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Abstract
The minimum dominating set (MDSet) comprises the smallest number of graph nodes,
where other graph nodes are connected with at least one MDSet node. The MDSet has
been successfully applied to extract proteins that control protein–protein interaction
(PPI) networks and to reveal the correlation between structural analysis and biological
functions. Although the PPI network contains many MDSets, the identification of
multiple MDSets is an NP‐complete problem, and it is difficult to determine the best
MDSets, enriched with biological functions. Therefore, the MDSet model needs to be
further expanded and validated to find constrained solutions that differ from those
generated by the traditional models. Moreover, by identifying the critical set of the
network, the set of nodes common to all MDSets can be time‐consuming. Herein, the
authors adopted the minimisation of metabolic adjustment (MOMA) algorithm to
develop a new framework, called maximisation of interaction adjustment (MOIA). In
MOIA, they provide three models; the first one generates two MDSets with a minimum
number of shared proteins, the second model generates constrained multiple MDSets
(k‐MDSets), and the third model generates user‐defined MDSets, containing the
maximum number of essential genes and/or other important genes of the PPI network.
In practice, these models significantly reduce the cost of finding the critical set and
classifying the graph nodes. Herein, the authors termed the critical set as the k‐critical set,
where k is the number of MDSets generated by the proposed model. Then, they defined a
new set of proteins called the ðk − 1Þ‐critical set, where each node belongs to ðk − 1Þ
MDSets. This set has been shown to be as important as the k‐critical set and contains
many essential genes, transcription factors, and protein kinases as the k‐critical set. The
ðk − 1Þ‐critical set can be used to extend the search for drug target proteins. Based on the
performance of the MOIA models, the authors believe the proposed methods contribute
to answering key questions about the MDSets of PPI networks, and their results and
analysis can be extended to other network types.

1 | INTRODUCTION

Protein–protein interaction (PPI) networks play a major role in
understanding disease mechanisms [1]. In the last 20 years,
many experimental methods have been developed to reveal the
high‐quality structure of PPI networks in many organisms,
such as humans and yeast [2–5]. The exponential growth in
biotechnology has led to the availability of a wide range of
databases describing PPI networks [6, 7]. Therefore, system‐

level representation of the PPI network provides an opportu-
nity to select a subset of genes that play an important role in
cell viability, such as essential genes and cancer target genes [8].

In graph theory, the minimum dominating set (MDSet) is
the smallest subset in which every other node in the network
must be connected to at least one node of the MDSet [8–10].
The MDSet has been successfully applied in biological net-
works to reveal the correlation between structural analysis and
biological function [8, 9, 11–20]. For example, Wuchty [8] and
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Wakai et al. [16] applied an MDSet model and found an MDSet
enriched with essential, cancer‐related, disease genes, and
identified drug‐target proteins. Their model can identify only
one MDSet, although the PPI networks contained many
MDSets [8, 13, 17]. The critical set that contains common
nodes in all MDSets of the PPI network has important loca-
tions in the PPI network and can be enriched with biological
functions [12, 20]. Interactions with the critical nodes have
eminent effects on the targeted network topology [12].
Therefore, discovering and testing the featured MDSets, and
efficiently identifying the critical nodes are important for the
analysis of PPI networks, as well as for ensuring model
robustness [11].

Determining the MDSet is an NP‐complete problem [10],
but no algorithm can find the MDSet in polynomial time [21].
Nacher and Akutsu [22] suggested an integer linear program-
ming representation (ILP‐based) model to determine an
optimal solution for the MDSet problem. Wuchty [8] applied
the ILP‐based model to human and yeast PPI networks. Zhang
et al. [13] developed the centrality‐corrected MDSet model that
considers the degree and the betweenness centralities of pro-
teins. Their model subsequently found more functionally sig-
nificant proteins in essential genes, disease‐associated genes,
ageing genes, and virus‐targeted genes. Despite their results,
they concluded that relying on topological properties is not
enough to predict the important proteins for consideration [17].
In this work, the authors hypothesised that the significance of
enrichment analysis is affected by the algorithm used to deter-
mine the MDSet [23, 24], as deciding on the best MDSet for
dominating the whole network is difficult [13]. Grinstead and
Slater [25] reported that finding two or more MDSets with
minimum intersection is an NP‐hard problem. Moreover, the
set of shared nodes among all MDSets of the PPI network is
called the critical set [20]. Wuchty et al. [12] found that in PPI
networks, the critical set of proteins plays an important role in
phosphorylation and regulatory events in their interactions.

Herein, a new framework is introduced, called max-
imisation of interaction adjustment (MOIA), to generate
multiple MDSets for a given PPI network. The proposed
MOIA is adopted from the minimisation of metabolic
adjustment (MOMA) and linear MOMA algorithms used in
metabolic networks [27, 28]. In MOIA, the authors developed
a new model that generates two MDSets with the maximum
differences between their nodes. The shared nodes between
these two MDSets can be seen as the essential nodes that
tightly contain the critical set of this network. Therefore, by
calling on the optimisation algorithm only once, the proposed
model encloses the critical set by defining the intersection
between the generated MDSets. Then, the developed model
was further extended to generate k‐MDSets with large differ-
ences between all of them, where k is the number of MDSets.
Using these k‐MDSets, all nodes in the PPI network can be
classified and the critical set precisely defined, named here as
the k‐critical set. In addition, a new set of proteins appearing in
ðk − 1Þ‐MDSets was extracted and this set was identified as the
ðk − 1Þ‐critical set. Experimentally, it was found that the
ðk − 1Þ‐critical set is equally as important as the k‐critical set

and can be used to extend the search process for drug target
proteins. Finally, an additional model was introduced to iden-
tify a specified MDSet when the user selects certain nodes as
the dominating nodes. The authors believe that the MOIA
method could be used to analyse biological and other networks
to find the multiple and user‐defined constrained minimum
dominating set. This approach can also contribute to ranking
the nodes in the considered data network.

2 | DOMINATING PROTEIN
INTERACTION NETWORKS

2.1 | Basic model of the MDSet problem

The PPI network shown in Figure 1, drawn with the Cytoscape
tool [26], could be described as an undirected graph GðV ; EÞ
where proteins are represented as the nodes V of the graph
and the interactions between these proteins are represented as
the edges E of the consideration graph. The adjacency matrix
Aðn� nÞ can be used to represent this graph, where n is the
number of proteins in the PPI network, Aij ¼ 1 if the protein i
interacts with the protein j or i¼ j; and Aij ¼ 0; otherwise. A
set D ⊂ V of proteins is considered as a dominating set if
every node in V is either an element of D or adjacent to an
element of D. The minimum dominating set of V is the
smallest dominating set for the given network [8, 13].

