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Abstract

Background: Paragonimiasis is a food-borne trematode infection acquired by eating raw or undercooked crustaceans. It is a
major public health problem in the far East, but it also occurs in South Asia, Africa, and in the Americas. Paragonimus worms
cause chronic lung disease with cough, fever and hemoptysis that can be confused with tuberculosis or other non-parasitic
diseases. Treatment is straightforward, but diagnosis is often delayed due to a lack of reliable parasitological or
serodiagnostic tests. Hence, the purpose of this study was to use a systems biology approach to identify key parasite
proteins that may be useful for development of improved diagnostic tests.

Methodology/Principal Findings: The transcriptome of adult Paragonimus kellicotti was sequenced with Illumina
technology. Raw reads were pre-processed and assembled into 78,674 unique transcripts derived from 54,622 genetic loci,
and 77,123 unique protein translations were predicted. A total of 2,555 predicted proteins (from 1,863 genetic loci) were
verified by mass spectrometric analysis of total worm homogenate, including 63 proteins lacking homology to previously
characterized sequences. Parasite proteins encoded by 321 transcripts (227 genetic loci) were reactive with antibodies from
infected patients, as demonstrated by immunoaffinity purification and high-resolution liquid chromatography-mass
spectrometry. Serodiagnostic candidates were prioritized based on several criteria, especially low conservation with proteins
in other trematodes. Cysteine proteases, MFP6 proteins and myoglobins were abundant among the immunoreactive
proteins, and these warrant further study as diagnostic candidates.

Conclusions: The transcriptome, proteome and immunolome of adult P. kellicotti represent a major advance in the study of
Paragonimus species. These data provide a powerful foundation for translational research to develop improved diagnostic
tests. Similar integrated approaches may be useful for identifying novel targets for drugs and vaccines in the future.
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Introduction

Paragonimiasis is an important food-borne trematode infection

(and a ‘‘neglected tropical disease’’) that is caused by lung flukes in

the genus Paragonimus [1–3]. More than 50 Paragonimus species

have been described, and nine species are known to infect humans.

Human infections are most frequent in Asia (P. westermani, P. skrjabini,
P. heterotremus, P. siamensis, P. miyazakiki), but they also occur in sub-

Saharan Africa (P. uterobilateralis, P. africanus), and in the Americas

(P. kellicotti, P. mexicanus) [1]. Approximately 21 million people are

infected with Paragonimus worms [2], and some 293 million live in

endemic areas where they are at risk of contracting the infection [3].

Paragonimus metacercariae enter the human host upon

ingestion of raw or undercooked crustaceans. Metacercariae

excyst, migrate out of the intestine, cross the diaphragm into the

pleural space, and eventually invade the lungs where they mature

and live for years in pulmonary cysts [1]. This results in a range of

clinical symptoms, including cough, fever, weight loss, pleural
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effusion, chest pain, and bloody sputum [4]. These symptoms can

be very similar to those seen in patients with tuberculosis, bacterial

pneumonia, fungal infections, or lung cancer, so misdiagnosis is

common [5–7]. For example, one study in the Philippines found

P. westermani eggs rather than acid-fast bacilli in sputum samples

from 26 of 160 (16%) patients with suspected tuberculosis [5].

Even in the US, the median time between onset of symptoms and

diagnosis of recent P. kellicotti infections was approximately 12

weeks (range 3–38 weeks), and all of the patients were subjected to

multiple, unnecessary medical interventions tailored to un-related

diseases [8]. Once a proper diagnosis is made, parasites are easily

cleared by a short course of the anthelmintic drug praziquantel,

but infections can be fatal if left untreated [9].

Paragonimus infections are most often diagnosed by identifica-

tion of parasite eggs in the stool or sputum (reviewed in [1]).

Unfortunately, migrating parasites are capable of causing disease

weeks or months before eggs production commences. Egg

detection is also insensitive due to temporal inconsistencies and

requires knowledge and expertise that are not readily available in

many clinical settings. Serological tests for P. westermani and P.
kellicotti using native parasite antigens have been described, but

these tests are impractical for widespread use because they require

continued access to adult parasites [8,10,11]. Thus far, efforts to

develop and implement practical, standardized molecular diag-

nostic tools have been hindered by a lack of information on the

basic biology and genomics of Paragonimus species.

According to the study outline presented in Figure 1, we

sequenced and annotated the transcriptome of adult P. kellicotti to

better understand this parasite at a molecular level and to facilitate

proteomic analyses of both the total worm homogenate and of

immunogenic proteins purified using IgG from P. kellicotti patient

sera. The resulting sequence data led to the identification of

proteins that are promising candidates for the development of

novel (and much needed) serodiagnostic tests for paragonimiasis.

In addition, the annotated transcriptome of adult P. kellicotti
provides a valuable resource for molecular biological and

translational research on paragonimiasis and related food-borne

trematode infections.

Materials and Methods

Parasite material
Wild crayfish (genus Orconectes).3 cm in length were collected

from small rivers in southern Missouri, USA. P. kellicotti
metacercariae, identified by morphological examination, were

isolated from the hearts of infected crayfish and introduced to

Mongolian gerbils (Meriones unguiculatus) by intraperitoneal

injection as previously described [12]. Gerbils were sacrificed 35–

49 days post-infection, and egg-producing adult flukes were

removed from lung cysts, rinsed in 16 phosphate buffered saline

(PBS), and stored at 280uC prior to use in experiments.

