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Abstract

Bacteria have elaborate signalling mechanisms to ensure a behavioural response that is most likely to enhance survival in a
changing environment. It is becoming increasingly apparent that as part of this response, bacteria are capable of cell
differentiation and can generate multiple, mutually exclusive co-existing cell states. These cell states are often associated
with multicellular processes that bring benefit to the community as a whole but which may be, paradoxically,
disadvantageous to an individual subpopulation. How this process of cell differentiation is controlled is intriguing and
remains a largely open question. In this paper, we consider an important aspect of cell differentiation that is known to occur
in the Gram-positive bacterium Bacillus subtilis: we investigate the role of two master regulators DegU and Spo0A in the
control of extra-cellular protease production. Recent work in this area focussed the on role of DegU in this process and
suggested that transient effects in protein production were the drivers of cell-response heterogeneity. Here, using a
combination of mathematical modelling, analysis and stochastic simulations, we provide a complementary analysis of this
regulatory system that investigates the roles of both DegU and Spo0A in extra-cellular protease production. In doing so, we
present a mechanism for bimodality, or system heterogeneity, without the need for a bistable switch in the underlying
regulatory network. Moreover, our analysis leads us to conclude that this heterogeneity is in fact a persistent, stable feature.
Our results suggest that system response is divided into three zones: low and high signal levels induce a unimodal or
undifferentiated response from the cell population with all cells OFF and ON, respectively for exoprotease production.
However, for intermediate levels of signal, a heterogeneous response is predicted with a spread of activity levels,
representing typical ‘‘bet-hedging’’ behaviour.
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Introduction

Bacteria are capable of ‘‘multicellular’’ behaviours that benefit

the bacterial community as a whole [1–4]. How bacteria integrate

several mutually exclusive cell states within the population is

intriguing and understanding this phenomenon is essential to

determining, for example, why there are antibiotic resistant

persistor cells [5], why subpopulations of cells have different fates

in a differentiating species, such as sporulating species [6], and

even why there is variability in motile and chemosensory

behaviour in swimming species [7]. Studying the origins and

consequences of this heterogeneity within the population is

therefore central to our ability to understand, control and exploit

these ubiquitous organisms. To address the question of how

heterogeneity is manifest in a bacterial population, we present a

mathematical analysis of the mechanisms underpinning the

heterogeneity of extracellular protease (exoprotease) production

in the model Gram-positive bacterium Bacillus subtilis.

The production of extracellular proteases (exoproteases) func-

tions to provide nutrients for the cells to grow and divide [8].

Furthermore, a significant increase in the production of exopro-

teases has been correlated with an inhibition of biofilm formation

[9]. This raises the possibility that the exoproteases potentially

function to reverse biofilm formation by degrading the protein

components of the extracellular matrix that binds the cells within

the biofilm [9]. This could allow for a return of the cells to a free-

swimming state. In passing, we note that it is known that

multicellularity in B. subtilis not only encompasses the production

of exoproteases [8] but also swarming motility [10] genetic

competence [11–13], sporulation [14,15] and biofilm formation

[16,17].

B. subtilis exoprotease production is controlled by the activation

of two regulators; namely Spo0A and DegU [18,19]. Entry to (or

indeed exit from) different cell states is dependent in part on the

level of phosphorylated DegU within the cell [9,20,21]. The level

of phosphorylated DegU is controlled by its cognate sensor kinase,

DegS [20]. The DegS-DegU two-component regulatory system

regulates at least five multicellular processes in B. subtilis: biofilm

formation; genetic competence; swarming motility; polyglutamic

acid production and; protease production [19]. In the absence of

an appropriate environmental signal, DegS is at a low level and

unphosphorylated and the level of phosphorylated DegU is also

low, as its production is regulated by a positive feedback loop

[8,22]. The production of the extracellular proteases occurs when

the DegS-DegU system is stimulated [9,20,21]. It is not known

exactly what the environmental stimulus perceived by DegS is, but
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changes in osmolarity [23], carbon levels or amino acid starvation

[24] have all been hypothesized. Moreover, how such two-

component systems integrate multiple cell states into the popula-

tion is unclear. However, the detection of such a signal is likely to

be subject to variation and therefore likely to induce changes in the

phosphorylation status of DegU at the individual cell level. The

other key regulator under consideration here is Spo0A, which is

activated by phosphorylation mediated by a phosphorelay system

that is, in part, stimulated by starvation [14,15]. Spo0A~P regulates

the expression of approximately 120 genes according to the

specific affinity of the promoter element for Spo0A~P [25–27]. This

allows the activation of different subgroups of genes at different

levels of Spo0A~P [26,28]. Spo0A~P is most commonly associated

with sporulation. However, the main role of Spo0A~P during the

activation of exoprotease production is to facilitate transcription

from the bpr (bacillopeptidase) and aprE (subtilisin) genes. Spo0A~P
achieves this by removing the direct inhibition of transcription

exerted by two repressor proteins called SinR and AbrB

[21,27,29].

Mathematical modelling of gene regulatory networks in bacteria

is an area of intense research interest. Of particular relevance to

the work presented here, genetic switches have attracted much

attention [30–33]. Both deterministic and stochastic approaches

have been used to explain the complex (non-linear) interplay

between multi-component systems and the effects of intrinsic and

extrinsic noise in determining cell fate. Again of relevance to the

work here, the model bacterium Bacillus subtilis has attracted

considerable attention (for an excellent overview, see [34]). The

master regulator Spo0A discussed here also mediates many other

pathways, in particular, sporulation (see e.g. [35,36]). Jabbari et al.

[37] construct deterministic models with which they explore the

interplay between quorum sensing, nutrient levels, DNA damage

and competence in determining what induces the irreversible

decision to form spores. Further details of the role of quorum

sensing in the sporulation route is discussed in e.g. [38]. There,

using a combination of deterministic and stochastic models, it is

demonstrated how the phosphorelay may be able to integrate

environmental signals to compute ‘‘food per cell’’ and use this

measure a determining factor in the decision to sporulate.

It is our overall goal to understand how DegU regulates

multicellular processes and in particular how its regulatory

network intersects with other genetically separate regulatory

pathways. In a step towards this goal, in this paper we present a

complementary mathematical analysis of recent work presented in

[8] where Veening et al. used a combination of experimental

methods and mathematical modelling to investigate how the

master genetic regulators, Spo0A and DegU, interact to control

cell fate in B. subtilis. In particular, they demonstrated that

activation of both gene regulators was required to initiate

exoprotease production and thus this pathway interaction was

described as AND logical. The main conclusion of [8] was that

stochastic effects in gene regulation and transcription governed

temporal heterogeneity in the expression of the resultant protein and

thus the heterogeneous cell activity observed in the laboratory.