Nacher and Akutsu [20] classified the nodes of the
considered graph, based on being in the generated MDSets,
into three types: critical nodes (belong to every MDSet),
intermittent nodes (may belong to one MDSet), and redundant
nodes (never belong to any MDSet). For example, Figure 2
shows a toy graph where each node has its category. This graph
contains more than 10 MDSets, two of which are shown in
Figures 2(b, c). In Figure 2(d), the red node‐set f3; 6g rep-
resents the critical set of the graph, the green node‐set
f1; 2; 5; 7; 8; 9; 10; 13g is the intermittent set of the
graph, and the remaining blue node‐set f4; 11; 12; 14; 15g

F I GURE 1 The yeast protein–protein interaction (PPI) network,
where the set of red nodes represents an minimum dominating set
(MDSet). Cytoscape tool [26] was used to draw this figure
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forms the redundant set of the graph. Mathematically, the
MDSet problem of PPI networks can be formulated as a bi-
nary integer‐programming problem as:

Objective : min
Xn

j¼1

x j

Subject to:
Xn

j¼1
xj ≥ 1;

xi ∈ f0; 1g; i¼ 1; 2;…; n

ð1Þ

The last constraint, xj ∈ f0; 1g can be replaced by the
relaxation constraint 0 ≤ xi ≤ 1; i¼ 1; 2;…; n. The resulting
integer‐programming problem can be solved using a branch‐
and‐bound algorithm [29] or the simplex algorithm [30]. The
ILP solvers can be used to solve the model in Equation (1).
Herein, the authors use the MOSEK library (MOSEK ApS,
Copenhagen, Denmark) under the MATLAB programming
environment (Mathwork Inc.) as the main solver for the ILP
problems [31]. MOSEK solver uses the interior point method
along with the branch‐and‐bound algorithm [32–34] as a
default algorithm for the resulting integer optimisation prob-
lem. Several MOSEK subroutines are used to solve ILP
problems in the form:

Objective : min CT x
Subject to:

Lc ≤ Ax ≤Uc;
Lx ≤ x ≤Ux;

whereA represents the adjacencymatrix of the PPI networkwith
n nodes. Moreover, x represents the solution vector, and
C;Lc;Uc;Lx and Ux can be defined based on the proposed
model. Therefore, to solve the ILP problem described in model
(1) a solver subroutine is created that receives the adjacency
matrix An�n and the remaining vectors; C;Lc;Uc;Lx and Ux.
Then, the MOSEK subroutine “MOSEKOPT” [33] is used to
solve the ILP problem and return theMDSetM as the following:

M ¼ SolverðC;A;Lc;Uc;Lx;UxÞ;

The output of Solver is a binary vector (0–1 elements) of
length n; where the set of elements of values 1 forms the
resulting MDSet.

2.2 | Multiple MDSets of PPI networks

Several MDSets can be found for a given PPI network, and each
ILP solver can return a different solution according to its al-
gorithm [11, 35]. Despite the presence of many MDSets in the
PPI network, finding them all and defining their constraints is
very difficult [13]. Consequently, finding two or more of these
MDSets with a minimum intersection is an NP‐hard problem
[25]. In addition, extracting important and critical proteins from
PPI networks and classifying their nodes is another challenging
and time‐consuming problem [12, 13, 15, 35]. Herein, the au-
thors developed new MDSet models that can be used to:

1. Reduce the computational cost used in finding the critical,
intermittent, and redundant sets, whereas the traditional
methods find these sets after calling on the solvers n times,
where n is the size of the PPI network.

2. Find new sets of proteins that have different criticalness
degrees.

3. Allow the user to find a special MDSet that contains the
maximum number of user‐defined proteins.

4. Validate the concept of the MDSet being enriched with the
essential genes and biological functional categories.

3 | PROPOSED METHODS

The MOMA and linear MOMA algorithms [27, 28] were
adopted in metabolic networks to extend the ILP model in
Equation (1) to generate several MDSets for PPI networks,
where one or more of these MDSets may have biological func-
tions. As the MOMA algorithms are famous algorithms in the

F I GURE 2 Dominating sets of a network and
classifications of its nodes. (a) The original graph.
(b, c) Two minimum dominating set (MDSets) of
the graph. (d) Explanation of the node types in
terms of critical, intermittent, and redundant nodes
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constraint‐based reconstruction and analysis (COBRA) of
metabolicmodels [36], the authors called their developedmodels
constrained‐based models for dominating PPI networks
(https://github.com/Alofairi1976/MOIA). Mainly, the aim was
to generate MDSets with the largest number of differences
among them. These different MDSets can be used to identify
critical nodes, which reflect the effective proteins and gain
important information about the PPI network. For example, the
network in Figure 2 has 10 MDSets, however, only two of these
MDSets shown in Figures 2(b, c) are sufficient to find the critical
set as shown with the red in Figure 2(d).

The proposed method comprises three main stages, as
shown in Figure 3. The first stage refines the given data set
using suitable data preprocessing techniques, which involve
PPI data collection, protein selection, and graph implementa-
tion (the adjacency matrix). The second stage involves
employing one model picked from three developed models:
The two most different MDSets (2MD‐MDSets) model are the
iterative MDSets (ITR‐MDSets) model, and the user‐defined
MDSet (URD‐MDSet) model. The 2MD‐MDSets model
aims to generate two MDSets simultaneously with the
maximum number of different nodes between these MDSets.
The ITR‐MDSets model can be used to generate many
different MDSets. The URD‐MDSet model can generate an
MDSet containing specific nodes which are determined by the
user. In the third stage of the proposed MOIA method, the
obtained results are discussed and interpreted. These results
include several MDSets generated under different criteria to be
used for determining the k‐critical, the intermittent, and the
redundant set proteins. In this research, the authors highlight
the importance of what they call the ðk − 1Þ‐critical set in the
PPI network. In the following subsection, the Basic‐MDSet
model in [8] is discussed. Then, the proposed models are
introduced in the remaining subsections. To express the algo-
rithms proposed herein, the following notations are defined:

� In�n: the n‐by‐n identity matrix with ones on the main di-
agonal and zeros elsewhere.