RNA isolation and sequencing
Total RNA was isolated from two mature adult flukes using the

PureLink RNA Mini Kit according to the manufacturer’s

microcentrifuge pestle protocol for animal tissues (Ambion, Austin,

TX), and DNase treated using the TURBO DNA-free Kit

(Ambion). cDNA was synthesized and sequenced as previously

described [13]. Briefly, poly(A) RNA was selected from total RNA

using the MicroPoly(A) Purist Kit (Ambion) and reverse

transcribed using the Ovation RNA Amplification System V2

(NuGEN Technologies, Inc., San Carlos, CA). Paired-end, small

fragment, Illumina libraries with insert sizes ranging from 180–

380 bp were constructed and sequenced on an Illumina

HiSeq2000 version 3 flow cell according to the manufacturer’s

recommended protocol (Illumina Inc., San Diego, CA). Raw reads

were deposited in the NCBI sequence read archive under

accession number SRX530756 (NCBI BioProject Accession:

PRJNA179523).

RNAseq read processing and assembly
Raw reads were converted from bam to fastq format using

Picard Tools’ SamToFastq script (http://picard.sourceforge.net).

cDNA synthesis and Illumina sequencing adapters were trimmed

using Flexbar [14] and Trimmomatic [15], respectively. Trimmo-

matic was also used to perform sliding window quality trimming

(5 bp window, average quality $20) and removal of reads less than

60 consecutive high quality bases and reads containing ambiguous

base calls [15]. Reads with an average DUST score less than seven

were removed using the filter_by_complexity script from the

seq_crumbs package (http://bioinf.comav.upv.es/seq_crumbs/).

Remaining reads were mapped against ribosomal RNA [16,17]

and bacterial sequence databases [18] with Bowtie2 (version 2.1.0,

default parameters, [19]) and against the human genome (hs37)

and GenBank rodent database (gbrod, downloaded April 24,

2013) with Tophat2 (version 2.0.8, default parameters, [20]); all

matching reads and their mates were excluded from further

analysis. The remaining high quality P. kellicotti originated reads

were assembled using the Trinity de novo RNAseq assembler [21]

with default parameters. Modules within the Trinity software

package were used to estimate transcript abundance and remove

transcripts representing ,1% of the per-component expression

level and ,1 transcript per million [21,22]. The RNAseq reads

used for the assembly were re-mapped to the high-confidence

transcripts with Bowtie2 (version 2.1.0, default parameters, [19])

and transcript breadth of coverage (defined as the percent of

covered bases over the length of the reference transcript) was

assessed using RefCov (http://gmt.genome.wustl.edu/genome-

shipit/gmt-refcov/current/). Transcripts with ,99% breadth of

coverage with RNAseq reads were removed, resulting in the final

Author Summary

Paragonimiasis is a food-borne trematode infection that
people acquire when they eat raw or undercooked
crustaceans. Disease symptoms (including cough, fever,
blood in sputum, etc.) can be similar to those observed in
patients with tuberculosis or bacterial pneumonia, fre-
quently resulting in misdiagnosis. Although the infection is
relatively easy to treat, diagnosis is complicated. Available
diagnostic assays rely on total parasite homogenate to
facilitate the detection of Paragonimus-specific antibodies
in patients. Though these blot-based assays have shown
high sensitivity and specificity, they are inconvenient
because total parasite homogenate is not readily available.
This study used next generation genomic and proteomic
methods to identify transcripts and proteins expressed in
adult Paragonimus flukes. We then used sera from patients
infected with P. kellicotti to isolate immunoreactive
proteins, and these were analyzed by mass spectrometry.
The annotated transcriptome and the associated pro-
teome of the antibody immune response represent a
significant advance in research on Paragonimus. This
information will be a valuable resource for further research
on Paragonimus and paragonimiasis. Thus this project
illustrates the potential power of employing systems
biology for translational research in parasitology.

Transcriptome and Proteome of Paragonimus kellicotti
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transcript set. Assembly statistics at each phase of filtering are

given in Table S1. It is expected that the de novo assembly would

over-estimate the number of transcripts and loci, so in-house

PERL scripts were used to estimate fragmentation based on WU-

BLAST alignments to protein coding sequences from closely

related species as previously described [23]. Assembly fragmenta-

tion was calculated as the percentage of reference genes associated

with multiple, non-overlapping BLAST hits.

Transcriptome annotation
All assembled transcript isoforms were compared to known

protein sequences by BLASTX [24] against the GenBank Non-

Redundant protein database (NR, downloaded April 15, 2014).

Results were parsed to consider only top matches to non-

overlapping regions of the query with e-value less than 1e-05.

Putative protein translations from the transcripts were predicted

using Prot4EST [25]. Transmembrane domains and secretion

peptides were predicted using Phobius [26,27]. Proteins were

assigned to KEGG orthologus groups, biochemical pathways and

pathway modules using KEGGscan [28] with KEGG release 68.

Associations with known InterPro domains and Gene Ontology

(GO) classifications were inferred from predicted protein sequenc-

es using InterProScan [29–31]. Functional enrichment of GO

terms was calculated using FUNC with an adjusted p-value cutoff

of 0.01 [32]. For FUNC analysis, the target list included the

longest isoform of a given locus that contained the feature of

interest against the background of the longest isoforms of all loci

including the target list. All transcripts, predicted proteins, and

associated annotations are available at Trematode.net (trematode.

net/Paragonimus_kellicotti.html).