Here we show that an alternative analysis of the underlying model

structure reveals that heterogeneity in protein levels is not simply a

transient feature of this regulatory network, but rather a persistent,

steady state property of the system. Moreover, we discuss how this

heterogeneity in system response is mediated by the level of the

input signal and further investigate the AND logic discussed

above. We call this system response selective heterogeneity to

differentiate it from the transient, temporal heterogeneity discussed

previously. Essentially, we show that the shape of the steady state

system signal-response curves induces a lensing of stochastic

effects: the system is differentially sensitive to changes in input

signal and different components within the system are more or less

sensitive to changes to those signals. In the deterministic limit, the

model predicts that bimodal cell distributions (in our case DegU

ON, exoprotease OFF and DegU ON, exoprotease ON) result

without the system exhibiting classic bistable kinetics. Stochastic

effects smear this deterministic limit to yield a heterogeneous

population of cells all of which are DegU ON but for which the

exoprotease status can vary by up to 3-fold. This long-term, stable

heterogeneity in cell type may have particular relevance to

understanding the development of biofilms within which differen-

tiated cell subpopulations cooperate over an extended time period

[39].

Methods

Model Formulation
The model presented in [8] is centred on the dynamics of DegU

auto-regulation. A schematic of the components and how they

interact is given in Figure 1. As illustrated, the main output of the

system is the level of exoprotease expression (number of AprE

molecules per cell). This system output is governed by two

independent networks: (i) the DegU/DegU~P module and (ii) the

SinR/AbrB module which is regulated by Spo0A. These modules

are themselves activated by environmental signals. How the cell

perceives and processes environmental signals is highly complex

and involves both the role of DegS, the sensor histidine kinase that

phosphorylates and hence activates DegU and a complex

phosphorelay that activates Spo0A. It is our intention to focus

on the downstream processes from this signal transduction

machinery. Hence, in the model, Spo0A variations will be

considered to implicitly affect the levels of AbrB and SinR as

detailed below. The role of DegS will be encapsulated in an

‘‘effective’’ phosphorylation rate kph and hence kph can be thought

of as the signal response parameter and will be referred to as the

signal parameter/signal strength for short. We are princi-

pally interested in studying system output in response to changes in

this signal parameter.

The model comprises four core components: mRNA degU, the

DegU protein, phosphorylated DegU (DegU~P ) and a dimer of

phosphorylated DegU. In the model, the number of molecules per

cell of these components is denoted here by mU ,U ,P and D,

respectively. The dimer of DegU~P controls (in part) the

downstream production of exoproteases: the variables in that

component of the model are the mRNA associated with the

exoproteases and the proteins themselves, denoted by mE and E,

respectively. Following standard mass action arguments (that the

rate of reaction is proportional to the product of the concentration

of the reactants), the dynamic interaction of these variables can be

modelled using the following system of ordinary differential

equations, which describes the net rate of change in the (average)

number of molecules per cell. Each equation can be read as

net change over a small time interval = production 2 loss.

Production is via transcription, translation or species-change,

e.g. phosphorylation or dimerisation. Loss is via degradation or

species-change. The system of equations reads as follows:

mRNA degU :
dmU

dt
~ KU|fflfflfflfflffl{zfflfflfflfflffl}

transcription

{kmdegmU

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{degradation

, ð1Þ

Selective Heterogeneity in Exoprotease Production
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DegU :
dU

dt
~ kT mU|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

translation

{kphUzkdephP
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{phos:=dephosphorylation

{kpdegU , ð2Þ

DegU :
dP

dt
~kphU{kdephPz

2|( kdD|{z}
disassociation

{ kaP2
zffl}|ffl{dimerisation

){kpdegP,

ð3Þ

Dimer :
dD

dt
~kaP2{kdD{kpdegD, ð4Þ

mRNA Exoprotease :
dmE

dt
~ KE|fflfflfflffl{zfflfflfflffl}

transcription

{kmdegmE , ð5Þ

Exoprotease :
dE

dt
~kT mE{kpdegE: ð6Þ

(The factor 2 in the final term in (3) is included to ensure the

correct mass conservation law arising from the dimerization of

monomers of DegU*P: all other processes excluded,

Dz2P~constant - see e.g. [40]. We note that this factor is

missing in the formulation that appears in [8], but do not view this

as critical to the qualitative properties of the results presented there

(or here).

The term KU represents the transcription flux from the degU

promoter. It can be considered to comprise two processes: (i) a

basal level of transcription that occurs in the absence of

stimulation from the phosphorylated dimer of DegU and (ii)

transcription in response to DegU~P dimer stimulation. This flux

can therefore be written as

KU~I0 Prob(dimer not bound)zImax Prob(dimer bound)

~I0
KD

KDzD
zImax

D

KDzD
, ð7Þ

where I0 and Imax represent the maximal basal and stimulated

flux, respectively and KD is the half-maximal binding constant (i.e.

the level of D at which each of these processes are at their half-

maximal rates). The underlying assumption that leads to the

standard representation of transcription (7) is that the association

and dissociation of the dimer of DegU~P with the promoter site is

relatively fast.

Figure 1. Schematic of the DegU - Spo0A intersecting control networks. The interaction of the main components of the model are
illustrated. Interactions enclosed in dashed boxes are not explicitly considered. See text for further explanation.
doi:10.1371/journal.pone.0038574.g001
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The transcription flux from the DegU~P -dependent exoprotease

promoter elements (such as the aprE and bpr promoter regions [41–

44]) is more complex. Transcription from these promoters is

known to be activated by the DegU~P homodimer, denoted here by

D, but it is also repressed by the regulators SinR and AbrB.