� Jn�m: the matrix of ones, where all n‐by‐m entries are ones.
� On�m: the matrix of zeros, where all n‐by‐m entries are

zeros.
� An�n: the adjacency matrix, where all n‐by‐m entries are

binaries; 0 or 1.
� XnY : the set of all elements belongs to vector X but not

vector Y :
� X [ Y : the union of vectors X and Y :
� |X| : the size, number of ones, of the vector X:

3.1 | ILP‐based Basic‐MDSet model

Wuchty [8] applied the ILP‐based model [22] to find an
optimal solution for the MDSet problem of PPI networks as
follows: the solution of the problem in Equation (1) is a binary
vector x, where xi ¼ 1 if protein i belongs to the generated
MDSet and xi ¼ 0 otherwise. Algorithm 1 introduces a pseudo
code that describes the steps used to translate the imple-
mentation of the proposed model in Equation (1).

Algorithm 1 Basic‐MDSet model
1. Initialisation:

1.1. Read the number of nodes n
and the data file.
1.2. Create the adjacency matrix An�n:

2. Build the model as described in
Equation (1):

2.1. Set C ¼ J1�n

2.2. Set Lc ¼ J1�n and Uc ¼ nJ1�n:

F I GURE 3 The structure of the proposed
MOIA method. (a) A simple graph illustrates the
types of minimum dominating set (MDSet) nodes
or proteins. (b) MOIA pipeline that describes the
developed models along with model's results k‐
critical and (k–1)‐critical sets maximiszation of
interaction adjustment (MOIA)
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2.3. Set Lx ¼ O1�n and Ux ¼ J1�n:

3. Compute the MDSet
M ¼ SolverðC;A;Lc;Uc;Lx;UxÞ:
4. Return the MDSet M

3.2 | 2MD‐MDSets model

Segre et al. [27] introduced the MOMA method that minimises
flux distributions between mutant and wild‐type fluxes.
Moreover, Zhang et al. [13] reduced the difference (i.e., to
increase the overlap) between the generated MDSets using
different optimisation solvers. In contrast, the MOMA method
is adopted here to design an ILP‐model that can generate two
MDSets simultaneously with the maximum number of
different nodes between them. Specifically, two variables, x and
y, can be used to represent two MDSets in the new system as
follows:

Objective : max
Xn

j¼1

│xj − yj│

Subject to:
Xn

j¼1
Aijxj ≥ 1; i¼ 1; 2; :::n:

Xn

j¼1
Aijyj ≥ 1; i¼ 1; 2; :::n:

Xn

j¼1

xj ¼ │MDSet│

Xn

j¼1

yj ¼ │MDSet│

xi ∈ 0; 1 i¼ 1; 2;…; n;
yi ∈ f0; 1g i¼ 1; 2;…; n;

ð2Þ

where n represents the number of nodes or proteins in the
targeted network and jMDSetj is the size of the generated
MDSet using the model in Equation (1).

The intersection between the two MDSets x and y may
represent the critical nodes in the graph. Therefore, the pro-
posed model can quickly produce the critical set compared to
the traditional method [37]. To adjust the model for linear
programming techniques, zi is used as a new binary variable
that satisfies the following two constraints:

xi þ yi þ zi ≤ 2; and 0 ≤ xi þ y i − zi :

It is clear that zi ¼ 1 is the best value if xi and yi are
different, and zi = 0 is the best value if xi and y i are similar.
Equation (3) describes the final developed model to generate
the two most different MDSets by a suitable ILP solver:

Objective : max
Xn

j¼1

zj

Subject to :

Xn

j¼1

Aijx j ≥ 1; i ¼ 1; 2; :::n:

Xn

j¼1

Aijy j ≥ 1; i ¼ 1; 2; :::n:

Xn

j¼1

xj ¼ │MDSet│

Xn

j¼1
yj ¼ │MDSet│

xi þ yi þ zi ≤ 2 i¼ 1; 2;…; n;
xi þ yi − zi ≥ 0 i¼ 1; 2;…;n;
xi ∈ f0; 1g i¼ 1; 2;…; n;
yi ∈ f0; 1g i¼ 1; 2;…;n;
zi ∈ f0; 1g i¼ 1; 2;…; n:

ð3Þ

Algorithm 2 introduces a pseudo code that describes
the steps used to translate the proposed model in
Equation (3).

Algorithm 2 2MD‐MDSets model
1. Initialisation:

1.1. Read the number of nodes n
and the data file.
1.2. Create the adjacency matrix An�n:

2. Call Algorithm 1 to find the MDSet M and
compute its size jM j:
3. Build the model as described in
Equation (3):

3.1. Set BigC ¼ ½O1�n O1�n J1�n �

3.2. Set BigA ¼

2

6
6
6
6
6
4

An�n On�n On�n
On�n An�n On�n
J1�n O1�n O1�n
O1�n J1�n O1�n
In�n In�n In�n
In�n In�n −In�n

3

7
7
7
7
7
5

3.3. Set BigLc ¼

2

6
6
6
6
6
4

Jn�1

Jn�1

jM j
jM j
On�1
On�1

3

7
7
7
7
7
5

and

BigUc ¼

2

6
6
6
6
6
4

nJn�1

nJn�1

jM j
jM j
2Jn�1

2Jn�1

3

7
7
7
7
7
5

3.4. Set BigLx ¼ O3n�1 and BigUx ¼ J3n�1

4. Compute the set
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BigM¼
SolverðBigC;BigA;BigLc;BigUc;BigLx;BigUxÞ:
5. Extract the MDSets M1 and M2 from BigM ;
where BigM ¼ ½M1 M2 O1�n�
6. Return the two MDSets M1 and M2:

3.3 | ITR‐MDSets model

The proposed model, then, was further extended to generate
multiple MDSets that cover all intermittent nodes in the PPI
networks. The variable x in Equation (3) was treated as an
input vector of binary values in which xi ¼ 1 if the node i
belongs to any resultant MDSet and xi ¼ 0 otherwise. The
obtained model can be expressed as in Equation (4).
The implementation of the model can be iterated to
generate a new MDSet. The value of x is updated in
every iteration. This loop is stopped when there is no
change in the vector x. As a result, the algorithm generates
multiple MDSets with maximum differences between all of
them.

