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Distinct partitioning of ALS 
associated TDP-43, FUS and SOD1 
mutants into cellular inclusions
Natalie E. Farrawell1,2, Isabella A. Lambert-Smith1,2, Sadaf T. Warraich4, Ian P. Blair4, 
Darren N. Saunders5,6, Danny M. Hatters3 & Justin J. Yerbury1,2

Amyotrophic lateral sclerosis is a rapidly progressing neurodegenerative disease associated with 
protein misfolding and aggregation. Most cases are characterized by TDP-43 positive inclusions, 
while a minority of familial ALS cases are instead FUS and SOD1 positive respectively. Cells can 
generate inclusions of variable type including previously characterized aggresomes, IPOD or JUNQ 
structures depending on the misfolded protein. SOD1 invariably forms JUNQ inclusions but it remains 
unclear whether other ALS protein aggregates arise as one of these previously described inclusion 
types or form unique structures. Here we show that FUS variably partitioned to IPOD, JUNQ or 
alternate structures, contain a mobile fraction, were not microtubule dependent and initially did not 
contain ubiquitin. TDP-43 inclusions formed in a microtubule independent manner, did not contain 
a mobile fraction but variably colocalized to JUNQ inclusions and another alternate structure. 
We conclude that the RNA binding proteins TDP-43 and FUS do not consistently fit the currently 
characterised inclusion models suggesting that cells have a larger repertoire for generating inclusions 
than currently thought, and imply that toxicity in ALS does not stem from a particular aggregation 
process or aggregate structure.

Amyotrophic Lateral Sclerosis (ALS) is characterised by the progressive and selective death of upper 
and lower motor neurones in the motor cortex and spinal cord. This leads to loss of muscle control, 
muscle atrophy and invariably death, generally within 3–5 years of diagnosis. The cause(s) of most cases 
of ALS (sporadic ALS; sALS) remain undefined, however, approximately 5–10% of cases are inherited 
(familial ALS; fALS). Mutations in genes now known to cause ALS include SOD11, FUS/TLS2,3, VAPB4, 
TARDBP5,6, OPTN7, VCP8, SQSTM19, UBQLN210, PFN111, MATR312 and hexanucleotide expansions in 
C9ORF7213.

In common with other neurodegenerative diseases such as Alzheimer’s disease, Creutzfeldt-Jakob 
disease, Parkinson’s disease, Huntington’s disease14, there is growing evidence that a correlation exists 
between protein aggregate formation and neuronal loss in ALS spinal cord15–19. Indeed, the progression 
of disease has been proposed to be due to propagation of protein misfolding and aggregation20. Inclusions 
associated with neurodegenerative disease are made up of insoluble proteinaceous material that consist 
mainly of one main constituent14, but also are composed of a variety of proteins, including molecular 
chaperones21,22 and the proteasome23. It is unclear how these additional components become part of the 
inclusions, but at least some may be there due to the functional interaction, such as chaperone and deg-
radation machinery, with misfolded proteins in the aggregates24. In Huntington’s disease, huntingtin with 
expanded poly glutamine repeats (polyQ) predominates in neuronal inclusions. In Parkinson’s disease, 
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inclusions known as Lewy bodies are thought to invariably consist mainly of α -synuclein. Ubiquitin 
positive round and skein-like inclusions in most cases of ALS are immunoreactive for TDP-4325,26, the 
exceptions are SOD1 and FUS familial cases of ALS which are associated with SOD1 and FUS positive 
inclusions respectively2,3,27.

More generally, previous work has identified common structures created during aggregation of 
a range of proteins, such as soluble oligomeric aggregates, that can be toxic when applied to cells28. 
However, in ALS pathology it remains unclear if the inclusions, or other aggregate form, are themselves 
toxic or if they are a symptom of proteotoxicity, reflecting a cellular response/adaptation to misfolded 
protein. Within the cellular milieu, protein aggregates or inclusions can be generated by several distinct 
pathways. Originally, cell driven, microtubule dependant juxtanuclear inclusions of CFTR ensheathed 
by vimentin were discovered and termed aggresomes29. These may be related to the juxtanuclear quality 
control compartment (referred to as JUNQ30) later observed in yeast and mammalian cells. JUNQ-like 
inclusions are enriched in ubiquitylated proteins, proteasome subunits, chaperones such as Hsp70 and 
have a mobile fraction30,31. In addition, an insoluble protein deposit (IPOD) compartment has been 
observed in yeast and mammalian cells and is a dense, immobile compartment consisting of insoluble 
protein aggregates that (at least initially) are not ubiquitinated30,32. While postmortem studies have iden-
tified ALS inclusions that are either TDP-43, FUS or SOD1 immunoreactive, a thorough characterisation 
and comparison of how these inclusions arise has not been performed. While misfolded mutant SOD1 
is consistently associated with JUNQ-like inclusions as reported previously30,33, we now report for the 
first time that while FUS and TDP-43 can form iPOD and/or JUNQ-like inclusions respectively they can 
also partition to inclusions that are distinct from SOD1 inclusions, distinct from each other, and from 
other described inclusions types. These data may suggest that cells have a broader array of pathways for 
generating proteinacious inclusions than originally thought, and imply that toxicity in ALS does not stem 
from a particular aggregation process or aggregate structure.

Results
Distinct partitioning of ALS associated mutant SOD1 from TDP-43wt aggregates. Given 
that many ALS inclusions contain TDP-43wt, we sought to examine whether overexpression of mutant 
TDP-43, FUS or SOD1 would induce TDP-43 aggregation and if so whether the aggregates accumulate 
in distinct cellular compartments. We used TDP-43wt-tomato34, which under basal conditions remains 
predominantly in the nucleus, as a reporter for TDP-43 recruitment into aggregates. Aggregated TDP-
43 has previously been shown to recruit TDP-43wt into cytoplasmic inclusions35. Consistent with this, 
we observe that co-expression of TDP-43M337V-GFP and TDP-43wt-tomato produces cytosolic inclusions 
(defined as fluorescent foci >  2 μ m) positive for both mutant and TDP-43wt in approximately 88% of 
cells expressing both constructs that contain inclusions (Fig. 1A,D; white arrow heads). However, while 
the bulk of TDP-43M337V is retained in the cytosol in inclusions, co-localization of TDP-43wt with these 
inclusions did not always deplete the nucleus of TDP-43wt. Indeed, in some instances inclusion formation 
of TDP-43M337V did not recruit TDP-43wt (Fig.1A, white arrows).

