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Shaqiu Zhang1,2,3, Juan Huang1,2,3, Xumin Ou1,2,3, Sai Mao1,2,3, Qun Gao1,2,3, 
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Mujeeb Ur Rehman1,3 & Xiaoyue Chen2,3

Riemerella anatipestifer is a major pathogenic microorganism in poultry causing serositis with 
significant mortality. Serotype 1 and 2 were most pathogenic, prevalent, and liable over the world. In 
this study, the intracellular metabolites in R. anatipestifer strains RA-CH-1 (serotype 1) and RA-CH-2 
(serotype 2) were identified by gas chromatography-mass spectrometer (GC–MS). The metabolic 
profiles were performed using hierarchical clustering and partial least squares discriminant analysis 
(PLS-DA). The results of hierarchical cluster analysis showed that the amounts of the detected 
metabolites were more abundant in RA-CH-2. RA-CH-1 and RA-CH-2 were separated by the PLS-DA 
model. 24 potential biomarkers participated in nine metabolisms were contributed predominantly 
to the separation. Based on the complete genome sequence database and metabolite data, the 
first large-scale metabolic models of iJL463 (RA-CH-1) and iDZ470 (RA-CH-2) were reconstructed. 
In addition, we explained the change of purine metabolism combined with the transcriptome and 
metabolomics data. The study showed that it is possible to detect and differentiate between these 
two organisms based on their intracellular metabolites using GC–MS. The present research fills a gap in 
the metabolomics characteristics of R. anatipestifer.

Riemerella anatipestifer (RA) is a Gram-negative pathogen with a capsule and belongs to the family of Flavobac-
teriaceae. Previous studies have reported that the genetic modification in RA was occurred simply and rapidly 
by the natural transformation1–8. RA infection is a major epidemic disease of fowls, which causes septicemia and 
is characterized by serious fibrinous polyserositis. So far, at least 21 serotypes RA were reported in the world9–23. 
Serotypes 1 and 2 of RA were the dominating serotypes in China. The virulence and metabolic capability in two 
serotypes have seen some differences across and within serotypes. While some research has been carried out on 
many pathogenicity and resistance factors in the two strains24–28 data about the metabolic pathways required for 
growth and infection, particularly the natural utilization of carbon and nitrogen sources has remained unclear.

Metabolism plays an important role in host–microbe interactions whether acute or persistent infections29. 
Researches on the types and contents of metabolites, as the final products of gene expression in the organism, 
are a critical supplement to genomics and proteomics research. Previous studies have shown that RA cannot 
grow on common nutrition agar or MacConkey nutrition agar and is slightly more challenging to grow in vitro. 
Unlike many other Flavobacteriaceae family germs, RA cannot ferment carbohydrates, although some strains 
can produce acid by glucose, maltose, inositol and fructose30. Compared with other gram-negative bacterial 
infection of the domestic birds, the reaction of oxidase and catalase in RA were positively tested. Moreover, 
acid and alkaline phosphatase, gelatinase, esterase C4, ester lipase C8, α-glucosidase and leucine-, valine- and 
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cysteine-arylamidases phosphoamidase are also found in RA31–33. Although metabolites are not the gene direct 
products, the concentrations of metabolites are a strong correlation with enzymatic activity.

As biological scientific technology advances, high-throughput data has reshaped many approaches to study-
ing the biology of an organism. For model organisms such as E. coli, the combination of genomics, proteomics 
and metabolomics are a critical supplement to biology and physiology34. As the whole genomic sequences and 
transcriptomic data of RA continue to grow35–39, the results make it possible to reconstruct the metabolic network 
and assess the metabolic capabilities and fitness of RA. RA wild type strain CH-1 (RA-CH-1) and CH-2 (RA-
CH-2) were the representatives of the serotype 1 and 2, respectively40. These two strains are multi-drug resistant 
strains, which had high resistance of tetracyclines, macrolides, sulfonamides, aminoglycoside antibiotics, chlo-
ramphenicol and quinolones41. Metabolomics, as a rapidly evolving tool, is used to identify and quantify small 
molecule metabolites that define the metabolic status of an organism42. Untargeted, semi-targeted and targeted 
metabolomics were the three analytical approaches applied in metabolomics. Unlike targeted metabolomics, 
untargeted metabolomics is to qualitatively determine the chemical profiles of biological samples43. Gas chroma-
tography–mass spectrometry (GC–MS) is one of the most commonly used techniques for untargeted metabo-
lomics due to its high sensitivity and selectivity in untargeted metabolic profiling44. In this study, we introduce 
a method based on untargeted metabolomics for metabolic profiling in RA. Application of this method to two 
species structured a database of metabolites depending on a group of models from different metabolic pathways. 
Our study applied the metabolomics platform to elucidate the metabolic characteristics of RA. Subsequently, we 
used the metabolomics and genomic data to build a genome-scale metabolic network. This study is the first to 
report a reconstructed genome-scale metabolic model for RA based on the available genomics and metabolomics 
data. We believe these data sets of RA further illustrate the use of metabolic profiling as an additional tool and 
offer some important insights into metabolism.