Objective : max
Xn

j¼1

zj

Subject to:
Xn

j¼1
Aijyj ≥ 1; i¼ 1; 2;…n

Xn

j¼1
yj ¼ │MDSet│

yi þ zi ≤ 2 − xi; i¼ 1; 2; :::n:
yi − zi ≥ −xi; i¼ 1; 2; :::n:
xi ∈ 0; 1 i¼ 1; 2; :::n:
yi ∈ 0; 1 i¼ 1; 2; :::n:
zi ∈ 0; 1 i¼ 1; 2; :::n:

ð4Þ

Algorithm 3 introduces a pseudo code that describes the
steps using to translate the proposed model in Equation (4).

Algorithm 3 ITR‐MDSets model
1. Initialisation:

1.1. Read the number of nodes n
and the data file.
1.2. Create the adjacency matrix An�n:

2. Use Algorithm 2 to find two MDSets M1 and M2:

3. Set X ¼ O1�n; Xnew ¼ M1 [ M2 and set the
counter l¼ 3:
4. While jXnew j > 0; repeat Steps 4.1–4.8

4.1. Set X ¼ X [ Xnew :
4.2. Build the model as described in
Equation (4):
4.3. Set BigC ¼ ½O1�n J1�n �

4.4. Set BigA ¼

2

6
4

An�n On�n
J1�n O1�n
In�n In�n
In�n −In�n

3

7
5

4.5. Set BigLc ¼

2

6
6
4

Jn�1

jM1j

On�1
−XT

3

7
7
5 and

BigUc ¼

2

6
4

nJn�1

jM1j

2 − XT
Jn�1

3

7
5

4.6. Set BigLx ¼ O2n�1 and BigUx ¼ J2n�1

4.7. Compute the set BigM¼ SolverðBigC;
BigA;BigLc;BigUc;BigLx; BigUxÞ:
4.8. Extract the MDSets M1 from BigM ;
where BigM ¼ ½O1�n M1�

4.9. Set Xnew ¼ MlnX and l¼ l þ 1:
5. Return X and the multiple MDSets
M1; M2; M3; …; Mk:

Here, after finding X and the multiple MDSets,
M1; M2; M3; …; Mk; the following steps can be imple-
mented to classify all proteins in the targeted PPI network:

1. The k‐critical set ¼∩iMi; is the intersection of all MDSets
M1; M2; M3; …; Mk:

2. The ðk − 1Þ‐critical set ¼∑
i

∩
j≠i
Mj; is the set of all nodes that

exist in ðk − 1Þ MDSets.
3. The intermittent set¼[

i
Mi; is the union of all MDSets

M1; M2; M3; …; Mk:
4. The redundant set is the complement of the intermittent

set.

3.4 | URD‐MDSet model

Algorithm 4 describes the steps needed to generate the tar-
geted MDSet by avoiding some specific nodes.

Algorithm 4 URD‐MDSet model
1. Initialisation:

1.1. Read the number of nodes n
and the data file.
1.2. Create the adjacency matrix An�n:
1.3. Read X; the vector of all nodes that
will be avoided, if possible, in the
targeted MDSet.

2. Use Algorithm 1 to find the MDSet M.
3. Build the model as described in
Equation (4):

3.1. Set BigC ¼ ½O1�n J1�n �

3.2. Set BigA ¼

2

6
4

An�n On�n
J1�n O1�n
In�n In�n
In�n −In�n

3

7
5
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3.3. Set BigLc ¼

2

6
6
4

Jn�1

jM j
On�1
−XT

3

7
7
5 and

BigUc ¼

2

6
4

nJn�1

jM j
2 − XT
Jn�1

3

7
5

3.4. Set BigLx ¼ O2n�1 and BigUx ¼ J2n�1

4. Compute the set
BigM ¼ SolverðBigC;BigA;BigLc;BigUc;
BigLx;BigUxÞ:

5. Extract the MDSets M1 from BigM ; where
BigM ¼ ½O1�n M1�

6. Return the MDSet M1:

4 | DATA SETS

In this section, a set of PPI networks used through numerical
experiments to reflect the efficiency of the proposed models is
presented. Six data sets are used from the High‐quality Inter-
actomes (HINT) database version (3/10/2018), where these
data sets have been collected from several interactome re-
sources [38]. In addition, two data sets from the BioPlex
(biophysical interactions of ORFeome‐based complexes)
network [39] were used.

4.1 | Human protein data sets

For human PPI networks, three different data sets obtained
from H. sapiens in the HINT database (version 3/10/2018)
[38] were considered. The first one of these data sets contains
63,684 high‐quality binary protein (HHQBP) interactions be-
tween 12,815 human proteins. The second data set contains
116,456 high‐quality co‐complex protein (HHQCP) in-
teractions between 12,352 human proteins. However, a
network of 180,140 combined protein (HCP) interactions
between 15,744 human proteins is considered as the third data
set.

4.2 | Yeast protein data sets

Three different data sets of the yeast interacting [40] protein
networks were considered. These data sets were obtained from
S. cerevisiae in the HINT database (version 3/10/2018) [38].
The first data set under consideration contains 23,202 high‐
quality binary protein (YHQBP) interactions between 5313
yeast proteins. The second data set contains 68,779 high‐
quality co‐complex protein (YHQCP) interactions between
5246 yeast proteins. The last data set consists of 91,981
combined protein (YCP) interactions between 5959 yeast
proteins.

4.3 | Bioplex protein interaction network

Two versions of the protein interaction data set of the BioPlex
network [39] were used. The first version, BIOPLEX1, had
23,744 proteins interactions between 7637 proteins, and the
second, BIOPLEX2, had 56,553 protein interactions between
10,883 proteins. Moreover, these two data sets with 80,297
protein interactions between 11,540 proteins were also com-
bined as (BIOPLEX12).

4.4 | Liver proteins data set

The 28,553 protein interactions between 7148 liver tissue
proteins (LTP) collected in [11] were used.

4.5 | Enrichment analysis data sets

The following data sets for the biological functional enrich-
ment analysis were used:

� Essential genes (EGs) data sets: 1110 yeast essential genes
and 2032 human essential genes from the DEG database,
which collects data about essential genes from the literature,
were utilized [41].