Following Veening et al., we will focus on the control of aprE but

refer to this hereafter as exoprotease to emphasise the generic

element of this control mechanism. It is assumed that (i) there is a

basal level of transcription, (ii) the promoter site is capable of

binding two dimers, which act accumulatively to promote

transcription, (iii) AbrB interferes with the action of these dimers

by competing for the binding site and (iv) the binding of SinR takes

place upstream of the promotor site and thus its action is to

regulate transcription irrespective of the dimer level. Hence, an

expression for the transcription flux is as follows:

KE~Prob(SinR not bound)| IE
0 Prob

�
dimer not boundð

fAbrB not boundÞz:::

:::IE
max Prob one dimer bound fAbrB not boundð Þz

IE
max Prob(two dimers bound fAbrB not bound)

�
~

KS

KSzSinR
IE

0

1

1zD=KDz(D=KD)2zAbrB=KA

 
z:::

IE
max

D=KD

1zD=KDz(D=KD)2zAbrB=KA

z

IE
max

(D=KD)2

1zD=KDz(D=KD)2zAbrB=KA

!
,

ð8Þ

where, as above, IE
0 and IE

max represent the maximal basal and

stimulated flux, respectively, KS,KA and KD are the half-maximal

binding constants for SinR, AbrB and the DegU~P dimer,

respectively. No explicit account of the dynamics of SinR and

AbrB is taken at this point, they are simply set as constants. Later,

we investigate the consequences of varying these values thus

mimicking differential signalling through the Spo0A signalling

pathway and explicitly demonstrate the AND logic of this

regulatory system.

The meaning of the parameters and their values (used

throughout unless otherwise stated) are given in Table 1. These

values are either taken directly from [8], the accompanying

Information S1 or the accompanying numerical code. An

extended discussion of how these values are estimated is provided

in the Supplementary Information for [8]. In short, many of the

values are estimates based on known, similar reaction rates and/or

are computed from basic observations of the reaction scheme

under investigation and physical principles, in particular time

scales. It is noted there and confirmed here that the system is not

in general qualitatively sensitive to small changes in the parameter

values. Indeed, as discussed below, certain key features are

insensitive even to changes of order. Some of the values are stated

in terms of number of molecules or ‘‘copy number’’ (#). A copy

number of approximately 602 corresponds to a concentration of

approximately 1mM/l [8]. Note that systems of the type (1)–(6) are

more normally couched in terms of concentrations and hence,

naturally, the variables are real-valued, continuous functions of

time. For ease of comparison with stochastic simulations that will

be discussed later, the system is written in terms of (average)

numbers of molecules per cell and hence these can be again

viewed as real-valued continuous functions. (Of course, the

stochastic simulations return integer-valued outputs.) A suitable

scaling of the rate constants given in Table 1 maps one

formulation to the other whilst the dynamics remain unaltered.

Numerical Integration
System dynamics. The dynamics of system (1)–(6) can be

determined by numerical integration using any reasonable ode

solver. We chose to use the MATLAB ode45 programme, which

employs a Runge-Kutta 4-5 predictor-corrector algorithm. Stan-

dard checks were made to ensure that decreasing error tolerances

did not alter the qualitative or quantitative properties of the

solution.

Steady state analysis. To complement the mathematical

analysis, the behaviour and stability of the steady state response

curves of the system (1)–(6) were determined using the well-known

numerical continuation package AUTO. We used the lasted

version of this package AUTO 07p for the simulations discussed in

the Results section. Graphical output was generated using

MATLAB R2010b.

Modelling noise. If the number of interacting molecules is

very low, then it is possible that noise plays a significant role in the

system dynamics. Therefore it is appropriate to consider an

alternative modelling approach that incorporates stochastic effects

in the reactions. This can be done using the Gillespie Stochastic

Simulation Algorithm (GSSA) [45] to compute typical solution

paths. (See for example [46] and [47] for a very clear introduction

and comprehensive overview, respectively.) In short, this method

replicates the statistics of random interactions between reactant

molecules within a given volume. Stochastic effects induced by low

copy numbers are often referred to as intrinsic noise. To generate

the results discussed below, we used the GSSA approach without

deviation and implemented it using the systems biology freeware

package Dizzy [48]. Each run of the algorithm can be viewed as

the temporal evolution of the transcription network within a single

cell. Data from multiple runs can therefore be directly compared

to data produced by flow cytometry techniques in which the level

of transcription in single cells is associated with the level of

fluorescence generated by the green fluorescent protein, whose

production is driven by the heterologous promoter region under

consideration (see [49]). In this paper, we report data produced

from 1000 stochastic simulations in each case. This is equivalent to

presenting the data from 1000 individual cells. The model

considers output from the network over a 17 hour period. (This

final time represents e.g. typical overnight culture of biofilms. In all

the simulations we discuss below, the system is in steady state by

this time and hence further time integration does not yield any

more information.) The programme Dizzy is not capable of

storing data from multiple simulations (other than in averaged

format) and therefore a short shell script was written to perform

the loop and store the data from each run separately. In the case

where different, randomly assigned values of the phosphorylation

rate were required, these were first created using the pseudo-

random number generator in MATLAB R2010b and then loaded

into the Dizzy equation files, again using a short shell script. Data

from each run were stored in CSV format and a MATLAB script

was used to collate the data and generate histograms.

Results

System Dynamics
The time evolution of copy numbers as predicted by the model

is shown in Figure 2. For ease of comparison, the initial level of all

reactants was set to zero, representing the case where the cells can

Selective Heterogeneity in Exoprotease Production
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be considered to be in an OFF state. All reactants increase

monotonically and settle to a steady state value after approxi-

mately 5 hours. It is important to note that different choices of the

rate of phosphorylation of DegU, kph, and initial protein levels

resulted in transient times of the same order, hence underpinning

the robustness of the model predictions discussed below. Indeed,

setting all reactants to zero at the start of the simulation represents

an extreme case that will generate the long transient times; other

choices of initial data produced shorter transient times (see Fig.

S1). Moreover, this transient biochemical reaction time-scale is

considerably shorter than e.g. time to the steady-state growth

phase in liquid culture or typical studies of biofilm development.

Comparing Figures 2A and 2D provides a scale for the range of

copy numbers resulting from the system. We note that it is

currently impossible to experimentally distinguish between the

different components of the total pool of DegU. This is due in part

to the instability of the phosphate moiety on the aspartic acid at

position 56 on DegU during in vitro manipulation. However, the

model predicts that the temporal evolution of each of the DegU

components (shown in Figure 2B and 2C) follows the same profile.

Moreover, and of greater pertinence to the work discussed here, in

steady state the level of DegU in the cell dominates and thus the

steady state response curves for DegU and the total DegU pool are

indistinguishable, for signal parameter values in the range under

consideration (see Fig. S6). Finally, it is known that the unpho-

sphorylated from of DegU controls competence [11–13] and

therefore tracking the evolution this component is of importance in

its own right. Hence, the figures below will only display output for

DegU.