Although FUS can be found associated with ubiquitin positive inclusions in sALS36, FUS positive 
inclusions in mutant FUS fALS cases are not TDP-43 positive37. In addition, it has been suggested 
that FUS and TDP-43 may have different aggregation pathways in cells38. In the current study, expres-
sion of FUSR495X -GFP lead to inclusions that when co-expressed with TDP-43wt-tomato resulted in 
co-aggregation of mutant FUS and TDP-43wt (Fig.  1B,C, white arrow heads; ~ 42% of cells containing 
inclusions of FUSR495X and TDP-43wt). This suggests that at least in some cases, and under the conditions 
used here, FUS recruits TDP-43 to the same type of aggregates in neuron-like cells. Similar to expression 
of mutant TDP-43, not all FUSR495X inclusions recruited TDP-43wt (Fig. 1B, white arrows).

In sporadic ALS the co-localization of SOD1 with TDP-43 positive inclusions is rare, and SOD1 fALS 
cases are characterized by inclusions positive for SOD1 but negative for TDP-4339. Consistent with these 
data, our cell model of overexpression of SOD1A4V rarely resulted in the aggregation of both SOD1A4V 
and TDP-43wt (Fig.  1C; 1 occurrence in every 140 cells containing SOD1). However, in the event that 
TDP-43 aggregation occurred in the presence of SOD1A4V aggregates ~ 25% of these inclusions colocal-
ized. Notably, there was a significant difference between the proportion of cells containing colocalization 
of TDP-43wt in cells containing aggregates of TDP-43M337V, FUSR495X, SOD1A4V and TDP-43wt (z-test; 
n =  73, 165, 79 respectively; p <  0.01) suggesting different mechanisms of aggregation in each case.

Given the predominant co-aggregation of mutant TDP-43 and FUS but not SOD1 with TDP-43wt, we 
examined the potential role of RNA in the construction of these inclusions. Firstly, we used actinomycin 
D to supress RNA synthesis (Fig. S1C) to determine if reducing overall RNA levels would alter inclusion 
formation. Treatment of cells with actinomycin D overnight did not significantly change the number of 
inclusions formed in cells expressing TDP-43M337V, FUSR495X or SOD1A4V (Fig. S1). Next we lysed cells 
containing inclusions and then treated lysates with RNase. We reasoned that if TDP-43 and FUS were 
bound to inclusions at least partly via interactions with RNA then treatment would disrupt inclusions. 
In the absence of RNase inclusions were trapped in our filter trap assay (Fig. S1D,E). Similar levels of 
TDP-43M337V, FUSR495X, and SOD1A4V were found trapped regardless of RNase treatment (Fig. S1D,E), 
suggesting inclusion formation was independent of RNA.
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Microtubule disruption affects SOD1 inclusion formation but not TDP-43 and FUS. Previous 
work indicates that microtubule disruption promotes TDP-43 inclusions40 and halts the formation of 
a very specific FUS inclusion type formed by the 1–359 FUS fragment41. Similarly, aggresomes, IPOD 
and JUNQ structures are suppressed when microtubules are disrupted29,30. To compare the effects of 
destabilization of microtubules on ALS inclusions we treated NSC-34 cells transfected with mutant FUS, 
TDP-43 or SOD1 fused to GFP with microtubule destabilizer nocodazole. We observed large cytoplasmic 
inclusions that are cloud or sponge-like in appearance (referred to as conglomerate in ALS pathology) 
in approximately 15% of SOD1A4V -GFP transfected cells (Fig.  2A,B) but after nocodazole treatment 
this was significantly reduced (p <  0.01; Student’s t-test) to fewer than 5% of transfected cells had large 
inclusions. The remaining cells did not appear to have smaller granular foci as observed in other aggre-
gating systems such as occurs in the Htt42 model but remained in a diffuse pattern of fluorescence. This 
is consistent with previous observations of mutant SOD1 forming JUNQ-like aggresomes that are micro-
tubule dependent43. In contrast, NSC-34 cells transfected with either TDP-43M337V or FUSR495X showed no 
significant difference in percentage of inclusions present regardless of nocodazole treatment (Fig. 2A,B). 
This suggests that neither FUS nor TDP-43 aggregate in a manner consistent with aggresomes, IPOD or 
JUNQ structures. However, it must be noted that although there is evidence that IPOD–like inclusions 
require intact microtubules to aggregate, evidence also exists to show that polyQ-104 protein aggregates 
similarly in the presence or absence of nocodazole44. To complement image analysis we also performed 
filter trap assays to examine any difference in total trappable aggregated protein under the same condi-
tions. We found that although the number of SOD1 inclusions decreased upon nocodazole treatment 
(Fig. 2B, p <  0.05; Student’s t-test), total aggregation measured by filter trap did not (Fig. 2C). Similarly, 

Figure 1. Aggregated mutant TDP-43 and FUS recruit TDP-43wt. NSC-34 cells were transiently 
transfected with TDP-43wt-tomato and examined by confocal microscopy after 48 hours. (A) Mutant TDP-
43M337V-GFP coexpressed with TDP-43wt-tomato. (B) Mutant FUSR495X co-expressed with TDP-43wt-tomato. 
(C) SOD1A4V co-transfected with TDP-43wt tomato. White arrow heads indicate areas of colocalization of 
GFP and tomato tagged protein. White arrows indicate distinct inclusion structures containing one tagged 
protein only. (D) Proportion of cells with aggregates where both mutant TDP-43, FUS and SOD1 colocalize 
with TDP-43wt. Data is combined from 3 independent experiments, Z-tests were used to compare differences 
in proportions **p <  0.01, ***p <  0.001.
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FUS aggregation did not change after nocodazole treatment. In contrast, total trappable TDP-43 aggre-
gates significantly increased upon nocodazole treatment (Fig. 2C; p <  0.01; Student’s t-test).