� kinase genes (KGs) data sets: 538 human kinases reported
by Cheng et al. [40] and yeast 127 kinases from the Yeast
Kinase Interaction Database were used [42].

� Transaction factors (TFs) data sets: 1214 human transaction
factors reported by Vaquerizas et al. [43] and 268 yeast tran-
scription factors from the YeastTract database were used [44].

� Drug‐target genes (DGs) and pharmaceutics genes (PHGs)
data sets: the DrugBank database was utilized to obtain 1214
and 568 genes for drug and pharmaceutics genes, respec-
tively [45].

� Housekeeping genes (HKGs) data set: the Human Protein
Atlas Database (available on the portal http://www.protei-
natlas.org) was used to obtain 3804 housekeeping genes in
the human network [9].

5 | RESULTS AND DISCUSSION

In this section, the implementation and performance of the
proposed algorithms for data sets under consideration are
discussed. All numerical results were implemented on a system
with an Intel (R) Core (MT) i5 processor of 2.53 GHz and
4.0 GB Ram.

5.1 | Results of the Basic‐MDSet model

The Basic‐MDSet model in Equation (1) was applied on the
human PPI networks from the HINT database version (3/10/
2018) [38]; HHQBP, HHQCP, and HCP. Table 1 shows the
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results of this experiment compared with the results of Wuchty
[8] for an old version of the HINT database. It was found that
despite the current networks being larger than the previous
networks by about 40%, the ratio of the MDSet's size (%
MDSet) to the number of proteins in each network was less
than 20%. In the HHQCP and HCP data sets, the ratio %
MDSet was reduced to around 13% for the new version [35].
This result may be because of the increasing number of in-
teractions. Table 2 shows the same results and analysis for the
yeast, BioPlex and liver data sets, which was explained in
Section 4. The results in Tables 1 and 2 indicate that the size of
the MDSet is less than 20% of the number of proteins for all
data sets, even with the increase in the number of proteins and
interactions.

5.2 | Importance of the 2MD‐MDSets model

To show the efficiency of the proposed 2MD‐MDSets model
in Equation (3), its results were compared with the Basic‐
MDSet model in Equation (1) using two different solvers:
MOSEK and GUROPI (Guropi Inc. Houston, TX, USA).
Each solver generated one MDSet for the HHQBP data set,
where the resulting MDSets intersected for 2,144 proteins.
Similarly, two MDSets were generated using MOSEK and
GUROPI solvers for the YHQBP data set, where these
MDSets intersected for 788 proteins. Figure 4, drawn with the
tool in [46], shows these results compared with the results of
the 2MD‐MDSets model in Equation (3) for the same data
sets. The number of overlapped proteins using the proposed
model reduced from 2144 to 1316 in HHQBP data sets and
from 788 to 371 in YHQBP data sets. The 2MD‐MDSets
model was applied to several PPI networks, as given in

Table 3. The proposed model could minimise the overlapping
proteins, which may represent the critical set of each network.
To validate the results of the 2MD‐MDSets model, the exact
critical set of each network was evaluated with the traditional
method [20], which can be concluded as follows:

1. Use the Basic‐MDSet model in Equation (1) to find the
MDSet of the network and evaluate its size, m¼ jMDSetj:

2. Repeat the following steps for every xv ∈ MDSet:
2.1. Correct the model in Equation (1) by adding the new

constraint xv ¼ 0:
2.2. Solve the new model to find a new MDSet.
2.3. If |MDSet | >m; then add xv to the critical set.

3. Return with the critical set of proteins.

TABLE 2 Statistics of applying the Basic‐MDSet model for PPI networks under consideration; the HINT, BioPlex and Liver data sets

Hint yeast proteins Bioplex human proteins

Liver proteinsYHQBP YHQCP YCP BPLEX1 BPLEX2 BPLEX12

No. of proteins 5313 5246 5959 7637 10,883 11,540 7148

No. of protein interactions 23,202 68,779 91,981 23,744 56,553 80,297 28,553

jMDSetj 921 287 431 1196 1727 1767 1250

%MDSet 17.30% 5.50% 7.20% 15.66% 15.87% 15.31% 17.49%

F I GURE 4 The overlaps between the MDSets generated by the
MOSEK and GUROPI solvers compared with the overlaps between the
MDSets generated by the 2MD‐MDSets model for the HHQBP and
YHQBP data sets. The tool in [46] has been used to draw this figure

TABLE 1 Results of the Basic‐MDSet
model compared with the results in Wuchty [8]
for human PPI networks from the HINT
database

Hint human proteins wuchty [8]
Hint human proteins extended
version [38]

HHQBP HHQCP HCP HHQBP HHQCP HCP

No. of proteins 8073 3089 8,495 12,815 12,352 15,744

No. of protein interactions 24,306 6,768 28,627 63,684 116,456 180,140

jMDSetj 1517 704 1509 2398 1699 2081

%MDSet 18.80% 22.80% 17.80% 18.70% 13.80% 13.20%

Abbreviations: HCP, combined protein; HHQBP, high‐quality binary protein; HHQCP, high‐quality co‐complex protein;
PPI, protein–protein interaction.
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From Table 3, it can be concluded that the overlap of the
resulting MDSets using the 2MD‐MDSets model in Algo-
rithm 2, which was called on only once, is almost equal to the
size of the critical set evaluated by calling on the Basic‐MDSet
model hundreds/thousands of times for each data set. More-
over, it is expected that the extra proteins in the overlap be-
tween the resultant MDSets are important and may represent
another important set in the PPI networks.

Ishitsuka et al. [47] used pre‐processing steps, before
calling on the algorithm, to identify some of the critical nodes
based on the topological structure of the PPI network. Iden-
tifying this set of nodes and marking it as critical nodes helps
reduce the number of solver calls. Moreover, they stated that
their algorithm reduces the computational time by about 180
times compared to the traditional method of finding the critical
set of PPI networks. In Table 3, the basic model takes ∼100
seconds to find an MDSet of 2398 proteins in the HHQBP
network. Therefore, traditional methods [20] call on the solver
2398 times to find the critical set, which equates to
∼2398� 100¼ 239; 800 seconds. However, one call of Al-
gorithm 2 with the 2MDSet model only takes ∼1020 seconds.
Therefore, the proposed 2MDSet model determines the critical
set up to be 235 times faster than the traditional methods, even
without any pre‐processing steps.