Preparation and fractionation of adult parasite antigen
Adult parasite antigen was prepared as previously described

[12]. Briefly, eight adult parasites were homogenized on ice in

RIPA buffer (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% NP-

40, 0.2% sodium deoxycholate, 1 mM EDTA and 10 mM NaF)

using a 1 mL mini homogenizer (GPE Scientific Limited, Leighton

Buzzard, UK). The homogenate was centrifuged at 19,0006g for

15 minutes and the supernatant was collected. Protein concentra-

tion was measured using the Pierce BCA assay kit (Thermo

Scientific, Rockford, IL), and 500 mg was loaded onto GELFrEE

8100 fractionation system with an 8% cartridge (Expedeon, San

Diego, CA) [33,34]. Eight molecular weight fractions were

collected and the proteins were precipitated using a modified

acetone-based method as previously described [35]. The pellets

were solubilized in Tris buffer (100 mM Tris-HCl pH 8.5)

containing 8M urea and the protein content was determined

using the Advanced Protein Assay (Cytoskeleton, Inc., Denver,

CO) [(Fraction 1 (F1, lowest molecular weight), 35 mg; F2, 176 mg;

F3, 126 mg; F4, 83 mg; F5, 71 mg; F6, 67 mg; F7, 76 mg; F8,

40 mg)]. The quality of molecular weight fractionation was

analyzed by SDS-PAGE; proteins were labeled with Sypro Ruby,

and results were scanned using a Typhoon 9400 instrument.

Immunoprecipitation and purification of P. kellicotti
proteins

De-identified serum samples from P. kellicotti infected patients

were obtained from Barnes Jewish Hospital in St. Louis, Missouri,

the Centers for Disease Control and Prevention in Atlanta, GA,

and Heartland Medical Center in St. Joseph, MO. Patients

included in this study had reported ingestion of raw crayfish,

Figure 1. Characterization of the adult transcriptome, adult proteome, and immunogenic proteins of Paragonimus kellicotti.
doi:10.1371/journal.pntd.0003242.g001
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exhibited symptoms consistent with paragonimiasis, tested positive

for Paragonimus exposure using existing serological or parasito-

logical diagnostic assays, and had no recent history of international

travel. In all cases, sera were collected prior to treatment.

Patient sera were tested for reactivity against adult P. kellicotti
and P. westermani antigen by Western blot as previously described

[10]. Serum samples from five strongly-reactive patients were

pooled (total volume 3 mL), and total IgG was precipitated using

Table 1. Paragonimus kellicotti transcriptome assembly statistics.

Raw Data

Raw sequence reads 69,874,039 pairs

Cleaned, decontaminated reads 39,564,722 pairs & 17,866,916 orphans

Assembly

Transcript isoforms 78,674

Average transcript length 560 bp

Genetic loci 54,622

AS loci 11,771

Average isoforms per AS loci 3.04

Predicted Proteins

Unique proteins 77,123

Average protein size 113 aa

Transcripts with associated protein 78,663

Loci with associated protein 54,616

Annotation

InterPro domains 4,407

GO terms 1,234

KEGG orthologous groups 6,854

KEGG pathways 336

KEGG pathway modules 284

doi:10.1371/journal.pntd.0003242.t001

Figure 2. Distribution of protein sequence similarity matches among three trematode species. Venn diagram showing the distribution of
(A) InterPro protein domains and (B) KEGG orthologous groups shared or unique to P. kellicotti, C. sinensis and S. mansoni.
doi:10.1371/journal.pntd.0003242.g002
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Table 2. Functions enriched among proteins with predicted secretion peptides.

Root GO Term Description Corrected p-value

Molecular Function GO:0004197 cysteine-type endopeptidase activity 1.99E-08

Biological Process GO:0006508 proteolysis 0.0001

Molecular Function GO:0004867 serine-type endopeptidase inhibitor activity 0.0009

Biological Process GO:0045454 cell redox homeostasis 0.001

Cellular Component GO:0009331 glycerol-3-phosphate dehydrogenase complex 0.001

Molecular Function GO:0051537 2 iron, 2 sulfur cluster binding 0.008

Cellular Component GO:0005615 extracellular space 0.009

doi:10.1371/journal.pntd.0003242.t002

Table 3. The top 25 Paragonimus kellicotti proteins in adult worms based on spectral counts.

Transcript Top BLAST Hit Unique Peptides Spectral Count

Pk39535_txpt1 Paragonimus westermani myoglobin 2 (gi:59895955, 4e-91) 592 7206

Pk29718_txpt2 Fasciola hepatica Fatty acid-binding protein type 3
(gi:47116941, 1e-55)

466 6465

Pk37407_txpt1 Clonorchis sinensis glutamate dehydrogenase (NAD(P)+)
(gi:358253764, 0.0)

263 3658

Pk42024_txpt1 Paragonimus westermani 28 kDa glutathione-S transferase
(gi:2264324, 3e-106)

311 3496

Pk02080_txpt2 Schistosoma mansoni actin (gi:256084605, 0.0) 212 2692

Pk45213_txpt1 Crassostrea gigas Actin-2 (gi:405973339, 0.0) 209 2690

Pk34178_txpt1 Paragonimus westermani myoglobin 1 (gi:59895953, 5e-91) 238 2589

Pk48313_txpt1 Paragonimus westermani yolk ferritin (gi:13625997, 1e-77) 114 2301

Pk33942_txpt3 Clonorchis sinensis glyceraldehyde 3-phosphate dehydrogenase
(gi:349917947, 7e-165)

143 2238

Pk37138_txpt1 Caenorhabditis elegans Protein ACT-4, isoform a (gi:17568985, 0.0) 150 1962

Pk47122_txpt1 Clonorchis sinensis fructose-bisphosphate aldolase class I
(gi:358332246, 0.0)

144 1849

Pk47113_txpt2 Clonorchis sinensis mitochondrial malate dehydrogenase
(gi:47531133, 0.0)