Results
The metabolite profile of two RA species.  To find more intracellular metabolites in RA, a non-target 
metabolomics approach was used for RA metabolic profiling. Figure 1a showed that the total ion chromatogram 
(TIC) of samples from the two RA strains, thus illustrating the significant variations of metabolic profiling. 
81 different metabolites were confirmed as listed in Table 1. 39 compounds were identified by pure standard 
compounds and MS-library match. These compounds were divided into nine classes of chemical substances, 
including nucleotides, organic acids, amino acids, phosphates, sugars, fatty acids, amines, polyols and others 
(nicotinamide, urea, parabanic acid and 2,4,6-tritert-butylbenzenethiol). The chemical classes of amino acids, 
organic acids, nucleotides, phosphates, sugars, fatty acids accounted for 28%, 15%, 11%, 11%, 11% and 10% of 
all identified metabolites, respectively. Relatively few polyols (8%) and putrescine involved in amine (1%) were 
identified (Fig. 1b). 

Metabolites correlation analysis in RA‑CH‑1 and RA‑CH‑2.  Correlation analysis was performed to 
search for the metabolite–metabolite potential relationships in these two organisms. The results allowed the 
identified chemicals concerning one other. Particularly, the metabolite–metabolite correlations of the differ-
ential metabolites were compared in two sample combinations. As shown in Fig. 2, 1053 of 3240 metabolite–
metabolite correlations found a statistically correlation (p < 0.05). Out of 1053 statistical correlations, 874 had 
a significant positive correlation and 179 were negative. The same chemical class of metabolites was found to 
have positive correlations. Most of the amino acids and the polyols seem to be negatively correlated by compari-
son to other metabolites. Meanwhile, many fatty acids and amino acids including hexadecanoic acid, cysteine, 
octadecanoic acid, proline, pentadecanoic acid, glutamic acid, suberyl glycine and tetradecanoic acid found a 
significant inverse correlation with other metabolites. However, most of the organic acids and amino acids had 
positive correlations in comparison to other metabolites.

Construction and application of the metabolic models in RA.  To insight the function and the 
relationship of the metabolites, the 81 identified metabolites were classified by hierarchical clustering analysis 
(HCA). HCA results showed that metabolites were clustered in 9 groups (Fig. 3). Metabolites with similar meta-
bolic patterns have similar functions and participate in the same metabolic pathway. We identified 56 metabo-
lites involved in 7 main metabolisms by the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. 
The 7 main metabolisms include amino acid metabolisms, carbohydrate metabolisms, energy metabolisms, 
lipid metabolisms, nucleotide metabolisms, cofactors and vitamin metabolisms and biosynthesis of secondary 
metabolites.

In an attempt to understand the complex interactions between metabolites and gene products in RA, we con-
structed the draft genome-scale metabolic (GSM) model of the two organisms based on genomic and metabolite 
data. The formulation of biomass components directly influences the essentiality of each gene. The available 
relative abundances of RA were DNA, RNA, proteins, cell wall, lipids and cofactor (Supplementary Table S1). 
The models were gap-filled in simulated media to force a minimum flux of 0.1 through the bio1 reaction. 16 new 
reactions were added to the draft RA models, while 1 existing reactions were made reversible (Supplementary 
Table S2). As shown in Table 2, the GSM model of RA-CH-1 (iJL463) consists of 788 reactions, 841 metabolites 
and 463 genes, while the GSM model of RA-CH-2 (iDZ470) consists of 801 reactions, 862 metabolites and 470 
genes. No mass imbalance was found at neutral pH. A detailed description of the models containing all network 
reactions was detailed in the supplemental data (iJL463 in Supplementary Table S3 and iDZ470 in Supplementary 
Table S4). Most of the reactions are broadly concentrated in lipid, amino acid, and carbohydrate metabolism. Flux 
balance analysis (FBA) of iJL463 and iDZ470 reveals a diversity of the predicted metabolites that are essential 
for growth in RA (see Supplementary Tables S5, S6).
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Multivariate analysis.  To identify strain differences, PCA and PLS-DA were used to analyze the preproc-
essed GC–MS datasets (see Supplementary Fig. S2 online). The PCA model reveals the general metabolic infor-
mation and visually eliminates abnormal sample data. All samples from the two organisms appeared in the 
Hotelling T2 95% confidence, suggesting that all the samples can be used for further analysis. A PCA model 
was described by the parameters (R2X = 0.816, Q2 = 0.55). The 1st principal component (PC1) retains maximum 
variation (36.2%) according to the datasets. The 2nd component (PC2) retains 24.1% of the variance. When PC1 
and PC2 have been derived, the two strains were separated from each other. The position of each metabolite is 
correlated to the contributor of PC1 and PC2 which is visible in Supplementary Table S7 online. Although the 
score plot should not be used to infer group separation, it may reveal structure (e.g. subgroups) within a group.