5.3 | Interpretation of ITR‐MDSets results

In this subsection, the focus is on the importance of the
proposed ITR‐MDSets model and the interpretation of its
output, specifically finding the critical, intermittent, and
redundant sets of the PPI network very quickly compared to
traditional methods discussed in the previous subsection. The
ITR‐MDSets model starts by combining the two solutions, x
and y; obtained from the 2MD‐MDSets model as x¼ x [ y:
Then, the algorithm generates a new MDSet, y; using the
model in Equation (4) where the differences between x (the
input) and y (the output) are maximal. These two steps will be
iterated until no new nodes could be added into x: Then, the
algorithm returns k MDSets that will be used to find the
critical, intermittent, and redundant sets according to steps
explained in Section 3.

Table 4 summarises the results of the ITR‐MDSets model
for the data sets under consideration. From Table 4, the critical

set was evaluated very fast compared with the traditional
method [20]. For example, the critical set of the HHQBP
network is evaluated using only 13 iterations compared with
2398 iterations with the traditional method [20], as explained in
the previous section.

5.4 | Usage of the URD‐MDSet model

The URD‐MDSet model in Equation (4) is designed to
generate MDSets with the maximum or minimum number of
specific nodes selected by the user. For example, this model
can be used to maximise/minimise the number of essential
genes in the resulted MDSet. Li et al. [35] discussed the need
for the computational models to predict the essential genes
from the biological network. Wuchty [8] and Zhang et al. [13]
used different techniques to evaluate the MDSet and
concluded that their solutions were enriched with several
essential genes. However, the number of essential genes in
these MDSets is unpredictable and varies according to the
algorithm used. In this experiment, the URD‐MDSet model
will be used to increase the number of essential genes, and
other important genes, in the resulting MDSets. Additionally,
the proposed model can be used to answer the famous
question "Is each MDSet enriched with essential genes?" In the
literature, to answer this question, researchers used to
randomly remove such proteins from the network and search
for the MDSet for the modified network [8]. However, the
proposed model can find the MDSet with the minimum
number of essential genes in the network. Therefore, the
proposed model can be used to answer this question efficiently
and precisely. The URD‐Model was applied to find the MDSet
with the minimum number of EGs in HHQBP and YHQBP
PPI networks.

The authors obtained MDSets with 325 and 129 genes
from the total EGs of 2032 and 1110 in HHQBP and YHQBP
data sets, respectively. These MDSets are unenriched with EGs
as will be explained in the next subsection. The cell needs all
the essential genes [41, 48], kinase genes [40, 42], and tran-
scription factor proteins [43] in signal transaction pathways. In
this experiment, the URD‐MDSets model was constrained to
maximise the number of EGs, KGs, TFs, DGs, and/or PHGs
[45]. The results of the experiment are shown in Table 5. These
results prove that the generated MDSet can be constrained as

TABLE 3 Results of the 2MD‐MDSets model and the intersections between the resulting MDSets along with the critical set using the Basic‐MDSets
model for each PPI network under study

Hint human proteins Hint yeast proteins Bioplex human proteins

Liver proteinsHHQBP HHQCP HCP YHQBP YHQCP YCP BPLEX1 BPLEX2 BPLEX12

No. of proteins 12,815 12,352 15,744 5313 5246 5959 7637 10,883 11,540 7148

jMDSetj 2398 1699 2081 921 287 431 1196 1727 1767 1250

2MD‐MDSets overlap 1316 689 982 371 91 158 553 731 716 479

jCritical Setj 1315 670 968 364 90 154 547 716 709 476

%Critical set 10.30% 5.40% 5.50% 6.90% 1.70% 2.60% 7.2% 6.58% 6% 6.66%
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desired, rather than maximising the number of nodes with
specific features, such as degree number [13].

Table 5 shows the time and cost to increase the essential
genes in MDSet. This time consists of the execution time of
the algorithm plus the time required to manually define the
vector, x: The results showed that the proposed model
significantly increased the number of EGs in the resulting
MDSet compared to the number of EGs in MDSets generated
by the basic model in Equation (1) using the Mosek solver.
Nevertheless, the solution time for the URD‐MDSet model
increased to 10 times the solution time for the basic model in
Equation (1). These results are consistent with the trade‐off
between the significance of the results and the computational
cost [35].

5.5 | Functional enrichment analysis

For the enrichment analysis for the resulting MDSets, Fisher
exact test in R language was used [49]. In this test, the size of
the PPI network and the size of the resulting MDSet were
input along with the number of the important genes under
consideration (ESs or KGs, etc.) and the number of these
genes in the resulting MDSet. The output of the test is a p‐
value, where p − value < 0:05 means that the MDSet is
enriched with the important genes.

Table 6 shows the results of the EGs' enrichment analysis
for the first five MDSets generated by the ITR‐MDSets
model for the HHQBP and YHQBP data sets. Moreover,
for each data set, the URD‐MDSets is used to generate one
MDSet with the minimum number of EGs and one MDSet
with the maximum number of EGs. Table 7 shows the
enrichment analysis for all MDSets, generated by the URD‐
Model in Table 5. Although most of the MDSets are
enriched with EGs, the PPI network may contain unenriched
MDSets.

To verify that each MDSet has different biological func-
tions, the DAVID tool [50] was used to annotate four
MDSets: “Mosek”, the MDSet for the basic model, “Min
EGS”, the MDSet with min number of essential genes (in
Table 6), and “MDSet1” and “MDSet2” generated by the
2MD‐MDSets model (in Figure 4). Only functional categories
with UP_KEYWORDS and p − value < 0:05 (EASE score
<0.05) were used. It was found that the majority of biological
function categories are shared among these MDSets as in
Figure 5(a). Additionally, three MDSets were found, each with
some unique functional categories, in metabolism, RNA
processing, translational regulations [Figure 5(b)]. For
example, MDSet2 is enriched with diabetes mellitus with
p − value < 0:0063. Moreover, it was found that each set has
different processes in metabolism, RNA processing, trans-
lation regulations.