129 1765

Pk29799_txpt3 Schistosoma mansoni cysteine synthase (gi:256071387, 3e-162) 122 1631

Pk37388_txpt3 Clonorchis sinensistyrosine 3-monooxygenase/tryptophan
5-monooxygenase activation protein (gi:358339010, 4e-119)

105 1574

Pk02531_txpt1 Clonorchis sinensis molecular chaperone HtpG (gi:358339046, 0.0) 116 1567

Pk47362_txpt2 Clonorchis sinensis chaperonin GroEL (gi:358255039, 3e-161) 133 1533

Pk02081_txpt1 Clonorchis sinensis actin beta/gamma 1 (gi:358339578, 1e-140) 127 1465

Pk08185_txpt1 Fasciola gigantica heat shock protein 70 (gi:153861697, 0.0) 90 1454

Pk42528_txpt2 Paragonimus westermani yolk ferritin (gi:13625997, 3e-67) 104 1408

Pk24292_txpt1 Schistosoma japonicum thioredoxin peroxidase-2
(gi:60279643, 2e-104)

84 1383

Pk48312_txpt2 Paragonimus westermani yolk ferritin (gi:13625997, 2e-83) 115 1314

Pk42696_txpt1 Clonorchis sinensis propionyl-CoA carboxylase alpha chain
(gi:358255536, 0.0)

81 1215

Pk52615_txpt1 Fasciola hepatica protein disulphide isomerase (gi:3392892, 9e-104) 67 1157

Pk27756_txpt1 Ancylostoma ceylanicum hypothetical protein (gi:597857576, 4e-140) 78 1154

Pk34236_txpt1 Echinostoma caproni enolase (gi:112950027, 0.0) 97 1145

Protein abundance was estimated by un-corrected spectral counts. Only the top-scoring transcript from each genetic locus was considered in ranking the top 25 most
abundant proteins as long as the isoforms had similar top BLAST hits and annotations. The GenBank accession number of the top BLAST match and the e-value of the
match are given in parentheses.
doi:10.1371/journal.pntd.0003242.t003
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saturated ammonium sulfate (Thermo Fisher Scientific, Pittsburg,

PA), re-suspended in 16 phosphate buffered saline (PBS), and

desalted by dialysis against 4L 16 PBS for 2 hours at room

temperature, against 4L 16 PBS 2 hours at 4uC, and against 4L

16 PBS overnight at 4uC.

Two mL Pierce NHS-active agarose slurry (Thermo Fisher

Scientific) was added to a 2.0 mL spin column (Thermo Fisher

Scientific), and rinsed with 2.0 mL water followed by 2.0 mL 16
PBS. Two mL of IgG precipitated from the paragonimiasis serum

pool was added to the column and mixed for 2 hours at room

temperature to couple IgG to the agarose. The column was

washed once with 16 PBS, blocked with 1.0M ethanolamine

pH 7.4 for 20 minutes at room temperature, and washed again

with 16PBS.

Approximately 720 mg of adult P. kellicotti total antigen was

added to the column and incubated overnight at 4uC. Column was

washed with 16 PBS, and immune complexes were eluted with

Pierce IgG elution buffer (Thermo Scientific) in eight 1 mL

fractions. Fractions were neutralized with 50 mL 1.0M Tris,

pH 9.0, and 10 mL aliquots of each fraction were analyzed by

Western blot as previously described using the pooled patient sera

as the primary antibody [10]. The fraction with the highest

concentration was precipitated using the 2D clean-up kit (GE

Healthcare, Buckinghamshire, UK) and the pellet was solubilized

in 20 mL 100 mM Tris-HCl, pH 8.5 with 8M urea to prepare

peptides for mass spectrometry.

Digestion of proteins for mass spectrometry
The proteins that were eluted and denatured from the antibody

coupled beads or from the GELFrEE protein fractions were

reduced with 1 mM TCEP (Pierce) for 30 min, and alkylated with

20 mM Iodoacetamide (Sigma) at room temperature in the dark

for 30 min. The reaction was quenched with 10 mM DTT

(Sigma) for 15 min. Endoprotease Lys-C (Sigma) (5 mg) was added

and the samples were digested in a barocycler (Pressure

Biosciences) [36] for 30 min at 37uC, followed by dilution to 2M

urea with the Tris buffer, addition of trypsin (Sigma) and

barocycler digestion for 30 min at 37uC. The digest was acidified

to 5% formic acid and peptides were desalted in parallel on

Glygen Nutips containing C4 and graphite carbon solid phase on

a Beckman Biomek (Biomek NXP), as previously described [37].

The eluted peptides were dried in a SpeedVac and dissolved in

water/acetonitrile/formic acid (99%/1%/1%) and transferred to

autosampler vials (SUNSRI Cat No. 200-046) for storage at 2

80uC or LC-MS analysis.

Peptides for LC-MS from the GELFrEE fractionation were

prepared as described above with the following modification. The

endoprotease digests were acidified to 1% TFA, filtered through a

30K MWCO filter (Sartorius VIVACON 500). Peptides were

desalted on a SepPak cartridge (50 mg/1cc) (Waters), dried in a

SpeedVac and transferred into the autosampler vials for LC-MS

analysis.