To further separate the groups, supervised PLS-DA was carried out by fitting tested samples. By PLS-DA 
analysis, excellent separation of the groups of RA-CH-1and RA-CH-2 was achieved, suggesting significant dif-
ferences in metabolites between the two groups. Subsequently, a cluster of 100 permutated models from two 
components was visualized using validation plots. The quality of the supervised models and the goodness of fit 
were evaluated by the values of R2 and Q2. The values of R2 and Q2 in the exact test were below the original ones, 
which indicated that the model was reliable. Moreover, the value of Q2 =  − 0.299 was obtained, indicating that 
the model was not over-fit.

Figure 1.   The metabolite profile of two RA species by GC–MS. (a) GC–MS total ion-chromatograms (TIC) of 
the typical metabolome samples from RA-CH-1 (blue) and RA-CH-2 (green) cultivated in TSB medium and 
sampled in the stationary growth phase. (b) Classification of 81 identified metabolites identified in RA.
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Metabolite TMS-form Classification RI m/z rt/min

Putrescine Putrescine (3 TMS) Amine 1459.2 174.1 12.0

Alanine* Alanine (2 TMS) Amino acid 1100.2 116.1 6.9

Asparagine* Asparagine (3 TMS) Amino acid 1674.4 116 14.6

Aspartic acid* Aspartic acid (3 TMS) Amino acid 1522.7 232.1 12.8

Cysteine* Cysteine (3 TMS) Amino acid 1558.5 220.1 13.2

Glutamic acid* Glutamic acid (3 TMS) Amino acid 1620.8 246.1 14.0

Glutamine Glutamine (3 TMS) Amino acid 1776 156.1 15.7

Glycine* Glycine (3 TMS) Amino acid 1306 174.1 10.0

Homoserine Homoserine (3 TMS) Amino acid 1451.6 218.1 11.9

Isoleucine* Isoleucine (2 TMS) Amino acid 1293 158.1 9.8

Leucine* Leucine (2 TMS) Amino acid 1271.3 158.1 9.5

Lysine* Lysine (3 TMS) Amino acid 1852.8 174.1 16.5

Methionine* Methionine (2 TMS) Amino acid 1519.1 176.1 12.8

N-Acetylglutamic acid N-Acetylglutamic acid (2 TMS) Amino acid 1527.7 84.02 12.8

Ornithine* Ornithine (4 TMS) Amino acid 1823.5 142.1 16.2

Phenylalanine* Phenylalanine (2 TMS) Amino acid 1629 192.1 14.0

Proline* Proline (2 TMS) Amino acid 1295.7 142.1 9.8

Pyroglutamic acid* Pyroglutamic acid (2 TMS) Amino acid 1522.9 156.1 12.8

Serine* Serine (3 TMS) Amino acid 1362.5 204.1 10.7

Suberyl glycine Suberyl glycine (3 TMS) Amino acid 1637.1 188 14.1

Threonine* Threonine (3 TMS) Amino acid 1389.7 117 11.1

Tryptophan* Tryptophan (3 TMS) Amino acid 2214 202.1 19.9

Tyrosine* Tyrosine (3 TMS) Amino acid 1944.6 218.1 17.4

Valine* Valine (2 TMS) Amino acid 1214.8 144.1 8.7

Dodecanoic acid Dodecanoic acid (1 TMS) Fatty acid 1642.8 117 14.2

Heptadecanoic acid Heptadecanoic acid (1 TMS) Fatty acid 2095.2 327.3 18.8

Heptanoic acid Heptanoic acid (1 TMS) Fatty acid 1169.4 144.1 8.0

Hexadecanoic acid* Hexadecanoic acid (1 TMS) Fatty acid 2033.4 117 18.3

Nonanoic acid Nonanoic acid (1 TMS) Fatty acid 1352.9 117 10.6

Octadecanoic acid Octadecanoic acid (1 TMS) Fatty acid 2229.9 117 20.0

Pentadecanoic acid Pentadecanoic acid (1 TMS) Fatty acid 1900.6 299.3 17.0

Tetradecanoic acid Tetradecanoic acid (1 TMS) Fatty acid 1801.4 117 15.9

Adenine Adenine (2 TMS) Nucleotides 1870.2 264.1 16.7

Adenosine Adenosine (4 TMS) Nucleotides 2652 230.1 23.4

Cytosine Cytosine (2 TMS) Nucleotides 1525.1 254.1 12.8

Guanine Guanine (4 TMS) Nucleotides 2133.1 352.2 19.2

Guanosine Guanosine (5 TMS) Nucleotides 2796.9 324.1 24.4

Hypoxanthine Hypoxanthine (2 TMS) Nucleotides 1807.6 265.1 16.0

Thymine Thymine (2 TMS) Nucleotides 1401.5 255.1 11.3

Uracil Uracil (2 TMS) Nucleotides 1338.1 241.1 10.4

Uridine Uridine (3 TMS) Nucleotides 2462.2 217.1 21.9

α-Ketoglutaric acid* alpha-ketoglutaric acid (1MEOX) (2TMS) Organic acid 1576.5 198 13.4