TABLE 4 Results of the ITR‐MDSets model and evaluation of the critical, intermittent, and redundant sets for each data set

Hint human proteins Hint yeast proteins Bioplex human proteins

Liver proteinsHHQBP HHQCP HCP YHQBP YHQCP YCP BPLEX1 BPLEX2 BPLEX12

No. of proteins 12,815 12,352 15,744 5313 5246 5959 7637 10,883 11,540 7148

jMDSetj 2398 1699 2081 921 287 431 1196 1727 1767 1250

No. of MDSets 13 45 25 20 26 72 33 27 28 24

jCritical Setj 1315 670 968 364 90 154 547 716 709 476

jIntermittentSetj 2591 2779 2986 1413 616 868 5477 7555 8058 4792

jRedundantSetj 8909 8903 11,790 3536 4540 4937 2160 3328 3482 2356

TABLE 5 Results of the URD‐MDSets model with different constraints to maximise important genes like EGs, KGs, TFs, DGs, and PHGs on the
HHQBP PPI network

Constrained

No. of proteins

Time in seconds

Dominating genes Target genes

EGs.2058 KGs.464 TFs.1213 ALL.3191 DGs.1699 PHGs.568

Max EGs 640 108 222 801 470 167 1095.53

Max kinase 504 142 209 705 479 162 1037.70

Max TFs 509 106 293 742 455 160 1015.49

Max drug 517 125 202 702 587 202 1012.78

Max pharm. 513 113 212 691 503 215 1045.32

Max kinase + TFs + EGs 617 132 270 859 478 162 1026.56

Basic model (Mosek) 501 107 210 675 469 165 103.15
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5.6 | Analysis of the ðk − 1Þ‐critical set

The ITR‐MDSets model returns k MDSets (13 MDSets for
the HHQBP data set and 20 MDSets for the YHQBP
network). The critical set is the intersection among all these k
MDSets, so the critical set was defined as the k‐critical set.
Figure 6(a) shows the first five of 13 generated MDSets in the
HHQBP data set, and Figure 6(b) shows the first five of 20
MDSets in the YHQBP data set (Table 6). Moreover, the

proteins were grouped depending on their presence in the
number of generated MDSets that they comprised. Then,
these numbers were normalised using the size of the k‐critical
set and the number of the generated MDSets. It was found
that regardless of the PPI network, the same trend was ob-
tained between the ratios of criticalness to the ratio of pro-
teins that have the same criticalness as shown in Figure 6(c).
This curve is like the bathtub curve that is used in the
reliability theorem.

TABLE 6 Enrichment analysis using Fisher exact test of some MDSets generated for HHQBP and YHQBP PPI networks

MDSet

HHQBP data set YHQBP data set

|MDSet| No. EGs p‐Value

EGs in
the k‐
critical set

EGs in
the ðk − 1Þ‐
critical set |MDSet| No. EGs p‐Value

EGs in
the k‐
critical set

EGs in
the ðk − 1Þ‐
critical set

1 2398 458 5.7E‐06 240 95 921 185 2.5E‐01 93 35

2 2398 467 4.2E‐07 240 70 921 208 3.1E‐03 93 47

3 2398 524 6.6E‐17 240 165 921 215 3.9E‐04 93 81

4 2398 504 6.0E‐13 240 165 921 222 3.5E‐05 93 81

5 2398 508 1.1E‐13 240 165 921 217 2.1E‐04 93 80

Min EGs 2398 330 1.0 E+00 240 20 921 129 1.0 E+00 93 17

Max EGs 2398 640 1.9E‐50 240 165 921 279 2. 0E‐16 93 81

TABLE 7 Enrichment analysis using
Fisher exact test of the generated MDSets of
proteins among EGs, KGs, TFs, DGs, and
PHGs on the HHQBP PPI network

Constrained

р‐value

Dominating genes Target genes

EGs.2058 KGs.464 TFs. 1213 ALL.3191 DGs.1699 PHGs.568

Max EGs 1.90E‐50 7.12E‐03 6.62E‐01 1.29E‐25 1.47E‐22 1.79E‐10

Max kinase 5.97E‐13 2.19E‐10 9.25E‐01 1.44E‐08 5.51E‐25 3.87E‐09

Max TFs 6.89E‐14 1.32E‐02 4.16E‐07 5.52E‐14 8.60E‐19 1.24E‐08

Max drug 1.85E‐15 6.08E‐06 9.77E‐01 3.41E‐08 1.81E‐63 1.95E‐22

Max pharm. 1.16E‐14 1.25E‐03 8.85E‐01 6.70E‐07 4.69E‐32 5.34E‐28

Max kinase + TFs + EGs 2.13E‐42 1.31E‐07 6.17E‐04 1.39E‐40 1.04E‐24 3.87E‐09

Mosek solution 2.10E‐12 9.74E‐03 9.13E‐01 2.99E‐05 2.69E‐22 6.28E‐10

F I GURE 5 Comparison of shared biological functions categories (from DAVID tool [50]) for four MDSets: Mosek MDSet, Min EGs MDSet, MDSet1, and
MDSet2 from the 2MD‐MDSets model. (a) The number of shared functional categories among these MDSets. (b) The unique functional categories in each
MDSet with p − value < 0:05
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The critical set had a great interest in controllability [47].
Wuchty et al. [12] found that in PPI networks, the k‐critical
proteins (kinase and transcription factors) play an important
role in phosphorylation and regulatory events in their in-
teractions. Despite this, important genes that do not present
in the k‐critical set may be neglected, so the concept of
criticalness was extended to other degrees of criticalness.
Figures 6(a, b) show that there is a set of proteins that ap-
pears in ðk − 1Þ MDSets for each data set. Due to the large
number of EGs in this set compared to the k‐critical set, this
set is called the ðk − 1Þ‐critical set. Table 6 shows some
MDSets generated by the ITR‐MDSets and the URD‐MDSets
models for the HHQBP and YHQBP data sets along with the
number of EGs in k‐ and ðk − 1Þ‐critical sets. To show the
biological function of the ðk − 1Þ‐critical proteins, the number
of EGs, KGs, and TFs proteins involved in the ðk − 1Þ‐
critical set were counted (Table 8). It was found that the
ðk − 1Þ‐critical set is as important as the k‐critical set. Thus,
the authors believe that the ðk − 1Þ‐critical set analysis is as
important as the critical set analysis and can be used for other
networks or graph types.