TDP-43 aggregates are immobile. IPOD structures are thought to be predominantly immobile, 
while JUNQ and aggresome structures contain a mobile fraction31,45. Here we used fluorescence recov-
ery after photo bleaching (FRAP) to examine the mobility of molecules within ALS inclusions. Using a 
high powered laser pulse we bleached a region of GFP positive inclusions that corresponded to <  25% 
of any given inclusion and then recorded the subsequent fluorescence over 40 s. We found that there 
was minimal fluorescence recovery after bleaching TDP-43M337V inclusions (Fig. 3A,B) confirming recent 
observations46. In contrast, our data suggests that both SOD1 and FUS inclusions recover approximately 
25% of their original fluorescence, significantly more recovery than TDP-43 (Tukey’s multiple compar-
ison test; p <  0.001), suggesting a mobile fraction or porous structure within the inclusions (Fig. 3A,B). 
The recovery patterns of each of the aggregates was similar to that of the soluble protein tested in both 
wt and mutant expressing cells (Fig. S2). Therefore we cannot rule out the possibility that the protein 
species diffusing in to the inclusion are soluble species from outside of the aggregate and do not represent 
diffusion from within the aggregate itself.

FUS but not TDP-43 and SOD1 co-aggregate with IPOD substrate Huntingtinex146Q. Proteins 
that aggregate in to insoluble deposits can be recruited in to the same IPOD structure in cells regardless 
of their amino acid sequence31,33. To test whether ALS mutants would form IPOD-like structures we 
co-transfected NSC-34 cells with IPOD substrate Huntingtinex146Q fused to cherry (Httex146Q-cherry) 
and either TDP-43M337V, FUSR495X, or SOD1A4V GFP fusions. Expression of Httex146Q consistently gener-
ated a round IPOD-like inclusion in the cytoplasm or nuclei in NSC-34 cells (Fig. 4A). Consistent with 
previous work, co-expression of Httex146Q-cherry with mutant SOD1 produced inclusions of SOD1 dis-
tinct from Httex146Q-cherry inclusions in 100% of cells expressing both proteins (Fig. 4A,B)30,31,33. When 
TDP-43M337V was co-expressed with Httex146Q-cherry, inclusions were predominantly separate with no 
co-localization (Fig. 4A green arrow). However, in ~ 10% of cells containing aggregates of both TDP-43 

Figure 2. Microtubule destabilization prevents SOD1 inclusions but not TDP-43 and FUS inclusions. 
NSC-34 cells were transiently transfected with mutant TDP-43, FUS, or SOD1-GFP and after 24 hours 
incubated with or without 33 μ M nocodazole. (A) Confocal images of cells expressing GFP fusion proteins 
in the presence or absence of nocodazole. Dotted white line represents cell outline, solid white line 
represents nuclear outline obtained from transmission image (denoted N), white arrows indicate inclusions. 
(B) Quantification of the proportion of cells with inclusions in transfected cells. At least 6 fields of view 
from each timepoint were counted (minimum 30 cells per field) and scored. Experiments were performed 
3 times and bar charts represent mean and standard deviation. ** indicates p <  0.01 (C) After treatment 
with nocodazole cells were lysed and lysates were used in filter trap assays. Trapped material represents 
aggregates. Western blotting of resulting filter trap assay and quantification using imageJ. Experiments were 
performed 3 times and bar charts represent mean and standard deviation. **indicates p <  0.01.
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and Htt the TDP-43M337V aggregates were tightly packed around the dense Htt core (Fig. 4A red arrow). 
In contrast, a statistically significant increase in FUS aggregates, compared to TDP-43 and SOD1, (n =  46; 
compared to SOD1 (n =  42) and TDP-43 (n =  45); z-test, p <  0.001) co-localized to Httex146Q-cherry 
IPOD-like structures (Fig.  4A yellow arrow). The remaining FUS aggregates were found to be similar 
to those observed for TDP-43 with separate inclusions, with a small percentage of those tightly packed 
around the Httex146Q-cherry core (Fig. 4B).

Given that we had found that FUS aggregates contained a mobile fraction, and that previous work 
had demonstrated that IPOD structures contain immobile aggregates, we used FRAP to investigate if 
FUS aggregates remained mobile in IPOD structures. When a region of an inclusion that contained both 
FUS and Httex146Q-cherry was bleached we found that neither FUS nor Httex146Q-cherry fluorescence 
recovered significantly (Fig. 4C), indicating that FUS was mostly immobile in IPOD structures. Under 
the same conditions, FUS-only aggregates recovered around 40% of the bleached fluorescence (Fig. S3C) 
and Httex146Q-cherry was immobile with no fluorescence recovery (Fig. S3A). These results indicate a 
significant decrease in recovery of FUS fluorescence in the presence of Htt aggregates (Fig. 4C; p <  0.001; 
Student’s t-test). In the cases where colocalization of Htt and FUS occurred, we observed a pattern of 
fluorescence in which ~ 80% of total FUS fluorescence and ~ 90% of total Htt was consistently associated 
with the dual labelled inclusions (Fig. S4A).

