classified with
shorter overall survival in various cancers [39–42]. Recent studies from
Wang et al. (2016) and Song et al. (2014) identified that lower expression
of miR-323-3p and miR-545 was indicative of poor prognosis. Both these
microRNAswere responsible for increased tumorigenesis with reduced sur-
vival in pancreatic ductal adenocarcinoma, respectively [43,44]. Downreg-
ulation of miR-337-5p and miR-365 was correlated with lymph node
metastasis and poor survival in multiple cancers [45–48]. Taken together,
these studies have established an important role for 11 distinct microRNAs
identified in our study that they could be used as predictive prognostic
markers.

Target identification of miRNA genes is challenging because miRNAs
bind to the target mRNA through incomplete sequence pairing, making it
difficult to locate the complementary site. Network analysis between
novel microRNAs and their targets revealed their potential role in regula-
tion of various oncogenic signaling pathways. Pathway analyses with the
deregulated microRNAs suggested that they were implicated in the func-
tional regulation of various receptors, their cognate ligands, transcription
factors, and apoptotic proteins found in major oncogenic pathways. Our
pathway enrichment along with the qPCR and Western blot data analyses
indicated a mechanistic interaction between differentially regulated
microRNAs and their targets. This interdisciplinary approach, by studying
in silico applications along with in vitro and in vivo validation methods,
could help to characterize key pathways that impact cell survival and leuke-
mogenesis leading to formulation of novel treatment regimens.

To gain further insights about the functional role of miRNA signatures,
target genes were extracted from GO and KEGG pathways. Validation of a
few significant microRNAs using qPCR and immunoblotting suggested sim-
ilar functional interactions. For example, knockdown of miRs such as miR-
136, miR-137, miR-143, miR-566, andmiR-649 led to increased expression
of proapoptotic signaling molecules such as caspase 3 and 8, thereby sug-
gesting interplay between the upregulation of these microRNAs and carci-
nogenesis. Similarly, mimics of miR-432 negatively regulated APC and
caspase 3, while miR-200c, miR-105, miR-432*, miR-659, and miR-662
had profound positive regulatory effect on the nonphosphorylated form of
β-catenin, an oncogene indicating a strong network interaction between
these microRNAs and wnt pathway regulators. Increased expression levels
9

of PAX5 with mimics indicated that these microRNAs might be involved
in its negative regulation that plays a central role in B-cell development
and differentiation. This observation is supported by an earlier report that
PAX5 mRNA levels were high in B-ALL patients [49]. These insights offer
possibility of developing novel therapeutic approaches based upon the tar-
gets identified. Comparison of the proteome from patient groups with the
controls revealed differential expression of proteins commonly reported
in different cancers. Recent studies suggest the involvement of prolactin in-
ducible protein as survival factor in seminal plasma of ALL patients, which
also correlated with our studies [50]. Detailed studies are needed to com-
pare protein dynamics in the subtypes of ALL that might lead to an interest-
ing outcome.

In conclusion, we have deciphered the microRNA complement of ALL
with a proof of concept for generating potential biomarkers that could be
used for diagnosis, prognosis, and identifying potential therapeutic targets
of ALL. MicroRNA regulation is an essential component in assessing the
clinical outcome of pediatric ALL. The putative microRNA:target interac-
tion studies also suggested novel oncogenic targets for therapeutic interven-
tion. Our extensive validation strategy generated potential biomarkers for
diagnosis and prognosis which would aid in the clinical paradigm for ALL
subtype classification.
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