Liquid chromatography, tandem mass spectrometry (LC-
MS/MS) analysis and mapping

A NanoLC 2D Plus System with a cHiPLC-Nanoflex and AS2

autosampler (Eksigent, Dublin,CA) was configured with two

columns in parallel. One cHiPLC column (ChromXP C18

(200 mm615 cm; particle size 3 mm, 120 Å) was used to inject

calibrant solution (b-galactosidase peptides (625 pmol/vial, part#
4333606) and another cHiPLC column was used for sample

analysis. The calibrant solution (500 fmol) was injected in solvent

A (water/formic acid/AcN, 98%/1%/1%). The samples were

loaded in a volume of 10 mL at a flow rate of 0.8 mL/min followed

by gradient elution of peptides at a flow rate of 800 nL/min. The

calibrant solution was eluted with the following gradient condi-

tions with solvent B (water/formic acid/AcN, 1%/1%/98%):0,

2%; 3 min, 2%; 73 min, 50%; 83 min, 80%; 86 min, 80%;

87 min 2%; 102 min, 2%. The digests from the immune-affinity

purified samples were analyzed under the following gradient

conditions (time, percent solvent B): 0, 2%; 3 min, 2%; 205 min,

35%; 215 min, 80%; 240 min, 2%. The digests from the

GELFrEE fractionation were analyzed under the following

gradient conditions (time, percent solvent B): 0, 2%; 5 min, 2%;

650 min, 35%; 695 min, 80%; 700 min, 2%; 720 min, 2%.

Data acquisition was performed with a TripleTOF 5600+ mass

spectrometer (AB SCIEX, Concord, ON) fitted with a Picoview

Nanospray source (PV400)(New Objectives, Woburn, MA) and a

10 mm Silica PicoTip emitter (New Objectives, Woburn, MA).

Data were acquired using an ion spray voltage of 2.9 kV, curtain

gas of 20 PSI, nebulizer gas of 25 psi, and an interface heater

temperature of 175uC. The MS was operated with a resolution of

greater than or equal to 25,000fwhm for TOFMS scans. For data

dependent acquisition, survey scans were acquired in 250 mS

from which 100 product ion scans were selected for MS2

acquisition for a dwell time of 20 mS. Precursor charge state

selection was set at +2 to +5. The survey scan threshold was set to

100 counts per second. The total cycle time was fixed at

2.25 seconds. Four time bins were summed for each scan at a

pulser frequency value of 15.4 kHz through monitoring of the

40 GHz multichannel TDC detector with four-anode/channel

detection. A rolling collision energy was applied to all precursor

ions for collision-induced dissociation using the equation

CE~slope �m=zzintercept, where the slope for all charges

above 2+ is 0.0625 and the intercept is 23,25 and 26 for 2+,3+,

and 4+, respectively.

Figure 3. Western blot of Paragonimus kellicotti antigen
immunoprecipitated with total IgG from P. kellicotti patients.
Total IgG was purified and used to precipitate immunogenic proteins
from total P. kellicotti homogenate. P. kellicotti proteins were eluted
from the purification column in eight fractions, which were tested by
Western blot using an aliquot of the same IgG used in the
immunoprecipitation. Fraction 2 had the greatest protein concentration
and was used in our mass spectrometry analysis.
doi:10.1371/journal.pntd.0003242.g003
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Table 4. The top 25 immunoreactive Paragonimus kellicotti proteins in adult worms based on spectral counts.

Transcript Top BLAST hit Unique Peptides Spectral Count
Predicted Secretion
Peptide

Pk00394_txpt2 Paragonimus westermani cysteine protease 6
(gi:67773374, 0.0)

50 112 yes

Pk45107_txpt2 Clonorchis sinensis cystatin-2 (gi:150404782,
1e-43)

33 88 no

Pk48549_txpt1 Paragonimus westermani cysteine protease 8
(gi:67773378, 0.0)

35 73

Pk34206_txpt1 Schistosoma mansoni ATP synthase alpha
subunit mitochondrial (gi:256070850, 0.0)

37 64 no

Pk45997_txpt1 Schistosoma mansoni ATP synthase beta
subunit (gi:256077755, 0.0)

27 52 no

Pk34178_txpt1 Paragonimus westermani myoglobin 1
(gi:59895953, 5e-91)

27 50 no

Pk45213_txpt1 Crassostrea gigas Actin-2 (gi:405973339, 0.0) 27 43 no

Pk07379_txpt2 Clonorchis sinensis legumain, partial
(gi:358331503, 1e-177)

26 42 no

Pk02080_txpt2 Schistosoma mansoni actin (gi:256084605,
0.0)

27 41 no

Pk24571_txpt1 Clonorchis sinensis putative leucyl
aminopeptidase (gi:118767252, 0.0)

23 39 no

Pk50870_txpt1 Clonorchis sinensis elongation factor-1
(gi:46410394, 0.0)

21 37 no

Pk45998_txpt1 Schistosoma japonicum ATP synthase, H+
transporting, mitochondrial F1 complex, beta
polypeptide (gi:226487054, 8e-102)

16 34 no

Pk53261_txpt2 no hit 17 32 no

Pk39524_txpt1 Fasciola hepatica MF6p protein, partial
(gi:379991184, 5e-16)

10 32 no

Pk24292_txpt1 Schistosoma japonicum thioredoxin
peroxidase-2 (gi:60279643, 2e-104)

15 31 no

Pk29718_txpt2 Fasciola gigiantica Fatty acid-binding protein
type 3 (gi:47116941, 1e-55)

15 30 no

Pk48295_txpt2 Clonorchis sinensis peptidase inhibitor 16
(gi:358338291, 2e-35)

15 28 no

Pk49950_txpt1 Paragonimus westermani unknown protein
(gi:13625983, 8e-74)

17 27 no

Pk52615_txpt1 Fasciola hepatica protein disulphide
isomerase (gi:3392892, 9e-104)