TDP-43 and FUS variably co-aggregate with SOD1A4V JUNQ. SOD1 is a well-characterized 
JUNQ substrate30,31,33. To test whether TDP-43 or FUS might be JUNQ substrates we co-transfected 
TDP-43M337V or FUSR495X with SOD1A4V fusion proteins. In cells that contained inclusions of both TDP-
43 and SOD1 we observed that inclusions were distinct 50% of the time, the remaining cells contained 
inclusions that were positive for both TDP-43 and SOD1 (Fig.  5A). In the cases where colocalization 
occurred, we observed a pattern of fluorescence in which ~ 80% of total SOD1 fluorescence was consist-
ently associated with the dual labelled inclusions (Fig. S4B). In contrast, the amount of TDP-43 present 
in these inclusions was significantly lower in comparison to SOD1 (p <  0.001; Student’s t-test) and ranged 
from ~ 50% to ~ 70% (Fig. S4B). This suggested to us that under certain specific conditions TDP-43 could 
be a JUNQ substrate. Similarly, while FUS did not form round dot like inclusions that were observed 
when co-expressed with Httex146Q-cherry, there was co-localization with SOD1A4V inclusions in approx-
imately 30% of cells containing inclusions of both SOD1 and FUS (Fig. 5A). In the cases where there was 
inclusion colocalization ~ 80% of the total cellular SOD1 and FUS was present in the inclusion suggesting 
an active co-aggregation process (Fig. S4C). When TDP-43M337V and FUSR495X were aggregated in the 
same cell around 85% of the inclusions were positive for both TDP-43 and FUS (Fig. 5A). In a manner 
similar to that of SOD1 we observed that colocalized inclusions consistently contained ~ 70% of total 
cellular FUS, these same inclusions variably contained a significantly lower amount (p <  0.05, Student’s 

Figure 3. SOD1 and FUS inclusions contain a mobile fraction. FRAP analysis of inclusions formed in 
NSC-34 cells expressing mutant TDP-43, FUS or SOD1-GFP. (A) Mean fluorescence intensity (from within 
the ROI) plotted over time. Prebleach intensity was recorded, and recovery was recorded for up to 40 s. 
Results are means and standard deviation from n =  10. Mean fluorescence at 40 s is quantified in histogram. 
***indicates p <  0.001. (B) Representative confocal images of prebleach, post bleach and recovery endpoint. 
ROI is marked in white, timing of image relative to data collection is marked in panel A.



www.nature.com/scientificreports/

6Scientific RepoRts | 5:13416 | DOi: 10.1038/srep13416

t-test), ~ 50% of the TDP-43 signal (Fig. S4D), consistent with TDP-43 aggregation being a secondary 
process.

Since we had observed TDP-43 inclusions to be immobile and a significant proportion of TDP-43 
inclusions co-localized with SOD1 inclusions we performed FRAP to examine the mobility of these 
proteins in dual labeled inclusions. When bleached with 488 nm laser, TDP-43M337V remained immobile 
while SOD1A4V-GFP signal partially diffused back in to the bleached area—consistent with a previously 
observed mobile fraction (Fig. 5B). In contrast, FRAP measurements on inclusions that contained both 
FUSR495X and TDP-43M337V indicated that when TDP-43 was recruited in to FUS positive inclusions a 
proportion of the TDP-43 signal was recovered, consistent with a mobile fraction (Fig. 5C). This is con-
sistent with TDP-43 being a secondary aggregator in these inclusions. When inclusions contained both 
FUSR495X and SOD1A4V both FUS and SOD1 retained a diffusible fraction (Fig. 5D).

Given the different structural properties of TDP-43 and SOD1 inclusions, but their partial over-
lap when co-expressed, we performed triple transfections of TDP-43M337V-tomato, SOD1A4V -GFP and 
Httex146Q-Cerulean fluorescent protein. In this scenario, TDP-43 co-localized with SOD1A4V aggregates 
in some instances, but never co-localized with Httex146Q-Cerulean inclusions (Fig. 6). In some cases the 
cells were able to compartmentalize all three inclusions from one another. In these cases many of the 
TDP-43 inclusions appeared to be in the nucleus or very close to the nuclear envelope (Supplementary 
Material).

FUS and TDP-43 inclusions are ubiquitylated late compared to SOD1 inclusions. Ubiquitin 
positive inclusions are a hallmark of ALS, however the mechanism and dynamics of ubiquitylation and 
inclusion formation cannot be determined from postmortem tissue. Recent work on Huntingtin systems 
shows that although ubiquitylated Htt positive inclusions are present in post mortem tissue, in cell culture 

Figure 4. SOD1 and TDP-43 inclusions are distinct from iPOD. Cells were transfected with Httex146Q-
mcherry and either mutant TDP-43, FUS or SOD1-GFP. The cells were imaged 48 h after transfection 
(A) and then the number of inclusions colocalized or surrounding the Htt iPOD quantified (B). Green 
arrows indicate distinct and separate inclusions, red arrows indicate GFP tagged inclusions surrounding 
Htt inclusions, yellow arrows indicate colocalization. A minimum of 100 cells with inclusions were counted 
in each case and the experiment was repeated n =  2. A z-test of proportions was conducted on combined 
dataset and ***denotes p <  0.001. (C) FRAP measurements were performed on Htt-FUS positive inclusions. 
White box indicates ROI, arrow indicates bleached area. Mean fluorescence intensity was followed for 80 s 
and data shown are means and standard deviations n =  6. Histogram is data from FUS and Htt colocalized 
at 80 s compared to that of either FUS-GFP or Htt-RFP alone. ***indicates p <  0.001.
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systems ubiquitin co-localizes to inclusions relatively late32. To compare the association of ubiquitin with 
ALS inclusions we initially co-transfected NSC-34 cells with mRFP-ubiquitin and SOD1A4V, TDP-43M337V 
or FUSR495X GFP fusions. SOD1A4V inclusions were always observed to co-localize with ubiquitin start-
ing at our earliest observations 24 hours after transfection (Fig.  7C,D). In contrast, TDP-43M337V and 
FUSR495X did not always co-localize with ubiquitin with around 15 and 30% of inclusions respectively 
becoming positive for mRFP-ubiquitin after 72 h (Fig. 7A,B,D). To confirm this was not an artefact of the 