Citramalic acid Citramalic acid (3 TMS) Organic acid 1559.6 247.1 13.2

Citric acid Citric acid (4 TMS) Organic acid 1830.1 273.1 16.2

Fumaric acid Fumaric acid (2 TMS) Organic acid 1341.4 245.1 10.5

Glyceric acid Glyceric acid (3 TMS) Organic acid 1332.9 189 10.3

Glycolic acid Glycolic acid (2 TMS) Organic acid 1071.9 177 6.5

Lactic acid Lactic acid (2 TMS) Organic acid 1057.8 117 6.3

Maleic acid Maleic acid (2 TMS) Organic acid 1301.6 245 9.9

Malic acid* Malic acid (3 TMS) Organic acid 1490.5 233.1 12.4

Pipecolic acid Pipecolic acid (N,O-TMS) Organic acid 1603.5 156.1 13.8

Pyruvic acid Pyruvic acid (1 MEOX; 1 TMS) Organic acid 1046.2 174 6.1

Succinic acid Succinic acid (2 TMS) Organic acid 1308.9 247.1 10.0

Adenosine-5-monophosphate Adenosine-5-monophosphate(5 TMS) Phosphates 3097.9 169 26.7

Fructose-6-phosphate* Fructose-6-phosphate (1MEOX) (6 TMS) Phosphates 2343.3 315.1 21.0

Glucose-6-phosphate* Glucose-6-phosphate (1MEOX) (6 TMS) Phosphates 2357.6 387.2 21.1

Continued
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Metabolic variations in RA‑CH‑1 and RA‑CH‑2.  To analyze the contents of metabolites detected in the 
two organisms, 24 potential biomarkers were identified based on the variable importance plot (VIP) > 1.0 values 
and p values (p < 0.05). The detailed information on their identification is listed in Table 3. As shown in the hier-
archical clustering heat map (Fig. 4a), the HCA results showed significant variation between the two organisms. 
7 metabolites were detected at higher concentrations in RA-CH-1 samples than RA-CH-2 samples, while 17 
metabolites had lower contents in RA-CH-1 samples than RA-CH-2 samples. The 7 higher metabolites included 
urea, glucose-6-phosphate, citramalic acid, guanine, fructose-6-phosphate, pyruvic acid and lactic acid, while 
the 17 lower metabolites included 7 nucleotides, 4 sugars, 3 amino acids, 1 organic acid, 1 phosphate and 1 fatty 
acid. Besides, we found that there was a strong correlation among 24 biomarkers.

To compare metabolic pathway activities from metabolite profiles between the two organisms, we have cor-
related metabolomics datasets and metabolic pathways activities using Pathway Activity Profiling (PAPi)45. A 
variety of metabolic pathways participated in the metabolism of amino acids, secondary metabolites, carbon, 
energy, lipids, cofactors and nucleotides (Fig. 4b). As compared with RA-CH-2, RA-CH-1 did not display much 
difference in the metabolism of amino acids. However, among secondary metabolites, streptomycin biosynthe-
sis, phenylpropanoid biosynthesis, novobiocin biosynthesis and carbapenem biosynthesis were up-regulated 
in RA-CH-2. These metabolisms are essential for RA adapted to their environment and improve the surviv-
ability of RA against abiotic or biotic stresses. The metabolism of cofactors and vitamins was up-regulated in 
RA-CH-2 compared to RA-CH-1. This indicated that the metabolic compounds related to this pathway were 
active in RA-CH-2. Most subgroups of carbohydrate metabolism in RA-CH-2 were up-regulated, suggesting that 
carbohydrates biosynthesized supply energy for fatty acid metabolism. For example, pyruvate, propanoate and 
pentose phosphate metabolism were all upregulated in RA-CH-2, indicating that their metabolism was activated.

To observe the metabolite-by-metabolite differences for compounds, nucleotides in two strains were with 
the maximum changes compared to other metabolites, but purine metabolism did not change a lot (0.39-fold 
higher in RA-CH-2). Figure 4c represents a schematic of purine metabolism. AMP is converted to adenosine 
by 5′-nucleotidase (EC 3.1.3.5) and then to adenine by Purine nucleoside phosphorylase (PNP, EC 2.4.2.1). The 
concentration of Adenosine in RA-CH-2 was two-fold higher than that in RA-CH-1, while the concentration 
of Adenine in RA-CH-2 was 0.3-fold higher in RA-CH-1.To explore whether differential expression of par-
ticular genes would cause reaction flux changes, the reactions associated with genes change were check by the 
transcriptome analysis (see Supplementary Table S8), the up-regulation of Adenosine in RA-CH-2 could be the 
reason for the level of 5′-nucleotidase expression significantly increased (1.73-fold change) compared with that 
in RA-CH-1. Meanwhile, the level of Purine nucleoside phosphorylase expression was significantly reduced 
(0.86-fold change) in RA-CH-2.

