Educational Notes in Research Methodology and Medical Statistics

DOI: 10.22114/ajem.v0i0.344

Sample Size Calculation Guide - Part 7: How to Calculate the Sample Size **Based on a Correlation**

Ahmed Negida^{1,2*}

1. Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt.

2. Neurosurgery Department, School of Medicine, Bahçeşehir University, Istanbul, Turkey.

*Corresponding author: Ahmed Negida; Email: ahmed01251@medicine.zu.edu.eg, ahmed.said.negida@gmail.com Published online: 2020-02-17

INTRODUCTION

In the previous educational articles, we explained how to calculate the sample size for a rate or a single proportion, for an independent cohort study, for an independent case-control study, for a diagnostic test accuracy study, for a superiority clinical trial, and for a non-inferiority or equivalence clinical trial (1-6). In this article, we will explain how to calculate the sample size for a clinical study with the aim of detecting the correlation coefficient between two variables.

WHEN TO USE THE SAMPLE SIZE CALCULATION **PROCEDURE OF A CORRELATION**

The methods explained hereafter should be used in case of a clinical study designed to determine the correlation between two variables. This study might be a cross-sectional study, a cohort study, a case-control study, or a clinical trial as long as the primary objective is to determine the correlation between two variables.

REQUIREMENTS

- 1) Expected correlation coefficient
- 2) Statistical power
- 3) Alpha
- 4) Correlation coefficient for the null hypothesis (usually 0 or 0.2)

CALCULATION STEPS ON STATSDIRECT SOFTWARE

- 1) Open a new report
- 2) From "analysis" menu, select "sample size."
- 3) Then select "correlation."
- 4) Then submit the data

CALCULATION STEPS ON THE STATISTICS AND SAMPLE SIZE CALCULATION ANDROID APP (FIGURE 1)

- 1) Open the app
- 2) Select "sample size calculator"

Sample Size Calculator	Sample Size Calculator	Sample Size Calculator
Random Sampling	Estimate a proportion	Estimate a correlation coefficient
Statistical Distribution Table	Estimate a proportion in finite population	$\left[Z_{1-\alpha_{2}} + Z_{1-\beta} \right]^{2} + 2$
	Estimate a mean	$n \ge \left\lfloor \frac{1}{1 - \log_e \frac{1+r}{r}} \right\rfloor + 3$
Statistical Calculator	Estimate a correlation coefficient	$(2^{-1}-r)$
Statistical Analysis from Data Files	Estimate a sensitivity	Alpha (α) 0.05
Choose the correct test	Estimate a specificity	Beta (β) 0.1
Tetestal	Compare two proportions	Estimated correlation coefficient $(r) 0.46$
	Compare two proportions (Paired / Before -	
Let's relax	After)	CALCULATE
Preferences	Compare two means (use mean and standard deviation	Minimum sample size needed: 46
About	Compare two means (use effect size)	
	Compare two means (Paired / Before - After)	
	Compare multiple means	
	Case control study	
	Cohort study	
	Survival study	
	Pandom Sampling	
gure 1: Shows the calculation steps on the	e Android app, statistics and sample size calc	ulation

Copyright © 2020 Tehran University of Medical Sciences

This open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial 4.0 License (CC BY-NC 4.0).

	Luit	Insert	Format	Data	Analysis Gra	phics Tools Window Help
Return		Help	Ru	n 🔸	0	Correlation coefficient under null hypothesis (0 to 1)
					0.46	Correlation coefficient under alternative hypothesis (0 to 1)
					90.0 ~	% POWER (% probability of correctly detecting a real effect)
					5.0 ~	% ALPHA (% probability of incorrectly rejecting the null hypothesis
<u>Sampl</u>	<u>e size fo</u>	r Pearson	n correlatio	<u>on</u>		
<u>Sampl</u> Alpha	<u>e size fo</u> = 0.05	r Pearsoi	n correlatio	<u>on</u>		
<u>Sampl</u> Alpha Power	<u>e size fo</u> = 0.05 = 0.9	r Pearson	n correlatio	<u>on</u>		
<u>Sampl</u> Alpha Power Correl	e size fo = 0.05 = 0.9 ation co	<u>r Pearson</u> efficient	n correlatio	<u>on</u> hypoth	esis = 0	
<u>Sampl</u> Alpha Power Correl Correl	e size fo = 0.05 = 0.9 ation co ation co	r Pearson efficient efficient	<u>n correlatio</u> under null under alte	bn hypothe rnative	esis = 0 hypothesis = 0.4	5

3) Select "estimate the correlation coefficient"

4) Then submit the data

CASE STUDY OF MICRORNA PLASMA LEVELS AS BIOMARKERS FOR EARLY DETECTION OF PROSTATE CANCER

Assume that we are conducting a study to investigate the role of microRNAs in plasma as potential biomarkers for early detection of prostate cancer (defined as elevated PSA). A recent study by McDonald et al. (7) reported the following sentence: "moderate positive correlations with serum PSA were observed for ... miR-34a among cases (r = 0.46; P-value = 0.02)". The null hypothesis is that there is no correlation between microRNAs in the plasma and serum PSA (r=0). The alternative hypothesis based on McDonald et al. is that there is a moderate correlation between microRNAs in the plasma and serum PSA (r=0.46).

CASE SOLUTION

First, we determine the requirements

- Expected correlation between the two variables (r=0.46)
- Statistical power = 90% (or Beta error=0.1)
- Alpha = 5%
- Correlation coefficient of the null hypothesis (r=0.0)

Second, we run the calculations using the Statistics and Sample Size calculation app on Android (Figure 1) or the StatsDirect software for windows (Figure 2). The results show that a minimum sample size of 47 patients will be required for this study.

Second, we run the calculations as shown in Figure 1. The results show that a minimum sample size of 156 patients (n=78 per group) will be required for this randomized controlled trial (Figure 1).

REFERENCES

1. Fahim NK, Negida A. Sample size calculation guide - part 1: how to calculate the sample size based on the prevalence rate. Adv J Emerg Med. 2018;2(4):e50.

2. Fahim NK, Negida A. Sample size calculation guide - part 2: how to calculate the sample size for an independent cohort study. Adv J Emerg Med. 2019;3(1);e12.

3. Fahim NK, Negida A, Fahim AK. Sample size calculation guide - part 3: how to calculate the sample size for an independent case-control study. Adv J Emerg Med. 2019;3(2):e20.

4. Negida A, Fahim NK, Negida Y. Sample size calculation guide - part 4: how to calculate the sample size for a diagnostic test accuracy study based on sensitivity, specificity, and the area under the roc curve. Adv J Emerg Med. 2019;3(3):e33.

5. Negida A, Fahim NK, Negida Y, Ahmed H. Sample size calculation guide - part 5: How to calculate the sample size for a superiority clinical trial. Adv J Emerg Med. 2019;3(4):e49.

6. Negida A. Sample size calculation guide - part 6: How to calculate the sample size for a non-inferiority or an equivalence clinical trial. Adv J Emerg Med. 2020;4(1):e15.

7. McDonald AC, Vira M, Shen J, Sanda M, Raman JD, Liao J, Patil D, Taioli E. Circulating microRNAs in plasma as potential biomarkers for the early detection of prostate cancer. Prostate. 2018;78(6):411-8.

This open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial 4.0 License (CC BY-NC 4.0).

Copyright © 2020 Tehran University of Medical Sciences