The Steady State Framework
Given the relatively short transient illustrated in Figure 2, a

framework with which to better understand the longer term system

response to different signal strengths is formed by considering the

steady states of (1)–(6). This is done by setting the left hand sides to

zero in each of the equations and results in a system of six

algebraic, nonlinear equations, the solutions of which provide the

steady states. System properties can be determined by investigating

how these steady states change with parameters, in particular the

signal surrogate, kph. Note that systems with non-linear positive

feedback mechanisms as is the case here, have the necessary

properties to produce a wide range of complex behaviours

including bistability. We now discuss system behaviour first by

considering numerical computations and then via a detailed

analysis of a related but simpler system.

Using the default parameter set given in Table 1, numerical

solution (continuation) of the steady state equations corresponding

to the full system (1)–(6) yields the steady state signal response

diagram shown in Figure 3. Two qualitative features are

immediately obvious: (i) the system response curve for DegU

displays a distinct fold (Figure 3A) and (ii) for signal values kph

corresponding to the location of this fold, the exoprotease level

displays an ultra-sensitive switch. Consequently, for two similar

signal values, stable steady states can comprise the same DegU

values but very different exoprotease values (compare system

output indicated by the blue and yellow dots, see also Figure 3C).

So the model predicts that cells could potentially respond

bimodally to similar signal values: all cells would be ON for

DegU expression but a fraction of cells would be respectively ON

and OFF for exoprotease production. Moreover, in the Informa-

tion S1 it is shown that the relationships shown here hold even if

DegU is replaced with the total DegU pool (DegU + DegU~P +
dimer), see Figure S6.

The form of these response curves depends on parameter

choice. Extensive numerical simulations revealed that both the

qualitative and quantitative properties are relatively insensitive to

small changes in parameter values. Not surprisingly, the location

and height of the fold did change with 2-fold changes in most

parameters and the region of bistability (indicated by the dashed

lines in Figure 3) could be increased by reducing I0 below the

default value and eliminated by increasing I0. However, and more

interestingly, the ‘‘width’’ of the fold (measured here as the

distance between the corresponding kph values associated with a

value approximately 75% of the maximum DegU level) appeared

to be insensitive to 2-fold variations in almost all the system

parameters and insensitive to 10-fold changes in some, e.g. KD, kd

Table 1. Parameter Values.

parameters values description of constants

kmdeg 0:01s{1 mRNA degradation

kT 0:04s{1 translation per Mrna

kpdeg 4:10{4s{1 mRNA degradation

kph 1:10{3s{1 DegU phosphorylation

kdeph 0:05s{1 DegU*P dephosphorylation

ka 0:025s{1 dimer of DegU*P association

kd 0:1s{1 dimer of DegU*P dissociation

KD 7# (degU) 10# (exoprotease) equim. of DegU dimer binding to promoter

I0 4:10{3#s{1 transcription of degU from inactivated promoter

Imax 4:8:10{2#s{1 maximal transcription of degU from activated promoter

IE
0 2:10{2#s{1 transcription of exoprotease from inactivated promoter

IE
max 0:4#s{1 maximal transcription of exoprotease from activated promoter

KS 7# dissociation of SinR binding to promoter

KA 7# dissociation of AbrB binding to promoter

Parameter descriptions and values from [8].
doi:10.1371/journal.pone.0038574.t001
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and ka. (Of course all features of the DegU response curve are

independent of parameters related to the downstream exoprotease

component of the model.) It is unclear whether such variations in

parameter values are biologically relevant, but it provides a better

understanding of the underlying mathematical structure and

suggests that the diagrams shown in Figure 3 are qualitatively

representative. The exception seems to be variations in kdeph for

which the fold height was not affected, but the fold width scaled

(non-linearly) with kdeph. Figure 4 shows system output for different

values of kdeph. Notice that the corresponding switch in

exoprotease level tracks the location of the fold. Hence, the two

steady states indicated by the blue and yellow dots in Figure 3 can

be associated with signal values kph that are relatively close

together. This led us to investigate stochastic variations in effective

signal values that could exist between cells and/or arise from the

heterogeneity of the cell microenvironment. If such a variation

exists the question is what would the consequences be? First,

however we discuss how a reduced model provides a better

understanding of the generic form of the signal response curves

and their robustness to parameter variation.

A minimal model: generic behaviour and

robustness. The superlinear forms of KU and KE ensure that

Figure 2. Dynamics of the DegU and exoprotease systems. Temporal evolution of the DegU - exoprotease system as modelled by equations
(1)–(6). The levels of (A) mRNA, (B) DegU, (C) DegU~P and dimer of DegU~P and (D) exoprotease. All parameters as in Table 1.
doi:10.1371/journal.pone.0038574.g002
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no useful closed form expressions for the steady states of the system

exist: only numerical solutions can be found as detailed above.

However, considerable further insight into how the steady state

values change with parameter values of the model predictions can

be gained by considering an approximate or minimal system as we

now discuss. Full details of the derivation and analysis of the

minimal system appear in the Information S1, see also Figs. S2,

S3, S4, S5, S6.

In summary, a minimal system is obtained by assuming the

processes of phosphorylation and dephosphorylation of DegU and

the association and dissociation of the dimer of DegU~P are fast

compared to protein production and degradation. A further

approximation is made in which it is assumed that the background

transcription rate I0 of degU is small compared to the maximal rate

Imax. The first set of these assumptions reduces the six algebraic

equations associated with steady states of the full model to one

cubic equation for the level of DegU:

Figure 3. The steady state values of DegU and exoprotease as functions of the phosphorylation rate kph as predicted by the full
system. Steady state solutions for (A) U (DegU) and (B) E (exoprotease) of system (1)–(6) as functions of kph. (C) Plot of DegU versus the level of
exoprotease (U versus E). Solid lines represents stable solutions, dashed lines represent unstable solutions and a region of bistability. The blue and
yellow dots individually indicate system output for two different values of kph. They are provided for ease of comparison between the graphs (see
text). All parameter values from Table 1.
doi:10.1371/journal.pone.0038574.g003

Figure 4. How the steady state curves change with the dephosphorylation rate kdeph. Steady state solutions for (A) U (DegU) and (B) E
(exoprotease) of the full system (1)–(6) as functions of kph. Solid lines represent stable solutions, dashed lines represent unstable solutions and a
region of bistability. All parameter values from Table 1 except kdeph~0:005 (green); kdeph~0:05 (red); kdeph~0:075 (blue).
doi:10.1371/journal.pone.0038574.g004
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Three slave equations provide the corresponding values for

DegU~P, the dimer and exoprotease. With I0~0, and considering

all other parameters fixed, (9) has the trivial solution U~0 and

two positive solutions U+(kph). Full details of the behaviour of

these solutions, the corresponding values of the other variables and

the behaviour as I0 is increased from zero are given in the SI.