Figure 5. Mutant TDP-43 can co-aggregate to JUNQ like SOD1 positive structures. NSC-34 cells were 
cotransfected with combinations of mutant SOD1, TDP-43 and FUS and imaged after 48 h (A). Mutant 
TDP-43 could be found colocalized with SOD1 in some cases. (B) Mutant SOD1 and TDP-43 positive 
inclusions were analyzed using FRAP. White box indicates ROI, arrow indicates bleached area. Mean 
fluorescence intensity was followed for 80 s and data shown are means and standard deviations n =  6. 
Histogram is data from SOD1 and TDP-43 colocalized at 80 s compared to that of either SOD1-GFP or 
TDP-43-tomato alone. (C) Mutant FUS and TDP-43 positive inclusions were analyzed using FRAP. White 
box indicates ROI, arrow indicates bleached area. Mean fluorescence intensity was followed for 80 s and 
data shown are means and standard deviations n =  6. Histogram is data from FUS and TDP-43 colocalized 
at 80 s compared to that of either FUS-GFP or TDP-43-tomato alone. *indicates p <  0.05. (D) Mutant FUS 
and SOD1 positive inclusions were analyzed using FRAP. White box indicates ROI, arrow indicates bleached 
area. Mean fluorescence intensity was followed for 80 s and data shown are means and standard deviations 
n =  9. Histogram is data from FUS and SOD1 colocalized at 80 s compared to that of either FUS-GFP or 
SOD1-tomato alone.
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co-expression with mRFP-ubiquitin fusion we performed ubiquitin- immunostaining on cells expressing 
mutant FUS, TDP-43 and SOD1-GFP alone and observed similar ubiquitin co-localization patterns at 
48–72 hours (Fig. S5).

Our results in cell culture are seemingly incongruous with those from post mortem ALS spinal cord 
sections that suggest that ubiquitin is a near universal marker of TDP-43 inclusions. To examine the 
relationship between TDP-43 and ubiquitin in human ALS we stained human ALS post mortem spi-
nal cord sections and observed that 38 out of 40 TDP-43 inclusions (from 2 SALS cases) co-localized 
with ubiquitin. Strikingly, the 2 out of 40 inclusions that did not co-localize with ubiquitin (Fig.  7E) 
were smaller and more punctate (similar to the inclusions seen in our cell models after 48 h), while the 
ubiquitin-positive inclusions were generally extremely large skein-like inclusions (Fig. 7E). Interestingly, 
we rarely observed skein-like inclusions in our cell culture models, suggesting that skeins may develop 
over a long period of time.

Given the late redistribution of ubiquitin we tested whether the ubiquitin negative inclusions might 
co-localize to autophagy marker LC3. We observed that while both TDP-43 and FUS inclusions were not 
co-localized with LC3 they were found adjacent to LC3 positive foci. In contrast, there was no observable 
relationship between SOD1 inclusions and LC3 (Fig. S6).

Discussion
The role of protein aggregates in the pathology of a range of neurodegenerative diseases such as Alzheimer’s 
disease, Parkinson’s disease, and Huntington’s disease has gained increasing support14,47. Generally in 
these cases there is one dominant pathogenic protein or peptide, such as Aβ , tau, α -synuclein, and 
huntingtin that misfolds and aggregates potentially causing cellular damage along the way. ALS is also 
associated with protein misfolding and aggregation, however although all cases are associated with 
ubiquitin-positive inclusions, the make up of these inclusions varies depending on their location in the 
CNS and the underlying genetic profile of the patient. Given that protein aggregation is a unifying fea-
ture of ALS, we hypothesized that the underlying process of aggregate formation, and the compartment 
to which the aggregates are driven would be similar, even though the individual proteins involved may 
differ. If so, this hypothesis may provide common therapeutic strategies across all ALS variants.

Figure 6. Triple transfection reveals 3 distinct inclusions. NSC-34 cells were cotransfected with 
combinations of SOD1, TDP-43 and Htt including a triple transfection of all three plasmids and imaged 
after 48 h.
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We investigated three fALS-associated genes which encode proteins previously observed to accumu-
late in ubiquitylated inclusions in postmortem tissue. While TDP-43 positive inclusions are observed in 
sALS and TDP-43 fALS cases, the inclusions in SOD1 and FUS associated fALS are TDP-43 negative, and 
SOD1 and FUS positive respectively. Our results confirm that SOD1 is a JUNQ-like aggregate compart-
ment substrate30,31,33. Expression of mutant SOD1 results in the microtubule-dependent appearance of 
large juxtanuclear conglomerate inclusions that always co-localize with ubiquitin (Table 1). As observed 
in post mortem tissue, the co-aggregation of SOD1 and TDP-43 is relatively rare in cells expressing both 
mutant SOD1 and TDP-43wt.

Figure 7. Ubiquitin associates with TDP-43 and FUS inclusions late compared to SOD1. NSC-34 cells 
were transiently transfected with mutant TDP-43, FUS, or SOD1-GFP with mRFP-ubiquitin and examined 
by confocal microscopy at various times after transfection (A–C). Quantification of proportion of inclusions 
in dual transfected cells that contain both GFP fusion proteins and ubiquitin (D). 8 fields of view from each 
timepoint were counted (minimum 30 cells per field) and scored. Experiment was performed in triplicate 
and is representative of 2 independent experiments. (E) Human ALS post mortem tissue was stained for 
both TDP-43 and ubiquitin. 40 inclusions were imaged across two cases of sporadic ALS. Representative 
images of small foci (not colocalizing with ubiquitin) and large skeins that colocalize to ubiquitin staining 
are shown.