Metabolite TMS-form Classification RI m/z rt/min

Glyceric acid-3-phosphate* Glyceric acid-3-phosphate (4 TMS) Phosphates 1820.1 227 16.1

Glycerol-2-phosphate Glycerol-2-phosphate (4 TMS) Phosphates 1738.4 243 15.3

Glycerol-3-phosphate* Glycerol-3-phosphate (4 TMS) Phosphates 1773.5 299.1 15.6

Monomethylphosphate Monomethylphosphate (2 TMS) Phosphates 1177.9 241 8.1

Myo-inositol-1-phosphate Myo-Inositol-1-phosphate (7 TMS) Phosphates 2421.2 299.1 21.6

Phosphoric acid* phosphoric acid (3 TMS) Phosphates 1275.4 299.1 9.5

1-Monohexadecanoylglycerol 1-Monohexadecanoylglycerol (2 TMS) Polyol 2583.3 371.3 22.9

1-Monooctadecanoylglycerol 1-Monooctadecanoylglycerol (2 TMS) Polyol 2775.8 399.3 24.3

2-Monopalmitoylglycerol 2-Monopalmitoylglycerol (2 TMS) Polyol 2549.7 129 22.6

2-Monostearoylglycerol 2-Monostearoylglycerol (2 TMS) Polyol 2740.5 129 24.0

Eicosanol Eicosanol (1 TMS) Polyol 2328.6 355.3 20.9

Sorbitol* Sorbitol (6 TMS) Polyol 1960.8 319.1 17.6

Arabinose* Arabinose (1MEOX) (4 TMS) Sugar 1692.4 103 14.8

Erythrose Erythrose (1MEOX) (3TMS) Sugar 1461 117 12.0

Fructose* Fructose (1MEOX) (5 TMS) Sugar 1903.2 319.2 17.2

Galactose* Galactose (1MEOX) (5 TMS) Sugar 1920.2 103 17.2

Glucopyranose Glucopyranose (5 TMS) Sugar 1997.2 204.1 17.9

Glucose* Glucose (1MEOX) (5 TMS) Sugar 1939.3 319.2 17.3

Isomaltose* Isomaltose (1MEOX) (8 TMS) Sugar 2924.9 361.2 25.3

Sucrose* Sucrose (8 TMS) Sugar 2687.1 361.2 23.6

Trehalose* Trehalose (8 TMS) Sugar 2794.6 361.2 24.4

2,4,6-Tritert-butylbenzenethiol 2,4,6-Tritert-butylbenzenethiol Others 1542.6 263.2 13.0

Nicotinamide Nicotinamide (1 TMS) Others 1478.8 179.0 12.3

Parabanic acid Parabanic acid (2 TMS) Others 1499 100.0 12.5

Urea Urea (2 TMS) Others 1233.7 189.1 8.9

Table 1.   Classification of identified metabolites. RI retention index, m/z mass to charge ratio, rt retention 
time. *Metabolites were identified by comparison of pure standard compounds and MS-library.
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Discussion
Metabolomics is a group of indicators for high-throughput detection and data processing, dynamic metabolic 
changes in the overall, especially for intercellular metabolism, genetic variation and environmental changes. 
Like the other three omics techniques, metabolomics plays an important role in systems biology. Metabolomics 
data sets have become more comprehensive and provide substantial evidence for the molecular mechanisms46.

The cellular metabolism of microbial cell responds very quickly, generating marked changes in intracellular 
metabolites as low as 0.1 mM/s47–49. The quenching of metabolism is an important precondition for accurate 
measurement of the concentrations of identified metabolites. The bacterial membrane and cell wall might damage 
during quenching causing the leakage of intracellular metabolites50. As a gram-negative bacterium, the cell wall 
structure of RA is narrower and less robust compared with yeasts and gram-positive bacteria. It seems that RA 
may be very susceptible to the leakages during quenching. In this study, we choose cold methanol as a quenching 
solution. Several studies have revealed that cold methanol is the currently most used quenching solution allowing 
removal of extracellular metabolites51–54.

After quenching and chemical derivatization, over a hundred GC–MS peaks were detected and 81 intracellular 
metabolites of the two organisms in the TSB medium were identified. In this study, we reveal compositional dif-
ferences by multivariate analysis. The PCA model of RA is very useful to detect outliers, but the PCA score plot 

Figure 2.   Metabolite-metabolite correlation analysis. Blank squares: p > 0.05. Marked with red or blue 
(p < 0.05) are the significant metabolite-metabolite correlations. Positive correlations are shown in red; negative 
correlations are shown in blue.
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Figure 3.   Heatmap of total metabolites in RA-CH-1 and RA-CH-2. Colors represent fold-change values 
between each line and the samples. Red squares in the heat map indicate increases of intracellular metabolite 
concentration, while green squares indicate decreases of intracellular metabolite concentration. Fold-change 
values were log2-transformed. Both columns (samples) and rows (metabolites) were subjected to hierarchical 
clustering analysis (HCA).
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does not give a good representation of the class difference between the groups of two strains. For PCA, the group 
separations are exposed only when the inter-class variation is more than the intra-class variation. The group 
differentiation was influenced by many factors, like sample preparation problems55, experimental deviation56 
and inadequate data pretreatments57. In contrast with PCA, PLS aggressively over-fit models to the sets and 
contributed scores in which groups are separated58. Meanwhile, validation is a critical step in guarantying the 
quality of PLS model59. As a result, PLS-DA analysis generates excellent group separation of two strains samples.