13 25 no

Pk49951_txpt2 Paragonimus westermani unknown protein
(gi:13625983, 6e-111)

7 25 no

Pk42039_txpt2 Paragonimus westermani pre-procathepsin L
(gi:2731635, 1e-142)

15 23 yes

Pk52616_txpt1 Clonorchis sinensis protein disulfide-
isomerase A1, partial (gi:358256495, 3e-93)

13 23 yes

Pk39535_txpt1 Paragonimus westermani myoglobin 2
(gi:59895955, 4e-91)

11 23 no

Pk01058_txpt1 Clonorchis sinensis molecular chaperone
DnaK (gi:358336042, 0.0)

16 22 no

Pk02081_txpt1 Clonorchis sinensis actin beta/gamma 1
(gi:358339578, 1e-140)

12 22 no

Protein abundance was estimated by un-corrected spectral counts. Only the top-scoring transcript from each genetic locus was considered in ranking the top 25 most
abundant proteins as long as the isoforms had similar top BLAST hits and annotations. The GenBank accession number of the top BLAST match and the e-value of the
match are given in parentheses. The presence or absence of a predicted secretion peptide is noted in the table; however, there are many routes of release from a live
worm (both active and passive) that do not involve a classical secretion signal.
doi:10.1371/journal.pntd.0003242.t004
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The raw LC-MS data (*.wiff) were converted to *.mzML format

utilizing the AB SCIEX MS Data Converter v 1.3 (AB SCIEX,

Foster City, CA) within PEAKS STUDIO 7.0 (Bioinformatics

Solutions Inc., Waterloo, Canada). The resulting files were used

for database searching by the PEAKS software using protein

translations from the P. kellicotti transcriptome. The Ensembl

Human protein database (Homo_sapiens.GRCh37.72) was used

to identify human background proteins in the sample matrix. The

searches were conducted with trypsin cleavage specificity, allowing

3 missed cleavages, oxidation of Met and carbamidomethylation of

Cys as variable and constant modifications, respectively. A parent

ion tolerance of 25 ppm and a fragment ion tolerance of 100 milli-

mass units were used. The MS2-based peptide identifications were

validated within PEAKS software using a modified target decoy

approach, decoy fusion, to estimate the FDR [38]. A 1% FDR for

peptide spectral matches was used as the quality filter to identify

peptides and associated proteins. MS data are available from

Trematode.net (trematode.net/Paragonimus_kellicotti.html) and

PeptideAtlas (identifier PASS00555).

Ethics statement
All animal work was performed in compliance with relevant US

and international guidelines. Animal studies protocols were

approved by the Washington University School of Medicine

Animal Studies Committee (Animal Welfare Assurance # A-3381-

01). The Animal Studies Committee complies with the United

States Public Health Service Policy for Humane Care and Use of

Laboratory Animals and other standards as required by the NIH

Office of Laboratory Animal Welfare. The use of anonymized

human sera was approved by the Washington University in St.

Louis Institutional Review Board (DHHS Federal Assurance

#FWA00002284) under approval number 201102546.

Results/Discussion

Characterizing the adult transcriptome of P. kellicotti
Prior to this study, a total of 911 GenBank sequences were

available from the genus Paragonimus, only seven of which were

from P. kellicotti. Therefore, it was necessary to sequence,

assemble and analyze the transcriptome of P. kellicotti to enable

further study (Table 1). Approximately 70 million paired-end

reads were generated from an adult P. kellicotti cDNA library on

the Illumina HiSeq platform. Following removal of low quality

and contaminant reads, 40 million read pairs and 18 million

unpaired orphan reads were assembled into 78,674 high-

confidence transcript isoforms with an average length of 560 bp.

These were further clustered into 54,622 distinct genetic loci,

21.5% of which are associated with more than one transcript

isoform (mean 3.0 transcript isoforms per alternatively spliced

locus). We assume that the P. kellicotti genome contains a similar

number of protein coding genes as other recently sequenced

trematode genomes, which currently ranges from 10,852 in

Schistosoma mansoni to 16,258 in Clonorchis sinenesis [39–43].

The discordance between the number of detected genetic loci and

Figure 4. Alignment of myoglobin proteins from Paragonimus species and other trematodes. Amino acid alignments show 90% sequence
identity between myoglobin 1 sequences from P. kellicotti and P. westermani. Far less homology is shared between myoglobins in Paragnomimus and
top BLASTP hits from other trematode species. Abbreviations: Pk1, Pk34178_txpt1; Pk2, Pk48549_txpt1; Pw, P. westermani gi:59895953; Cs, C. sinensis
gi:349998765; Ov, Opisthorchis viverrini gi: 663047528; Fh, F. hepatica gi:159461074; Sm, S. mansoni gi:256084837; Sj, S. japonicum gi:226487206.
doi:10.1371/journal.pntd.0003242.g004
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the expected number of genes is likely due to assembly

fragmentation resulting in overestimation of the number of genes,

a common problem seen in de novo transcriptome assemblies of

short read data [44–46]. We calculated the fragmentation rate of

our assembly at 25.8% using S. mansoni genes as a reference and

at 31.4% using C. sinensis genes as a reference. The fragmentation

rate is an estimate and it depends on the level of sequence

conservation between the species of interest and species with

available genome data; however, it is likely that at least 25.8–

31.4% of all P. kellicotti genes represented in our assembly are split

into two or more non-overlapping genetic loci.