TDP-43 FUS SOD1

Recruits TDP-43WT ✓ (88%*) ✓ (42%*) ✓ (25%*)

Microtubule dependent × × ✓

Contain a mobile fraction × ✓ ✓

Co-aggregate with Httex146Q × ✓ × 

Co-aggregate with JUNQ 
substrate SOD1 ✓50%* ✓30%* ✓

Co-localisation with ubiquitin ✓Late ✓Late ✓Early

Table 1.  Summary of features of the inclusions of TDP-43M337V, FUSR495X and SOD1A4V. *expressed as a 
percentage of cells containing both types of inclusions. 
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In contrast, TDP-43 and FUS form distinct, microtubule-independent inclusions that do not initially 
associate with ubiquitin in cell culture. In addition, TDP-43 and FUS inclusions are also structurally dis-
tinct from each other, as TDP-43 inclusions are immobile while FUS inclusions contain a mobile fraction 
(see Table  1). Neither of these inclusions fit the current definition of known aggregate compartments, 
including aggresomes, IPOD and JUNQ, suggesting the engagement of distinct protein quality control 
elements to assemble the inclusions. This may be an inherent property of the solution states of the pro-
teins in question given we observed that the diffusion properties of non-aggregated FUS and TDP-43 
were vastly different to that of SOD1. FRAP measurements of SOD1 indicate it has a rapidly diffusing 
element, consistent with previous work suggesting it is predominantly dimeric in cells, with mutations 
promoting monomer formation33. In contrast, FRAP measurements of non-aggregated TDP-43 and FUS 
(mutant and wt) indicate a very slowly diffusing species consistent with very large complexes, likely 
with mRNA or in the case of nuclear protein, DNA. The inherent property of TDP-43 and FUS to form 
functional aggregates may underlie the aggregation of these slowly diffusing species in a manner simi-
lar to stress granule formation48. Removal of stress granules is, at least in part, regulated by autophagy 
pathways49, and dysfunction of autophagy results in TDP-43 inclusion formation46. This contrasts the 
UPS-dependent pathways involved in misfolded SOD1 degradation50 and may partially explain the dif-
ferences in the way SOD1, FUS and TDP-43 inclusions are formed.

While ubiquitin is thought to be universally present in TDP-43 inclusions, data from our models indi-
cate that ubiquitin joins the inclusions late in the process. This is reminiscent of Htt inclusions32, and may 
represent ubiquitylation for degradation via autophagy rather than for degradation by the proteasome. 
This is consistent with the presence of autophagosomes in close proximity to the surface of inclusions in 
ALS post mortem tissue51. Interestingly, both K48 and K63 linked ubiquitin chains, directing proteins to 
the proteasome and autophagy pathways respectively, have been shown to localize to TDP-43 inclusions46 
suggesting that autophagic processes may be active at these sites. While our model shows a minority of 
cells containing TDP-43 inclusions that co-localize with ubiquitin, most TDP-43 positive inclusions in 
human ALS spinal cord contain ubiquitin. However, our work shows that smaller, presumably early-stage 
aggregates do not overlap with ubiquitin staining in ALS post-mortem spinal motor neurons, consistent 
with our cell model and the concept that TDP-43 is ubiquitylated late in the aggregation process.

Specific proteins are consistently sequestered to very specific aggregation compartments in the cell. 
For example, proteins containing polyQ expansions have been shown to reliably deposit in IPOD-like 
inclusions in mammalian cells30,31,33. In addition, SOD1 and proteins with polyA expansions are consist-
ently found in JUNQ-like aggregate compartments in cells30,31,33. Interestingly, when SOD1 is modified 
by fusion to a polyQ repeat it can be directed to the IPOD compartment, but without this artificial mod-
ification it consistently appears in the JUNQ compartment31. We confirm that while SOD1 is consistent 
in its cellular aggregation patterns, TDP-43 and FUS are not, displaying variable aggregation structures 
presumably via distinct aggregation pathways. We observed that TDP-43 could aggregate distinctly from 
SOD1, Htt and FUS in our cell models, and it could also co-aggregate with SOD1 and FUS. Interestingly, 
in these cases TDP-43 aggregates had altered diffusion properties in FUS inclusions but not in SOD1 
inclusions, suggesting a co-aggregation process with mutant SOD1 but a secondary aggregation process 
in the case of mutant FUS. Our analysis showing a trend for a larger percentage of total FUS in these 
inclusions compared to that of TDP-43 supports this. The work presented here is also consistent with 
human post mortem tissue where TDP-43 does not accumulate with Htt in a case study of coexisting 
Huntington’s disease with ALS52 (although both polyQ repeats and TDP inclusions were present) and is 
not found in mutant SOD1 inclusions27. Similarly, FUS could co-aggregate with Htt, TDP-43 and SOD1 
or it could form distinct FUS inclusions. When localized with Htt, FUS altered its diffusion properties 
suggesting in this case FUS aggregation was a secondary process. FUS has been found to accumulate 
with polyQ aggregates53 and with TDP-43 aggregates in human post mortem tissue36. This inconsistent 
behavior may arise due to the fact that both TDP-43 and FUS are extremely aggregation prone and 
may easily be pushed down several aggregation pathways within cells. Regardless, these RNA binding 
proteins also form inclusions that do not fit within the definitions of IPOD or JUNQ. We propose that a 
specific mechanism exists in cells to deal with aggregating RNA binding proteins, which we name RNA 
Interactor Specific Compartments/Inclusions (RISCI).