Figure 5 shows the dependence of the DegU and exoprotease

levels as predicted by (9) using solutions Uz and Ez. These

solutions display the same qualitative response to changing the

parameter kdeph as the full model shown in Figure 4. A distinctive

fold when viewed as a function of the phosphorylation rate kph is

observed that coincides with an ultra-sensitive switch in exopro-

tease level. An analysis of this minimal model reveals that the

width of the peak is proportional to kdeph. Moreover, although the

switch in exoprotease is sharp, the analysis reveals that DegU

response curve increases more rapidly with increasing kph than the

exoprotease response level. Hence the latter always straddles the

former. This analysis suggests that the features illustrated in

Figure 4 are not degenerate and in particular the alignment of the

fold with the ultra-sensitive switch that generated the bimodal

behaviour predicted by the full model is robust and not a

consequence of the specific choice of default parameter values. We

now discuss the effects of both intrinsic and extrinsic noise on this

key predicted (deterministic) feature of the regulatory system.

Selective Heterogeneity and Bimodality
In [8], the main focus was on dynamic effects as a source of

stochastic heterogeneity in levels of expression. The idea presented

there was that, for phosphorylation rates in the vicinity of a region

of bistability of DegU, stochastic effects caused some system

trajectories to be trapped close to the ‘‘wrong’’ steady state for

some time before converging to the appropriate stable state. The

conclusion was that this temporal smearing of transcription level

between cells induced heterogenous outputs at the population

level.

The numerical simulations shown here in Figure 2 predict that

the movement of the system to steady state is in fact quite rapid (in

the deterministic case at least). Moreover, for the parameter values

considered here and in [8], the range of kph values for which DegU

is bistable, is very narrow (see region indicated with dashed line in

Figure 3A). This motivated us to consider other possible effects by

which heterogeneous expression levels could be induced at
steady state. In particular, we assessed the effects of low copy

numbers (intrinsic noise) and signal heterogeneity as manifest

through changes to the phosphorylation rate kph (extrinsic noise) as

potential drivers of stochasticity in expression level. These would

represent situations where individual cells within a population

have small differences in their ability to either detect or respond to

environmental signals as perceived by DegS. This situation is

particularly relevant in the natural environment or within the

confines of structured biofilm communities, where, additionally,

the microenvironment is likely to be heterogeneous [39].

Intrinsic noise: low copy numbers. First, we considered

the signal parameter kph, to be fixed and studied the effects of low

copy numbers on the temporal evolution of the DegU and

exoprotease levels. The results are shown in Figures 6 and 7. As a

Figure 5. The steady state values of DegU and exoprotease as functions of the phosphorylation rate kph as predicted by the
minimal system. Steady state solutions derived using (9). (A) Uz (DegU) and (B) Ez (exoprotease - computed using (S7)–(S9)) as functions of kph. In
each figure, all parameter values from Table 1 except kdeph~0:005 (green); kdeph~0:05 (red); kdeph~0:075 (blue).
doi:10.1371/journal.pone.0038574.g005
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result of intrinsic noise, it was observed that the predicted DegU

and exoprotease levels were spread across a range of values.

Initially low protein level increased with time, but stabilised in less

than 5 hours to distributions centred around the corresponding

deterministic steady state value (Figure 6). The temporal effects

discussed in [8] can be seen here: expression levels have a broad

(heterogeneous) distributions at early time points. However, these

distributions tighten with increasing time. These results suggest

Figure 6. Temporal evolution of protein levels subject to intrinsic noise. Output from system (1)–(6) computed using the Gillespie SSA.
Histograms show the levels of (A) DegU and (B) exoprotease collated from 1000 simulations at 10 time points. Each simulation can be considered to
be equivalent to the temporal evolution of transcription in a single cell. Note that distributions for both DegU and exoprotease display no significant
further change after approximately t~7 hrs. All parameter values from Table 1 except kph~0:002s{1 . Initial protein values set to zero.
doi:10.1371/journal.pone.0038574.g006

Figure 7. Intrinsic noise effects on steady state protein levels for different phosphorylation rates. Output from system (1)–(6) computed
using the Gillespie SSA. For comparison, the DegU levels predicted by the deterministic system with the response for the chosen kph values indicated
by the red, blue and green dots, respectively, are shown in (A). Histograms show the levels of: (B) DegU and (C) exoprotease collated from 1000
simulations at t~17 hours. All parameter values from Table 1 except in A, B and C red indicates kph~0:0001s{1 ; blue indicates kph~0:002s{1 and

green indicates kph~0:00375s{1 . Initial values set to correspond to the equivalent deterministic steady state.
doi:10.1371/journal.pone.0038574.g007
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that intrinsic noise has no significant, lasting qualitative effect on

system output and as predicted by the underlying deterministic

system, the model predicts that a unimodal response of the cell

population to a fixed environmental signal would be observed.

These results were not significantly altered by using different

choices of initial data (see Figure S7). Moreover, we note that this

prediction is not limited to the chosen signal strength. Profiles

generated using a further two values of kph are shown at the t~17

hour time point in Figure 7. These correspond to kph values below,

at, and above the generic fold in the steady state branch. These

could perhaps be considered to be low, intermediate and high

levels of signal perception or transduction by DegS. In each case,

the model predicted a clear unimodal response of the system.

Extrinsic noise: signal variation/perception. Next, we

considered extrinsic noise in the system and focussed on effects

that may arise from stochastic variations in, or perception of, the

input signal. These were modelled by variations in the phosphor-

ylation rate, kph. As a first step, on starting each run of the GSSA,

a random assignment of two phosphorylation rates was made, the

values of which represented points at each side of the generic fold

as discussed above (kph~0:0015s{1 and kph~0:0025s{1). The

output is shown in Figure 8. The distribution of DegU levels

displayed a similar spread to that associated with intrinsic noise (cf.

Figures 7B (blue) and 8B, t~17 hrs). However, the spread of

exoprotease levels was distinctly different (cf. Figures 7C (blue) and

8C, t~17 hrs). From Figure 8C, it is seen that a persistent,

bimodal response is predicted. The differences in system response

to intrinsic and extrinsic noise can be statistically quantified.