5.7 | Comparison with community detection
methods

To validate types of proteins in the generated critical sets, they
were compared with subnetworks extracted by the HotNet2
Algorithm [51]. HotNet2 integrated the PPI network with
mutation information for 11,500 proteins in 12 cancer types
from the TCGA project. The authors identified and annotated
15 significantly mutated subnetworks (Supplementary Table 5
in HotNet2 [51]). Figure 7 shows a comparison of the reported
sets with HotNet2 subnetworks proteins and the basic model
solution in Equation (1) using the Mosek solver, in the last
column. It is noticeable that each protein present in the Mosek
solution exists in one of the authors' critical sets. Nevertheless,

several proteins appeared in the authors' critical sets but not in
the Mosek solution. Additionally, some proteins in the sub-
networks are not in existence at the HHQBP PPI network.

Each subnetwork in HotNet2 should contain one or more
proteins that can dominate the other proteins in the subnet-
work. The TP53 subnetwork has the highest covering score of
68% in HotNet2 and contains 45 subunits (Supplementary
Table 8 in HotNet2 [51]). There are 18 proteins from this
subnetwork in the authors' critical set and there are 23 proteins
in the redundant set (the first column in red). Moreover, the
authors found five proteins in the ðk − 1Þ‐critical set and four
proteins in the k‐critical set. PTEN protein (the second
mutated protein in TP53 subnetwork) was reported in the
ðk − 12Þ‐critical set, which means that this protein is present in
a small number of MDSets. Moreover, PTEN protein was not
found in the MDSet generated by Mosek. The second
important subnetwork is the PI3K/RAS subnetwork (with a
covering score of 20%), where PIK3CA and KRAS proteins
were present in the k‐ and ðk − 1Þ‐critical sets. The third
subnetwork is the NOTCH1 subnetwork (with a covering
score of 33%), where three proteins were present in the
ðk − 1Þ‐critical set, and two proteins were present in the
ðk − 12Þ‐critical set. Additionally, it was found that the
Cohesin complex subnetwork has many proteins in the
ðk − 12Þ‐ and ðk − 13Þ‐critical sets. Finally, the BAP1,
condensing and MHC class I subnetworks are dominated by
proteins in the k‐critical set.

From the covering concept of MDSets, proteins in the
redundant set mean that these proteins do not belong to any
generated MDSets. Figure 7 shows that the SWI/SNF and
ASCOM subnetworks have only proteins in the redundant set,
while no proteins in the authors' MDSets can dominate these
complexes. Therefore, the authors extended their search to
discover which proteins can dominate these complexes. They
found that the protein SMARCD1 dominates the SWI/SNF
complex, where the SMARCD1 protein was reported as a
subunit in the SWI/SNF subnetwork. Additionally, they found

F I GURE 6 The multiple MDSets in HHQBP and YHQBP PPI networks using the ITR‐MDSets model. (a, b) Venn diagrams that show the overlap
between the first five MDSets of each data set. (c) Bathtub curve that represents the trend (size and criticalness degree) of the grouped critical sets extracted from
the generated MDSets using MOIA. The tool in [46] was used to draw figures (a) and (b)
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that the protein NCOA6 dominates the ASCOM complexes.
The protein NCOA6 has been reported to bind to the
ASCOM complex [51]. Both SMARCD1 and NCOA6 proteins
were present in the authors' critical sets and were not reported
in the SWI/SNF and ASCOM subnetworks. Finally, for core‐
binding factors for CLASP and CLIP proteins, it was found
that each protein is connected to one or more proteins in the
authors' critical sets.

To the best of the authors' knowledge, the MDSet was not
used to predict the complex subunits or subnetworks from PPI

network [52]. However, this analysis shows that the authors'
MOIA method can be used with community detection
methods to assist in annotating the predicted complexes.

6 | CONCLUSIONS

Herein, the authors have introduced a new framework called
MOIA, in which three models have been modified to generate
multiple MDSets with minimum intersections for PPI

TABLE 8 Comparison between k‐ and
ðk – 1Þ‐critical sets extracted from HHQBP data set
in the number of EGs [41], KGs [40], TFs [43], DGs
[45], PHGs [45], and HKGs [9] (The Human Protein
Atlas database) and comparison between k and
ðk – 1Þ‐critical sets extracted from YHQBP data set
in the EGs [41], KGs [42], and TFs [44]

Critical set No. of proteins EGs KGs TFs DGs PHGs HKGs

HHQBP k‐Critical 1315 279 61 106 294 97 695

(k − 1)‐Critical 695 166 33 73 115 45 405

YHQBP k‐Critical 364 93 9 9 ‐ ‐ ‐

(k − 1)‐Critical 344 82 9 13 ‐ ‐ ‐

Abbreviations: DGs, Drug‐target genes; EGs, Essential genes; HHQBP, high‐quality binary protein; HKGs,
Housekeeping genes; KGs, Kinase genes; PHGs, pharmaceutics genes; TFs, Transaction Factors; YHQBP, high‐quality
co‐complex protein.

F I GURE 7 Comparison of detected subnetworks from HotNet2 and our critical sets. The blue square means that the protein is present in one or more of
the MDSets. The red square means that the protein is in the redundant set, that is, it is not present in any MDSet
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networks. Using MOIA models, all PPI network nodes can be
classified as critical, intermittent, and redundant nodes using a
small number of iterations by the proposed algorithm. For
example, the authors' models classified all nodes of the
HHQBP data set using only 13 iterations (Table 4), however,
traditional methods need thousands of iterations to classify
these nodes [12, 20, 47]. Additionally, MOIA models allowed
the authors to generate user‐defined MDSets with a maximum
(or minimum) number of essential genes, protein kinases, and
transcription factors. Moreover, the MOIA models were able
to generate some MDSets that were not enriched with the
essential genes. Thus, using the proposed models, the gener-
ated MDSet can be restricted, instead of increasing the number
of nodes with specific features, such as the node degrees [13].

The authors also extended the concept of the nodes criti-
calness to identify ðk − 1Þ; ðk − 2Þ;…; 1; 0‐critical sets. It was
found that the relationship between degrees of criticalness and
protein ratios in each group follows the bathtub curve in reli-
ability theory, regardless of the type of PPI network [Figure 6(c)].
The ðk − 1Þ‐critical set contains many essential genes, kinases,
transcriptions factors, and drug targets, similar to the k‐critical
set. Moreover, the ðk − 1Þ‐critical set represents a new analysis
of PPI networks and can be used to predict new drug targets to
be integrated with community detection methods. Finally, the
proposed MOIA models can be applied to other network types
and other areas of network analyses.
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