The 81 metabolites include organic acids, nucleotides, phosphates, amino acids, sugars, fatty acids, polyol 
and amine. We detected a few new metabolites that had not been shown before in Flavobacteriaceae, such as 
Inositol 1-phosphate (Ins-1P). Ins-1P is primarily formed by Myo-inositol-phosphate synthase (MIPS) catalyzing 
glucose-6-phosphate (Glc-6P)60, which is an important precursor substance of phosphatidyl-myo-inositol and 
mycothiol61. Ins-1P is an essential metabolite for growth and virulence in some bacteria62,63.

Putrescine as only one polyamine was identified in two strains. Putrescine is mainly related to biofilm 
formation64 and protein synthesis65, so putrescine metabolic pathways may be considered as a potential novel 
target for antibiotics66–68. The metabolism of putrescine biosynthesis in microorganisms has two alternative 
pathways. The first putrescine biosynthesis pathway begins with the conversion of ornithine to putrescine by 
ornithine decarboxylase (ODC, EC 4.1.1.17), which is encoded by speC gene. Another one is synthesized from 

Table 2.   Features of the genome and genome-scale metabolic model in RA-CH-1 and RA-CH-2.

Features iJL463/RA-CH-1 iDZ470/RA-CH-2

Total genome size (bp) 2.31 M 2.17 M

Open reading frames (ORFs) 2207 2050

ORFs included in the model 463 470

Reactions included in the model 788 801

Reactions assigned with ORFs 652 666

Non-enzymatic reactions 136 135

Unique reactions 10 23

Metabolites 841 862

Table 3.   Differential intracellular metabolites between RA-CH-1 and RA-CH-2 groups. a *p < 0.05; **p < 0.01; 
***p < 0.001. b FC: fold change in RA-CH-2/RA-CH-1.

Metabolites

Mean ± SD

VIP p valuea log2(FC)bRA-CH-1 RA-CH-2

Adenine 88.54 ± 19.43 110.03 ± 22.20 1.06 * 0.31

Adenosine 77.82 ± 17.26 338.12 ± 154.50 1.72 *** 2.12

Aspartic acid 525.50 ± 106.35 1021.23 ± 264.38 1.74 *** 0.96

Citramalic acid 51.22 ± 19.92 15.09 ± 8.07 1.72 *** − 1.76

Cytosine 22.21 ± 6.94 40.20 ± 13.32 1.47 * 0.86

Fructose 1023.72 ± 907.79 2599.22 ± 467.83 1.66 ** 1.34

Fructose-6-phosphate 66.38 ± 29.12 25.60 ± 8.21 1.56 ** − 1.37

Galactose 176.68 ± 144.09 432.91 ± 76.62 1.68 ** 1.29

Glucopyranose 350.48 ± 68.97 1858.82 ± 1062.14 1.60 *** 2.41

Glucose 194.45 ± 168.22 488.47 ± 84.99 1.67 ** 1.33

Glucose-6-phosphate 86.96 ± 22.83 24.40 ± 6.82 1.96 *** − 1.83

Glyceric acid-3-phosphate 53.68 ± 33.34 92.06 ± 25.08 1.25 * 0.78

Guanine 233.34 ± 49.57 83.22 ± 14.72 1.99 *** − 1.49

Guanosine 39.83 ± 9.77 165.73 ± 74.72 1.72 *** 2.06

Lactic acid 494.68 ± 92.30 375.54 ± 128.45 1.08 * − 0.40

Malic acid 26.19 ± 9.95 70.79 ± 22.97 1.76 ** 1.43

Nonanoic acid 10.33 ± 2.54 14.19 ± 3.16 1.28 * 0.46

Ornithine 935.73 ± 335.20 1984.35 ± 281.19 1.92 *** 1.08

Pyruvic acid 227.56 ± 70.23 152.76 ± 21.49 1.34 * − 0.57

Serine 939.73 ± 223.20 1287.73 ± 278.92 1.30 * 0.45

Thymine 42.06 ± 11.39 60.38 ± 11.39 1.43 * 0.52

Uracil 285.50 ± 94.70 488.10 ± 109.47 1.59 ** 0.77

Urea 616.48 ± 729.53 72.77 ± 56.60 1.07 ** − 3.08

Uridine 135.27 ± 14.28 225.75 ± 43.44 1.82 *** 0.74
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Arginine by the reactions which are catalyzed by the enzymes Arginine decarboxylase (ADC, EC 4.1.1.19) and 
Agmatinase (EC 3.5.3.11). Ornithine is also detected in this study. It seems that the second pathway exists in RA. 
In Fig. 2, the variation trend of Ornithine does not correlate with Putrescine. Meanwhile, the result of ODC and 
ADC enzyme active is negative and positive by decarboxylase test (data not shown in this study), respectively. 
It suggests that the metabolite profiles provide insight and inferences into a lot of information quickly, but it 
remains for the analysis.

On the other hand, here, we have shown that the cellular metabolism of purine (Fig. 4c). These pathways 
have a pivotal role in the control of the intracellular nucleotides concentration. Although the concentration of 
Adenosine in RA-CH-2 was 2 times higher than that in RA-CH-1, the concentration of Adenine was regulated 
by the transcription and expression of Purine nucleoside phosphorylase. Linking the metabolomics data to pre-
existing transcriptomics data on RA can be useful in the next steps to explain the difference in the metabolism.