Intrinsic noise resulted in e.g. a mean DegU level of 321 with

relative standard deviation (rsd) 11:3% (Figure 7, blue), whereas

extrinsic noise for the same system set-up resulted in a mean DegU

level of 307 and rsd 12:8% (Figure 8B at t~17hrs). Hence, the

mean and rsd remain essentially unaltered and we conclude that

signal variation/perception does not significantly enhance the

stochastic effects of intrinsic noise in the DegU production

pathway. However, the statistics for exoprotease levels are quite

different. For example, intrinsic noise resulted in a mean

exoprotease level of 1407 with rsd 8:9% (Figure 7C, blue), whilst

extrinsic noise resulted in a mean level of 1271 and rsd 27%
(Figure 8C at t~17hrs). So under signal variation, the mean was

slightly reduced, but most strikingly, the relative standard

deviation in protease level was increased more than 3-fold.

We then verified that this bimodal response was not simply

manufactured by selecting two different levels of kph. Indeed,

choosing values of kph away from the region of the generic fold

resulted in no predicted bimodality (Figure 9). The model

predicted that the system responds in a unimodal way to a

different signal input, albeit with varying degrees of heterogeneity.

Moreover, for values close to the fold, the bimodality was not

dependent on the initial state of the system. Figure S8 shows that

bimodal system response was obtained irrespective of whether all

cells were modelled as being initially all ON, all OFF or at an

intermediate level of activity. These results clearly delineate this

type of system response from the more typically reported

bimodality that arises from a bistable switch in the underlying

regulatory system.

Finally, we tested the effects of selecting values of the signal

parameter kph to be normally distributed about chosen values

situated below, at and above the generic fold, see Figure 10. The

associated statistics revealed an interesting relationship between

the variance of the input signal and that of the system output, see

Table 2. What is most noteworthy is that when the rsd of the signal

input was increased to 20% and hence was the dominant source of

noise, the system clearly responded selectively: for kph values close

to the fold, the variance in DegU level matched that of the

variance of the input signal, but the variance in exoprotease level

was significantly amplified. Away from the fold, the variance

induced by noisy signal input was in fact damped by the system.

This was most pronounced for exoprotease levels. Hence, the

overall sensitivity of exoprotease level to changes in signal strength

was predicted to be much greater than that for DegU levels.

Moreover, our analysis revealed that the nonlinear dynamics of

the underlying system could either amplify or damp signal noise,

depending on the level of that signal. Qualitatively similar

behaviour was observed if instead, the signal was assumed to be

uniformly distributed within an interval centred around the mean

signal values used for Figure 10 (see Figure S9). In summary, it

appears that the type of noise is not important - all that is required

is signal variation.

Figure 8. Temporal evolution of protein levels subject to extrinsic noise. Output from system (1)–(6) computed using the Gillespie SSA. For
comparison, the DegU levels predicted by the deterministic system with the response for the chosen kph values indicated by the red dots is shown in
(A). Histograms show the levels of (B) DegU and (C) exoprotease collated from 1000 simulations at 4 time points. All parameter values from Table 1
except for each simulation, kph was selected randomly from the values 0:0015s{1,0:0025s{1 . Initial values of the variables set to correspond to the

deterministic steady state for kph~0:002s{1 .
doi:10.1371/journal.pone.0038574.g008
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The AND Logic of the Regulatory System
Evidence suggests that the transcription of exoprotease requires

‘‘go’’ signals from both DegU and Spo0A pathways [8]. As briefly

discussed above, the latter operates by inhibiting the transcription

of SinR and AbrB, which in turn inhibit the transcription of

exoprotease. As mentioned in the introduction, Spo0A~P is a

transcription factor known for its role in controlling sporulation as

well as exoprotease production [25–27]. The joint control of

exoprotease production and sporulation by the one regulator

presumably allows optimal survival in a dynamic environment.

Sporulation is the terminal cell fate of B. subtilis that occurs when

the levels of Spo0A~P are high [29]. As briefly discussed above,

Spo0A~P operates during exoprotease production by inhibiting the

transcription of SinR and AbrB, which in turn inhibit transcription

of the exoprotease genes. This occurs at intermediate levels of

Spo0A~P thus prior to the activation of sporulation [29]. With this

background, we assumed that changing levels of Spo0A could be

modelled by changing the levels of AbrB and SinR, with AbrB and

SinR levels inversely proportional to Spo0A. Figures 11A and B

demonstrate the effect of varying Spo0A on the steady state signal

Figure 9. Extrinsic noise effects on steady state protein levels: perception to discrete signal changes. Output from system (1)–(6)
subject to discrete steps in signal level/perception computed using the Gillespie SSA. For comparison, the DegU levels predicted by the deterministic
system with the response for the chosen kph values indicated by the red, blue, green and yellow dots, respectively, are shown in (A). Histograms show
the levels of (B) DegU and (C) exoprotease collated from 1000 simulations at t~17 hours. All parameter values from Table 1 except for each
simulation, kph was selected randomly from the values: 0s{1,0:001s{1 (red); 0:0015s{1,0:0025s{1 (blue); 0:003s{1,0:004s{1 (green);

0:0045s{1,0:0055s{1 (yellow). Initial levels set to correspond to the deterministic steady state associated with the midpoint values.
doi:10.1371/journal.pone.0038574.g009

Figure 10. Extrinsic noise effects on steady state protein levels: perception to continuous signal changes. Output from system (1)–(6)
subject to normally distributed signal level/perception computed using the Gillespie SSA. For comparison, the DegU levels predicted by the
deterministic system with the response for the chosen kph values indicated by the red, blue, green and yellow bands, respectively, are shown in (A).
Histograms show the levels of (B) DegU and (C) exoprotease collated from 1000 simulations at t~17 hours. All parameter values from Table 1 except
for each simulation, kph was selected from normally distributed values with mean values 0:0005s{1 (red); 0:002s{1 (blue); 0:0035s{1 (green); 0:005s{1

(yellow). In each case the relative standard deviation of the signal input was set at 20%. Initial levels set to correspond to the deterministic steady
state associated with the mean values.
doi:10.1371/journal.pone.0038574.g010
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response curves of the full system (1)–(6). The DegU expression

level is unaltered. However, the exoprotease levels clearly change.