Assembled transcripts were compared to known proteins

originating from other species. A total of 32,201 transcript

isoforms from 20,102 loci shared a sequence similarity with an

e-value cut-off of better than 1e-05 (Table S2). A majority of the

matches were to sequences from C. sinensis followed by

Schistosoma species. This is not surprising, as these were the only

trematodes with sequenced genomes at the time this study was

conducted. P. kellicotti sequences shared an average 61.3%

sequence identity with corresponding C. sinensis sequences at

the protein level. There were just 165 P. westermani sequences

included in GenBank-NR at the time of this study, so only 125

transcripts from 67 genetic loci had a top BLASTX hit to a P.
westermani protein. The sequence identity shared between P.
kellicotti and P. westermani high-scoring segment pairs was 79.8%

at the protein level. P. kellicotti and P. westermani are not

considered to be close relatives within the genus Paragonimus
[47]; however, the identified high level of sequence conservation

may help facilitate the design of pan-Paragonimus serological

assays.

A total of 77,123 unique protein sequences were predicted from

54,616 of the detected genetic loci. Detailed annotations are

available in Table S2. Predicted proteins from 11,116 genetic loci

were associated with a total of 4,407 unique InterPro protein

domains and 1,234 unique GO terms. The number of genetic loci

associated with each molecular function term was tallied, and the

most abundantly represented terms were related to protein, ATP

and nucleic acid binding. Similarly, the biological processes with

the highest representation were protein phosphorylation, meta-

bolic process, and oxidation-reduction process. In a comparison

between three trematode species, a total of 312 conserved domains

were unique to P. kellicotti, while 305 and 218 were unique to C.
sinensis and S. mansoni, respectively (Figure 2A). A majority of the

domains present in each species were shared between all three

species.

Predicted proteins from 18,028 transcripts/11,599 genetic loci

were associated with 6,854 unique KEGG orthologous groups.

These were further binned into 336 unique biochemical pathways

and 284 pathway modules. The KEGG orthologous groups

represented in the adult of transcriptome of P. kellicotti were

compared to those represented in the draft genomes of C. sinensis
and S. mansoni (Figure 2B). Altogether, 620 P. kellicotti KEGG

orthologous groups (KOs) were absent from the other trematodes;

these were binned into 255 pathways and 97 modules, most of

which were very sparsely populated with the P. kellicotti-specific

KOs. A careful analysis failed to identify any complete or nearly

complete pathways present in P. kellicotti but absent in the other

trematodes. The coverage of specific KEGG pathways can be

visualized and compared to other trematodes using the Trema-

Path tool available at Trematode.net (http://trematode.net/TN_

frontpage.cgi?navbar_selection=comparative_genomics&subnav_

selection=tremapath).

Secreted proteins have an important role in the life cycle of

tissue-migrating parasite species like P. kellicotti, facilitating

interactions with the host. These proteins are of practical interest

as diagnostic, vaccine, or drug targets. Proteins related to 1,610

genetic loci were annotated as potentially secreted based on the

presence of a classical signal peptide for secretion and absence of a

predicted transmembrane domain (Table S2). Seven GO terms

were found to be enriched among predicted secreted proteins, with

the most highly enriched term being related to cysteine protease

activity (Table 2). Proteases tend to be prevalent among trematode

excretory-secretory products [48–51], and various reports have

described their role in migration through host tissues, nutrient

uptake, and immune evasion [52–55].

Characterizing the adult worm proteome of P. kellicotti
Total parasite antigen was subjected to analysis by mass

spectrometry to survey the worm proteome and subsequently to

validate a subset of our assembled transcripts. A total of 244,048

spectra were matched to 25,405 database protein predictions that

corresponded to 2,555 transcripts from 1,863 genetic loci (Table

S2). The verified proteins encompass 1,626 InterPro protein

domains, 586 GO terms, 1,925 KEGG orthologous groups from

307 pathways and 198 pathway modules. Furthermore, 63

transcripts from 48 genetic loci with no annotation (i.e., no

significant BLAST hit in NR or KEGG, conserved protein

domain, GO term, etc.) were confirmed by the proteomic data.

These sequences, thus far unique to P. kellicotti, might have

otherwise been dismissed as low confidence transcripts due to the

draft nature of the transcriptome assembly. However, proteomic

evidence verified that these species-specific nucleotide sequences

are translated and that they may have important biological

functions in P. kellicotti.
In order to obtain an estimate of abundance, identified proteins

were ranked according to associated spectral counts. Given the

draft nature of the transcriptome and the known issue of

fragmentation, attempts were not made to correct for protein

size, so follow up experiments would be required to assess

abundance in a more robust and quantitative manner. The 25

proteins with highest spectral counts (Table 3) included actins,

myoglobins, chaperone proteins, and yolk ferritins, and these

proteins may be abundant in the parasites. Oxygen binding

proteins such as myoglobin are vital to parasite survival, as an

exceptionally high affinity for their substrate allows the parasite to

scavenge oxygen from host blood and tissues [56]. The high

abundance of myoglobin proteins in our analysis may serve as an

indication of the importance of aerobic respiration in P. kellicotti.

Identification of potential serodiagnostic antigens using
antibodies from patient sera

Serodiagnostic assays based on worm homogenate have been

shown to sensitively and specifically detect an immune response to

P. westermani and P. kellicotti [8,10,11]. In these assays, total

parasite protein antigens are analyzed by SDS PAGE gel

electrophoresis, transferred to a membrane, and exposed to

patient serum. Doublet bands appearing at 21/23 kDa and a

more diffuse band at 34 kDa are indicative of exposure to

Paragonimus species (Figure 3 and [10]). However, the identity of

these proteins was not known.