In this study, the application of metabolomics was first used to research the metabolic profiling and bio-
markers of RA. This study revealed that RA-CH-1 and RA-CH-2 have different metabolic profiles. A large por-
tion of different virulence and serotype phenotypes can be attributed to known virulence-associated secondary 

Figure 4.   Comparison of network utilization in RA-CH-1 and RA-CH-2. (a) HAC of 24 biomarkers in two 
RA strains. RA-CH-1 (8 samples) and RA-CH-2 (8 samples) belonged to two subgroups. (b) Activities of 
RA metabolic pathways according to comparisons between two RA strains. The activity scores (AS) for each 
pathway were calculated using the PAPi algorithm. PAPi calculates an AS for each metabolic pathway listed 
in the KEGG database based on the number of metabolites identified from each pathway and their relative 
abundances. Related pathways are grouped according to their cellular metabolism and only pathways with 
statistically significant differences in activity (p < 0.05 by ANOVA) are shown. (c) The pathway of Purine 
metabolism in RA.
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metabolites. Using the metabolome dataset, we obtained a classification model that differentiates RA-CH-1 
and RA-CH-2 with good accuracy. Further, to establish a GSM model of two strains are useful frameworks to 
explore the versatility of RA and to understand the molecular pathogenesis. The combination of genomics and 
metabolomics has greatly promoted the research to identify interacting pathways. Metabolomics can also be 
used to bridge genotype to the phenotype of RA.

Materials and methods
Strains and growth conditions.  RA wild strains CH-1 (BioSample ID: SAMN02603758) and CH-2 
(BioSample ID: SAMN02602992) were isolated and keep in our lab. Briefly, two strains were grown in 500 ml 
flasks overnight at 37 °C and 150 rpm in 200 ml tryptic soy broth (TSB) and used as seed broth. The overnight 
cultures were added in a new 300 ml TSB medium and made the initial value of OD600 to 0.1. The flasks were 
incubated at 37 °C with shaking at 180 rpm. For untargeted metabolomics analysis, the samples were collected 
after 8 h of incubation. The growth curve was shown in Supplementary Fig. S1. The value of OD600 in RA is 
about 3.2. The medium was autoclaved at 121 °C for 15 min. 8 biological samples of each strain were separately 
processed in the same conditions and same culture time.

Quenching and chemical derivatization of intracellular metabolites.  For cell quenching, 200 ml 
cultures were rapidly transferred to centrifuge tubes containing 800 ml 60% methanol solution (− 40 °C) and 
maintained at − 20 °C in a refrigerated bath for 5 min. The mixture was centrifuged for 5 min at 7500 g and − 
10 °C. The supernatant was removed rapidly and the cell suspension was washed twice with 10 ml cold 0.85% 
NaCl solution. After washing, the cell suspension was frozen at low temperature by the vacuum freeze dryer.

The 10 mg freeze-dried powder samples were extracted with 1 ml 50% methanol (− 20 °C) and vortexed for 
30 s. To improve the precision of GC analysis, 60 μl 0.2 mg/ml nonadecylic acid–methanol solution and 60 μl of 
10 mM d4-alanine-methanol solution were added to 1 ml extract as internal standard (IS). To ensure effective 
extraction, the tubes were treated by the freeze-thawing method with liquid nitrogen for 5 min and repeated 3 
times. The extract was centrifuged for 10 min at 13,000g and 4 °C. The supernatant was blow-dried by vacuum 
concentration. The samples were resuspended in 60 μl 15 mg/ml methoxyamine pyridine solution and reacted 
for 120 min at 37 °C. 60 μl BSTFA reagent (containing 1% TMCS) was used for the derivatization reactions. The 
reaction mixture was derivatized within 90 min at 37 °C. After low-temperature centrifugation, the supernatant 
was used for GC–MS analysis.

GC–MS analysis.  To get the high-quality data in high throughput analysis, the quality control (QC) method 
was used to monitor analytical accuracy from the pooled samples and report the data quality as previously 
described69. The pooled mixtures were prepared by 20 μl of all the biological test samples.

The samples were analyzed by Agilent 7890A/5975C GC/MSD System. The complex mixture of compounds 
was separated on GC column HP-5MS (30 m × 250 μm × 0.25 μm, Agilent) coated with 5% phenyl/95% meth-
ylpolysiloxane. To separate the derivatives, the helium was the carrier gas set at a constant flow of 1 ml/min. 1 
µl sample was injected by a split mode with a split ratio of 20:1 using the auto-sampler. The injection port tem-
perature was set at 280 °C, the transfer line temperature set to 150 °C and the ion source temperature adjusted 
to 230 °C. The programs of temperature-rise were as followed: 60 °C initially for 2 min, increased to 300 °C at 
10 °C/min and 300 °C was maintained for 5 min. The range of mass spectrometry was set from 35 to 750 (m/z) 
by a full-scan method.