As Spo0A is reduced, the exoprotease response curve flattened out

(Figure 11B). Hence, the difference in exoprotease levels across the

fold region shown in Figure 11A is significantly reduced. Again, we

can use the minimal model to better understand the effects shown

here. Briefly, from the minimal model (see equation S8 in the SI),

it follows that AbrB and SinR play different roles in mediating

system response. Increasing SinR decreases the maximum

expression level, E, of exoprotease, whilst increasing AbrB affects

the sigmoidal response of E by increasing the half-maximal rate

concentration of the dimer, D, of DegU~P. However, the

consequence of increased levels of either AbrB or SinR is that

the level of D (alt. kph) required to achieve a given level of

exoprotease, is increased. In conclusion, the predicted steady state

level of exoprotease plotted as a function of kph plateaus with

increasing AbrB and/or SinR (Figure 11C).

Figure 11D and E illustrate the effect of increasing Spo0A on

stochastic realisations of the full model. As predicted by the

deterministic model, the DegU response is unaltered. However, a

transit occurs from unimodal exoprotease-OFF, through a

heterogenous zone, to uniformly exoprotease-ON, as Spo0A as

increased. Hence, the model details why a combination of the fold

in the DegU response curve and suitable levels of Spo0A is

required to induce heterogeneity in the cell expression levels.

Discussion

Noise in regulatory networks of the kind discussed here is clearly

an important factor in determining cell fate. One common

mechanism proposed for cell differentiation is the existence of an

underlying bistability in the steady state structure. In this case, for

a fixed system parameter, stochastic fluctuations in protein levels

can result in switching between these states. Moreover, close to the

deterministically defined fold bifurcations, the temporal evolution

of protein levels can be significantly affected by stochastic events.

This ‘‘first past the post’’ route to cell differentiation has been

termed transient heterogeneity or heterochronosity and has been related to

both protease production [8] and sporulation [50,51]. Other

mechanisms for bimodal cell distributions that do not rely on

underlying bistability have been previously proposed (see e.g.

[30,52–54] and the references therein). However, in this paper, we

introduced what we believe to be an alternative mechanism for

inducing bimodality or at least selective heterogeneity in cell

populations. This mechanism does not rely on transient effects

and as such is a stable, or persistent, feature of the system.

Therefore this mechanism may have relevance to understanding

the development of biofilms [39]. Taking the DegU master

regulatory system in B. subtilis as a genetically defined example, we

found that a generic fold in the regulator signal-response curve

coupled to a sensitive switch in the down-stream component and

variations in environmental stimulus, provides an analytical

framework underpinning a possible mechanism for cell differen-

tiation. A key point is that the magnitude of variation in the signal

is not in itself the driver of the selective response predicted by the

model. Rather, the analysis presented here revealed that the

structure of the steady state framework essentially separates system

response into three zones: low stimulus levels represented by low

values of a key phosphorylation rate result in low levels of DegU

and exoprotease (OFF-OFF cells); there is a central zone where

cells can either be DegU ON and exoprotease OFF or DegU ON

and exoprotease ON; for higher stimulus levels leading to higher

phosphorylation rates, the cells are uniformly ON-ON. In fact for

very high levels for the phosphorylation rate, the cells remain ON

for exoprotease, but reduce the level of unphosphorylated DegU

(see Figure 3). We hypothesize that this last feature may be a

mechanism for coordinating the down-regulation of competence

whilst maintaining exoprotease production and thus represents

further commitment of the population to survival strategies in

response to poor environmental conditions [13]. In conclusion, we

hypothesize that these zones of response represent ‘‘bet-hedging’’

by the system [55] – for either low or high temporally sustained

stimuli, the cells have a clear and unequivocal signal to follow. The

heterogeneous distribution of cells predicted for mid-levels of

signal response, represents a ‘‘measured’’ response to a signal

which may not be sufficiently well-defined to cause the population

as a whole to either ignore or commit irreversibly to a certain

route. This buffer region may allow cell populations to revert back

to a ‘‘resting’’ state if conditions improve, whilst remaining

prepared to respond quickly to worsening conditions.

We note that persistent, selective heterogeneity may not be

restricted to the specific pathway under consideration here. The

model (1)–(6) comprises generic representations of activation,

biochemical interaction and degradation. As such, we believe that

the fold in the steady state solution branch that forms the focus for

selective heterogeneity may be a common feature of many

regulatory systems that contain a bounded, positive feedback from

the phosphorylated form of the protein [56].

Finally, in this paper we have highlighted differences between

the transient, dynamic system response and the long-term status of

a typical regulatory network. We view this as an important issue

that appears to remain largely unaddressed. In a chemostat, it may

be possible to hold environmental conditions essentially fixed and

therefore measure cell-response to a fixed signal over what would

be a biochemical timescale. However, in almost all natural environ-

mental conditions and/or in the formation of complex colony

structures such as biofilms, it is most likely that the status of the cell

micro-environment varies in space and time. Hence, in these

situations it would be difficult to separate the biochemical

processes involved in cell differentiation from spatio-temporal

Table 2. Response of System to Noise.

kph m + rsd 0:002+10% 0:002+20% 0:0035+10% 0:0035+20%

Variable U E U E U E U E

m 321 1297 307 1238 271 1717 270 1702

std 38 189 53 360 29 102 37 138

rsd 12 15 17 29 11 6 14 8

Response of System (1)–(6) to variations in the signal input kph . System response measured at t~17hrs. Table shows mean (m), standard deviation (std) and relative
standard deviation (rsd = m/std*100) of 1000 simulations in each case.
doi:10.1371/journal.pone.0038574.t002
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variations in environmental signals. We believe that studying the

effects of the interplay between these intra- an extra-cellular

timescales may reveal new insight into the role of signal variation

in determining cell fate in complex environments.

Supporting Information

Figure S1 Transient dynamics of DegU and Exopro-
tease as predicted by the full system. The level of DegU

and exoprotease as predicted by the full system (S1)-(S6). Transient

response as mediated by the phosphorylation rate kph (A and B)

and the initial data (C and D). All parameter values from Table 1

except (A) DegU and (B) exoprotease response for kph = 0.001s21

(black); kph = 0.0015s21 (red); kph = 0.002s21 (blue); and kph =

0.0025s21 (green). Initial values of all reactants set to zero (OFF).

In (C) DegU and (D) exoprotease, initial data chosen to represent

the OFF state (0, 0, 0, 0, 0, 0) (black); intermediate state (4, 250,

10, 50, 5, 1000) (red); and ON state (5, 500, 20, 100, 20, 2000)

(blue). For (C) and (D) kph = 0.002s21, representing an

intermediate signal level.