An unusual cluster of cases of paragonimiasis (caused by P.
kellicotti) occurred in recent years in the state of Missouri

[8,57,58]. Since helminth infections are uncommon in Missouri,

sera from these patients contain antibodies to Paragonimus
antigens, but they are unlikely to contain antibodies to antigens

of other helminths. These sera represented an excellent resource

for our study. P. kellicotti proteins recognized by total IgG from

some of these patients were enriched by immunoprecipitation
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using affinity beads. Eluate fractions were assessed by Western blot

(Figure 3), and the strongest fraction was analyzed by mass

spectrometry. A total of 2,406 spectra were matched to 1,443

proteins predicted from the transcriptome assembly that corre-

sponded to 321 transcripts from 227 genetic loci (Table S2). Some

212 of these 227 loci were also detected in our analysis of the total

worm proteome. Thus, the whole parasite proteome provided

useful supplementary information to the immunoprecipitated

proteins. The 25 most abundant proteins bound by patient IgG

(as approximated by spectral counts) are listed in Table 4. Most of

the translations predicted from the transcriptome represent a

fraction of the full length of the deduced protein. Therefore, it is

challenging to determine with certainty which of these might

represent the antigen present in the 21/23 kDa or 34 kDa bands.

Nonetheless, several of the proteins on this list are of interest as

potential serodiagnostic antigens.

Five of the highly abundant immunoreactive proteins (Table 4),

Pk00394_txpt2, Pk45107_txpt2, Pk48549_txpt1, Pk24571_txpt1,

and Pk42039_txpt2 are putative cysteine proteases. Translations

from three of these transcripts (Pk00394_txpt2, Pk48549_txpt1,

and Pk42039_txpt2) are predicted to have molecular weights in

the range of 35–36 kDa, close in size to the diffuse ,34 kDa

antigen detected by serodiagnostic Western blots with total native

parasite antigen (Figure 3). The predictions of 35–36 kDa are only

estimates and may not represent the full length of the protein.

However, the predicted molecular weights of top BLASTX hits of

these proteins are in the same size range (36–37 kDa), and this

indicates that the P. kellicotti sequences we have are complete or

nearly so. Recombinant cysteine proteases have shown promise as

serodiagnostic antigens for trematode infections [59–63], and a

previous study reported that partially purified cysteine proteases

from P. westermani excretory-secretory products were superior for

antibody diagnosis compared to whole worm antigen extracts [64].

Two of the most abundant proteins identified in the mass

spectrometry analysis of our P. kellicotti immunoprecipitate,

Pk00394_txpt2 and Pk48549_txpt1, share 86% sequence identity

at the amino acid level. These proteins are similar to cysteine

proteases from other P. westermani and, to a lesser extent,

helminths of other genera. By selecting a specific region from these

cysteine proteases, it may be possible to develop an assay that

discriminates between Paragonimus species and other helminths.

A recombinant cysteine protease from P. westermani, rPwCP2,

has already shown promise as diagnostic antigen [62], but this

sequence (gi:42516556) has no homolog in our P. kellicotti
transcriptome. Thus, the cysteine proteases identified in our study

may be more useful as a pan-Paragonimus diagnostic reagent than

those previously described.

Other proteins on our top-25 list (Table 4), such as the MF6p

proteins and myoglobins, have not been considered as serodiag-

nostic antigens, but they are abundant excretory-secretory

products of trematodes and merit further exploration. For

example, Pk39524_txpt1 is annotated as a putative MF6p protein.

Its top BLAST hit was recently characterized as a heme-binding

protein and is a major antigen secreted by F. hepatica [65]. The P.
kellicotti orthologue only shares 57% sequence identity with the F.
hepatica protein, so cross-reactivity with antibodies in patients with

fascioliasis should not be a major problem. Orthologs from other

Paragonimus species have not yet been reported, so it is not

possible to assess the potential utility of this protein as a pan-genus

diagnostic reagent at this time. However, Pk34178_txpt1, a

putative myoglobin 1, shares 90% sequence identity with an

ortholog in P. westermani, but significantly less similarity with

orthologs from other trematode species (Figure 4), strongly

indicating that this candidate is worth further attention to examine

its diagnostic utility.

Conclusions
We undertook a systems biology approach to comprehensively

study the adult transcriptome and proteome of P. kellicotti to

improve understanding of the protein composition of the adult

parasite and potential interactions between the parasite and its

mammalian host. The transcriptome of adult P. kellicotti
represents a major advance in the study of Paragonimus species.

Transcriptomes provide powerful foundations for translational

research in parasitology to develop improved diagnostic tests,

treatments, and vaccines. In this study, transcriptome data was

used together with immunoaffinity chromatography and mass

spectrometry to efficiently identify candidate diagnostic antigens.

Similar integrated approaches may be useful for identifying novel

targets for drugs and vaccines. Finally, the data generated in this

study (transcriptome, proteome, and immunolome) represent a

valuable resource for the research community, and it will be

especially helpful for annotating genomes of Paragonimus spp. as

they become available.

Supporting Information

Table S1 Transcriptome assembly statistics at various
stages of filtering. Information is provided on the content and

completeness of the P. kellicotti transcriptome assembly after each

filtering step.

(DOCX)

Table S2 Annotation of the P. kellicotti transcriptome
assembly. Information on the annotation of assembled tran-

scripts is provided here. This includes the top NR BLASTX hit,

InterPro protein domains, gene ontology terms, KEGG ortholo-

gous groups, biochemical pathways, pathway modules, transmem-

brane domains and secretion signals. The numbers of MS peptides

and spectral counts associated with each transcript are also

provided.

(DOCX)
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