Genome‑scale metabolic reconstruction of R. anatipestifer.  The genomic data of RA-CH-1 (Gen-
Bank: CP003787.1) and RA-CH-2 (GenBank: CP004020.1) were re-annotation by RAST prokaryotic genome 
annotation server70. The draft metabolic models were generated by Model SEED (https​://model​seed.org/genom​
es/) based on the gene re-annotation71. The growth conditions of RA are unknown, so RA is auto-completed in 
simulated media (Supplementary Table S7). The gene–protein-reaction (GPR) associations were available as an 
Excel file and showed the relationship among genes, their corresponding proteins and the reactions catalyzed by 
the proteins. The Excel files of the models were converted to SBML format to be fully compatible with COBRA 
Toolbox version 3.0 (https​://openc​obra.githu​b.io/cobra​toolb​ox/stabl​e/)72. Because no detailed information on 
the biomass composition of RA has been found, the biomass composition was assembled in the Model SEED, 
which accounts for DNA, RNA, amino acids, nucleotides, cell wall and cofactors. DNA was calculated from the 
genome sequence of RA-CH-1 and RA-CH-2. DNA coefficients are calculated by first computing the GC con-
tent of the chromosome. Then the molar fractions of the deoxynucleotides are set according to the GC content. 
The other metabolites and their coefficients are approximations garnered from E.coli model iAF126073. The 
metabolites (e.g., lipids, cofactors, cell wall components) are included only if the genome annotation includes 
evidence for functional roles associated with the biosynthesis or utilization of the metabolites. Lack of fully con-
nected metabolic pathways may lead to contain multiple gaps due to incomplete or inconsistent annotations, the 
draft metabolic models were checked as a gap-filling process in TSB medium to allow biomass formation. After 
the gap-filling procedure, the mass balance of all reactions in the RA models was checked with elementary and 
charge balance by Check Model Mass Balance app in KBase (https​://www.kbase​.us/)74. To predict simulating 
biomass production, flux balance analysis (FBA) was used to verify the growth rate and the rate of production in 
the computational medium. The information of the medium in silicon used for FBA was listed in Supplementary 
Table S9.

GC–MS data processing.  For the metabolite identification, the Agilent GC–MS 5975 Data Analysis soft-
ware was used to convert the raw GC–MS data into NetCDF format. The peaks were identified, filtered and 

https://modelseed.org/genomes/
https://modelseed.org/genomes/
https://opencobra.github.io/cobratoolbox/stable/
https://www.kbase.us/
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aligned via XCMS software version 1.42.0 using XCMS’s default settings with the following changes: xcmsSet 
(fwhm = 3, snthresh = 3, mzdiff = 0.5, step = 0.1, steps = 2, max = 300), group (bw = 2, minfrac = 0.3, max = 300)75. 
Metabolites were annotated using the Automatic Mass Spectral Deconvolution and Identification System 
(AMIDS) version 2.73 based on Wiley Registry and National Institute of Standards and Technology (NIST). 
Metabolites were confirmed via comparison of mass spectra and retention indices to the Golm Metabolome 
Database (GMD, http://gmd.mpimp​-golm.mpg.de/) using a cut-off value of 70%. The signal integration area of 
each metabolite was normalized to the internal standard (Nonadecylic acid and d4-Alanine) for each sample.

Statistical analysis.  The normalized data were checked by mean-centering and unit variance (UV) scaling 
methods before the multivariate statistical analysis. The PCA and PLS-DA were applied to the normalized sam-
ples of the intracellular metabolite by the Simca-P version 13.0 software (Umetrics, Kinnelon). Cross-validation 
was used to check the quality of PCA and PLS-DA models, and 100 random permutations testing were carried 
out to guard against the over-fitting of PLS-DA models. The discriminating metabolites were obtained using a 
statistically significant threshold of variable influence on projection (VIP > 1.0). Values obtained from the PLS-
DA model were validated via the Mann–Whitney–Wilcoxon test (p < 0.05). The metabolites with the values of 
p < 0.05 and VIP > 1.0 were chosen as discriminating metabolites between RA-CH-1 and RA-CH-2. HCA was 
performed using Euclidean distance methods and visualized by the pheatmap package version 1.0.8 in the R 
language. Metabolite correlation was assessed using the Pearson Correlation Coefficient and corresponding p 
values were also calculated using the Cor. test version 3.2.1 function in R. Identified metabolites were mapped 
onto general biochemical pathways according to the annotation in KEGG76–78. Pathway Activity Profiling (PAPi) 
algorithm was used to predict and compare the relative activity of different metabolic pathways by PAPi package 
version 1.14.0 in R.

Data availability
The genome sequences described in this manuscript have been submitted to the National Center for Bio-
technology Information (NCBI) under accession codes PRJNA172646 (whole genome and assembly data of 
RA-CH-1) and PRJNA183917 (whole genome and assembly data of RA-CH-2). Raw spectral data for measure-
ment of RA-CH-1 and RA-CH-2 by GC–MS were uploaded to the Open Science Framework [Doi: https​://doi.
org/10.17605​/OSF.IO/X6AMD​]. The datasets generated during and/or analyzed in the current study are available 
from the corresponding author on reasonable request.
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