(EPS)

Figure S2 Structure of system signal-response curves as
predicted by the minimal system. The solutions of the

minimal system (S7)–(S9) for I0 = 0 as functions of the

phosphorylation ratio . (A) DegU : U+ (black), U2 (blue) and

U 0 (red) (U2 + 50 is shown for ease of visualisation); (B)

DegU P : P+, (black), P2 (blue) and P 0 (red); (C) Dimer of

Figure 11. Effects of AbrB and SinR on selective heterogeneity. Effects on the steady state response of the deterministic system (1)–(6): (A)
The DegU response curve is unaffected by changes in AbrB and SinR. (B) The level of exoprotease expression as predicted by the full system. (C) E as
computed from equation (S8) in the minimal system. Colours represent: Spo0A High (SinR = 0 and AbrB = 0) (red); Spo0A Mid (SinR = 7 and AbrB = 7)
(green); Spo0A Low (SinR = 14 and AbrB = 70) (blue) and Spo0A Off (SinR = 21 and AbrB = 700) (yellow). (D) and (E) shows output from system (1)–(6)
computed using the Gillespie SSA. Histograms show the levels of (D) DegU and (E) exoprotease collated from 1000 simulations of the stochastic
model at t~17 hours. All parameter values from Table 1 except for each simulation, kph was drawn from a normally distributed set of values with

mean 0:002s{1 and rsd = 20%. As above, Spo0A Off (AbrB = 700, SinR = 21); Spo0A Low (AbrB = 70, SinR = 14); Spo0A Mid (AbrB = 7, SinR = 7);
Spo0A High (AbrB = SinR = 0). Note the change of scale for exoprotease copy number in the last figure in (E). Initial values set to correspond to the
deterministic steady state associated with the midpoint value.
doi:10.1371/journal.pone.0038574.g011
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DegU P : D+ (black), D2 (blue) and D 0 (red) (D) Exoprotease

E+ (black), E2 (blue) and E E0 (red) with E0 given by (S8) with D

0. All other parameter values from Table 1.

(EPS)

Figure S3 DegU and exoprotesase levels as predicted by
the minimal system. The solutions of the minimal system for

I0 = 0 as functions of the phosphorylation ratio . (A) DegU and

(B) exoprotease. The dots represent the levels of DegU and

exoprotease for values of set at l and h, respectively. All other

parameter values from Table 1.

(TIFF)

Figure S4 Steady state signal response curves for the
minimal system: e ects of increasing I0. The cubic curve

given in (S9) plotted as a function of the DegU level U for di ering

values of I0. Zeros of this cubic represent steady states of the

minimal problem. (A) The general shape of the cubics over the

range of values of U considered: I0 = 0, 1026, 1025, 1024

(indistinguishable - red); I0 = 1023 (blue); I0 = 4 1023 (black).

(B) Zooming into the two small roots of this cubic. I0 = 0, 1026,

1025, 1024 (indistinguishable - red); I0 = 1023 (blue); I0 = 4

1023 (black). (C) Zooming in further to the smallest root. Note that

for I0 = 0, the cubic has a root U = 0 whereas for I0 . 0 the

smallest root is in fact positive. I0 = 0 (red), I0 = 1025 (yellow), I0

= 1024 (green). (D) Zooming into the largest root. I0 = 0, 1026,

1025, 1024 (indistinguishable - red); I0 = 1023 (blue); I0 = 4

1023 (black). All other parameter values from Table 1 except kph

= 0.002s21 7.

(EPS)

Figure S5 Dynamics of the minimal system. Solutions U

of (S9) with the left hand side replaced by dU/dt as functions of

time. All initial values of U above approximately 11 molecules per

cell result in the system tending to the steady state, U+ ( 430

molecules per cell for the parameter values used here). (A) I0 =

10210 and U(0) = 10 (black), U(0) = 15 (blue), U(0) = 20 (red).

(B) I0 = 4 1023 and U(0) = 0 (black), U(0) = 5 (blue), U(0) =

10 (red). All other parameter values from Table 1 except kph =

0.002s21.

(EPS)

Figure S6 Steady state signal response curves for the
full system. Steady state solutions of system (S1)-(S6) as functions

of the signal parameter kph. Left columns (blue) show response for

kdeph = 0.05s21 and right columns (yellow) for kdeph = 0.005s21.

(A) From the top: kph vs DegU; kph vs DegU P; kph vs dimer of

DegU P; kph vs DegU +DegU P+dimer; kph vs E. (B) DegU vs E;

DegU +DegU P+dimer vs E. All other parameter values from

Table 1.

(EPS)

Figure S7 E ects of initial cell profile on final system
response to intrinsic noise in the signal transduction
pathway. Output from system (S1)-(S6) for three initial system

configurations. Histograms show levels of DegU and exoprotease

at five time points as computed using the Gillespie SSA. Data from

1000 simulations is shown in each case with output shown at t =

0, 4, 9, 13, 17 hrs. (A) All cells initially OFF (DegU = E = 0) (B)

Mid initial level (DegU = 250, E = 1000) (C) All cells initially

ON (DegU = 500, E = 2000). All other parameter values from

Table 1 except kph = 0.002s21.

(EPS)

Figure S8 E ects of initial cell profile on final system
response to extrinsic noise in the signal. Output from

system (S1)-(S6) for three initial system configurations. Histograms

show levels of DegU and exoprotease at four time points as

computed using the Gillespie SSA. Data from 1000 simulations is

shown in each case. (A) All cells initially OFF (DegU = E = 0) (B)

Mid initial level (DegU = 250, E = 1000) (C) All cells initially

ON (DegU = 500, E = 2000). All other parameter values from

Table 1 except for each simulation the value of kph was selected at

random from the set {0.0015, 0.0025}.

(EPS)

Figure S9 Extrinsic noise e ects on steady state protein
levels: uniform signal variance. Output from system (S1)-(S6)

subject to uniformly distributed signal strength/perception com-

puted using the Gillespie SSA. Data from 1000 simulations is

shown in each case. Histograms show levels of (A) DegU and (B)

exoprotease at time t = 17hrs with the signal strength parameter

kph chosen uniformly from the closed intervals (i) [0, 0.001] (ii)

[0.0015, 0.0025] and (iii) [0.003, 0.004]. In each case, initial values

taken to represent the deterministic predicted steady state

associated with the mid point of the corresponding interval. All

other parameter values from Table 1.

(EPS)

Information S1 Selective Heterogeneity in Extracellular
1 Protease Production.

(PDF)
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