The work presented here suggests that large inclusions formed by ALS proteins are RNA independent, 
consistent with the formation of inclusions resulting from inappropriate misfolding related interactions 
rather than native interactions with RNA binding partners. The RNA binding proteins TDP-43 and FUS 
are intrinsically aggregation prone38,54, but while mutations in TDP-43 associated with familial ALS accel-
erate the rate at which it aggregates this is not the case for FUS. It is thought that the aggregation pro-
pensity of these proteins is due to the so-called prion-domain present in many RNA binding proteins55. 
In addition, mutations in SOD1 alter the protein stability and aggregation propensity in a way that corre-
lates with disease progression in SOD1 associated fALS56. This intrinsic instability in these ALS proteins 
requires that the cell maintain protein homeostasis, either by investing in folding machinery to ensure 
these proteins maintain their native structure or degradation machinery to remove non-functional and 
misfolded protein. In general, if a cell is unable to maintain protein homeostasis it can actively parti-
tion misfolded proteins in specific ways given the individual proteins solution state, ubiquitylation state, 
and cellular compartment. In the current work we observe that the structures formed by TDP-43 and 
FUS are different, suggesting distinct pathways of inclusion formation. This is consistent with previous 
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demonstration of fundamental differences in FUS and TDP-43 aggregation properties and a lack of 
overlap between genetic modifiers of FUS and TDP-43 toxicity in yeast models38,57. One possible major 
difference is the recent discovery that FUS forms porous hydrogels48 to which TDP-43 can bind; this is 
consistent with our work presented here that shows that FUS inclusions in cells have a diffusible compo-
nent and that TDP-43 can be recruited in to these diffusible structures. While our work did not exam-
ine the relationship between aggregation and cellular dysfunction there are convincing arguments that 
suggest FUS and TDP-43 mutations that result in aggregates can cause either loss or gain of function58. 
Mutations in FUS can lead to inappropriate phosphorylation of RNA polymerase II59, loss of nuclear 
Gems60, and mutant FUS does not rescue from endogenous FUS knock down in Zebrafish61 consistent 
with toxicity from loss of function. In contrast, evidence exists to demonstrate that FUS does not need 
to be cleared from the nucleus to induce toxicity associated with cytoplasmic accumulation58 consistent 
with a toxic gain of function. Knock-down of zebrafish TDP-43 gene leads to a phenotype similar to 
that of expression of mutant human TDP-43, and can be rescued by expression of the wild type but not 
mutant human mutant TDP-43 consistent with at least a partial loss of function, while overexpression in 
yeast leads to aggregation and cellular dysfunction suggesting a toxic gain of function of aggregated TDP-
4357. The data presented in this paper demonstrating that TDP-43, FUS and SOD1 can form structurally 
distinct aggregates in the cell combined with the fact that TDP-43 and FUS have very different functions 
to that of SOD1 but result in the same disease phenotype is consistent with a unified model of toxic gain 
of function ALS protein aggregates. It is tempting to speculate that one potential mechanism that could 
explain why distinct aggregates could be similarly detrimental to cellular function is the recruitment of 
other proteins (e.g. ubiquitin, optineurin, ubiquilin2) that are critical for cellular function. However, we 
cannot rule out that the loss of nuclear TDP-43 and FUS in to aggregates leads to a toxic loss of function. 
In reality the detrimental effects of mutations in these genes is likely to be a complex combination of 
both loss and gain of function.

Several mechanisms for forming inclusions in mammalian cells have been described, including IPOD, 
JUNQ30, aggresomes62, aggresome like structures (ALIS)63, and ER associated degradation-associated 
vesicles64. The almost ubiquitous nature of these types of inclusions in neurodegenerative disease, and 
the diverse and specific mechanisms that underpin their formation, reveals their importance to cellular 
protein quality control and human pathology. It is likely that these represent just a fraction of the path-
ways for aggregation in cells and further characterization of these processes is an important avenue for 
further investigation.

In conclusion, we observe that TDP-43 and FUS can form inclusions that do not fit the current defi-
nitions for known aggregation processes in cells and at least in some cases aggregate into RNA interactor 
specific compartments/inclusions (RISCI). However, they do not consistently aggregate in to one kind 
of inclusion type. Further understanding of the active processes promoting the formation of aggregate 
structures may help explain the apparent pathological heterogeneity in ALS that results in the formation 
of round ubiquitylated inclusion, skeins, Lewy body-like hyaline inclusions, and basophilic inclusions.

Materials and Methods
Plasmids. The pEGFP-N1 vectors containing human SOD1wt, SOD1A4V and G93A SOD1 were gen-
erated as described65. Expression vector pCMV6-AC-GFP containing human TDP-43 and FUS was 
obtained from OriGene (USA). SOD1-tomato constructs were generated by replacing the GFP sequences 
in the GFP-tagged constructs65 with the tomato red fluorescent protein. TDP-43wt-tomato (Addgene 
plasmid 28205, provided by Zuoshang Xu34), mRFP-Ubiquitin (Addgene plasmid 11935, provided by 
Nico Dantuma66) and pmRFP-LC3 (Addgene plasmid 21075, Provided by Tamotsu Yoshimori67) con-
structs were acquired from Addgene (USA). The vectors describing Httex1(46Q) fusions (C-terminally) 
to mCherry and Cerulean were generated as described33,68.

Cell Culture and Transfection. Neuroblastoma x Spinal cord hybrid NSC-34 cells69 were maintained 
in Dulbecco’s modified Eagles Medium (DMEM) supplemented with 10% foetal bovine serum (FBS, 
Bovogen Biologicals, Australia). Cells were kept at 37 °C in a humidified incubator with 5% atmospheric 
CO2. For confocal microscopy, cells were grown on 13 mm round coverslips in 24-well plates or on 4 or 
8-well chambered coverglass (Nalge Nunc International, USA). Cells were grown in 6-well plates for cell 
lysate experiments.

Cells were transfected using Lipofectamine 2000 (Invitrogen, USA) according to manufacturer’s 
instructions with 0.5 μ g DNA per well for a 24-well plate or 4-well chambered coverglass, 0.2 μ g DNA per 
well for 8-well chambered coverglass and 2 μ g DNA per well for 6-well plates. For co-transfections and tri-
ple transfections, the amount of DNA was divided equally between constructs. The DNA: Lipofectamine 
ratio used was 1:5 (w/v). Media was refreshed 5 h after transfection. For disruption of microtubules, 
cells were incubated with 33 μ M nocadazole (Sigma-Aldrich, USA) overnight (~ 18 h) before analysis 
48 h post-transfection.

Cell Lysis. Transfected NSC-34 cells in 6-well plates (+ /−  nocadazole) were harvested 48 h 
post-transfection with trypsin/EDTA (Gibco, USA). Cells were washed with phosphate buffered saline 
(PBS) before being pelleted by centrifugation (21000 ×  g for 45 s at 4 °C). Cell pellets were resuspended 
in ~ 50 μ l lysis buffer (600 mM KCl, 20 mM Tris-Cl (pH 7.8), 20% (v/v) glycerol, Complete® Protease 
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Inhibitor Cocktail (Roche, Switzerland)) and subjected to three freeze/thaw cycles in liquid nitrogen. To 
digest DNA, 250 units of DNase (Roche) was added to each lysate and incubated at 37 °C for 30 min. 
Lysates were then centrifuged at 300 ×  g for 5 min to pellet any large debris before the protein concen-
tration was determined by BCA Assay.

Filter Trap Assay. Cell lysates with a total protein concentration of 100 μ g were adjusted to 200 μ l 
with a final sodium dodecyl sulphate (SDS) concentration of 2% in PBS. Lysates were filtered through a 
0.2 μ m cellulose acetate membrane (Whatman, UK) pre-equilibrated in 1% SDS in PBS using a Bio-Dot 
SF microfiltration unit (Bio-Rad, USA) under vacuum. Large aggregates are trapped in the membrane, 
while soluble material passes through70. The membrane was blocked in heat denatured casein (HDC) for 
1 h at 37 °C before probing for aggregates with either monoclonal mouse anti-GFP-HRP conjugated anti-
body (1:1000 in HDC, OriGene—TA150043) overnight at 4 °C or polyclonal rabbit anti-GFP (1:10 000 
in HDC, Abcam, UK—ab290) overnight at 4 °C followed by anti-rabbit IgG-HRP conjugated antibody 
(1:2000 in HDC, Bio-Rad—170–6515) for 1 h at 37 °C.

Laser Scanning Confocal Microscopy. Imaging of NSC-34 co-transfections was performed 
24–72 hours post transfection. NSC-34 cells grown on coverslips were transfected with GFP-tagged 
mutant SOD1, TDP-43 and FUS and fixed for 20 min at room temperature (RT) with 4% paraform-
aldehyde (PFA) (Merck Millipore, USA) in PBS 48 h post transfection. Cells were permeabilised in 1% 
tritonX-100 (TX-100) in PBS for 30 min on ice before blocking for 30 min at RT with 5% FBS, 1% BSA 
0.3% TX-100 in PBS. Cells were incubated with primary antibodies (see below) overnight at 4 °C fol-
lowed by Alexa Fluor®-conjugated secondary antibodies reactive to mouse or rabbit IgG for 1 h on ice. 
All antibodies were diluted in 1% BSA, 0.1% TX-100 in PBS and cells were washed with PBS between 
each incubation step. Following staining, coverslips were mounted onto slides using anti-fadent mount-
ing medium (Citifluor, UK). All cells were imaged using a Leica TCS SP5 Confocal microscope.

Antibodies. The following primary antibodies were used for cell staining experiments: monoclo-
nal mouse anti-ubiquitin (25 μ g/ml, ab7254), monoclonal mouse anti-sequestosome 1/p62 (10 μ g/ml, 
ab56416), monoclonal mouse anti-ubiquilin 2 (1 μ g/ml, ab190283) and polyclonal rabbit anti-optineurin 
(12 μ g/ml, ab23666). Rabbit polyclonal IgG (ab171870), purified mouse IgG2a kappa (Immunology 
Consultants Laboratory Inc, USA—RS-90G2A) and mouse IgG1 monoclonal antibody (Chemicon, 
Australia—MABC002) were used as isotype controls. All antibodies were obtained from Abcam unless 
otherwise specified.

FRAP. FRAP was performed on transfected NSC-34 cells 48 h post transfection using the LAS AF 
FRAP Application Wizard on the Leica TCS SP5 Confocal Microscope. Images were acquired using the 
63 ×   objective with two line averages and a scan speed of 700 Hz. Five pre-bleach images were acquired 
over 7.5 s with the 488 nm laser set at 20% power. The region of interest (ROI) was then bleached using 
the ‘zoom in ROI’ method over four frames of 1.5 s at 100% laser power. Recovery was monitored for 
over 1 min with the laser power set back at 20%.

Immunostaining of post mortem tissue. Dual immunofluorescence was performed on spinal cord 
tissue from two SALS cases using a rabbit polyclonal anti-TDP-43 antibody (Proteintech, 10782-2-AP) 
and mouse monoclonal anti-ubiquitin antibody (Chemicon, MAB1510). Five μ m spinal cord sections 
were deparaffinised with xylene, and rehydrated with a descending series of diluted ethanol and water. 
Antigens were retrieved by heating sections in 10 mM citrate buffer (pH 6.0). Non-specific background 
was blocked with 1% bovine serum albumin (BSA) (Sigma Aldrich). Sections were incubated at 4 °C 
overnight with the primary antibodies (1:1000 for anti-TDP-43 and 1:100 anti-ubiquitin), followed 
by incubation with secondary antibodies (anti-rabbit conjugated with Alexa Fluor 488 and secondary 
anti-mouse conjugated with Alexa Fluor 555; Life Technologies) for 1 hour at room temperature. Slides 
were coverslipped using the Prolong Gold antifade reagent.

Confocal fluorescence imaging was performed using a Leica DM6000 upright laser scanning confocal 
microscope with Leica application suite advanced fluorescence software. Images were acquired with a 
40 ×  oil immersion objective. Images were acquired using sequential mode to avoid crosstalk between 
two dyes.
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