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Brief Definit ive Report

HIV-1–infected individuals produce high titers 
of antibodies against the virus, but only a small 
fraction of the patients develop a broadly neu-
tralizing serologic activity, generally after 2–4 yr 
of infection (Sather et al., 2009; Simek et al., 
2009; Stamatatos et al., 2009; Walker et al., 2011; 
McCoy and Weiss, 2013). The serologic anti–
HIV-1 activity in some of these individuals can 
be accounted for by a combination of antibodies 
targeting different sites on the HIV-1 envelope 
spike (Scheid et al., 2009; Bonsignori et al., 
2012; Klein et al., 2012a; Georgiev et al., 2013) 
and in others, by a predominant highly expanded 
clone (Scheid et al., 2011; Walker et al., 2011; 
Burton et al., 2012; McCoy and Weiss, 2013). 
Although the presence of broad neutralizing 
activity does not correlate with a better clinical 
outcome, passive transfer of broadly neutral-
izing antibodies (bNAbs) can protect against 
infection in macaques or in mouse models 
(Hessell et al., 2009; Pietzsch et al., 2012; 
McCoy and Weiss, 2013). In addition, bNAbs 
can suppress viremia in humanized mice (Klein 

et al., 2012b). Moreover, antibodies against the 
HIV-1 envelope spike appear to be the unique 
correlate of protection in the RV144 HIV-1 
vaccine trial (Haynes et al., 2012). Therefore, it 
has been proposed that vaccines that would 
elicit such antibodies may be protective against 
the infection in humans.

The recent development of efficient meth-
ods for cloning of human anti–HIV-1 antibodies 
from single cells (Scheid et al., 2009) led to the dis-
covery of dozens of new bNAbs and new targets 
for neutralization (Burton et al., 2012; McCoy 
and Weiss, 2013). The new antibodies target at 
least six different sites of vulnerability on the 
HIV-1 spike. These include the CD4-binding 
site (VRC01, NIH45-46, 3BNC60/117, and 
CH103), the glycan-dependent V1/V2 loops 
(PG16 and PGT145) and V3 loop (PGT121, 
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The neutralizing activity of anti–HIV-1 antibodies is typically measured in assays where cell-free 
virions enter reporter cell lines. However, HIV-1 cell to cell transmission is a major mechanism 
of viral spread, and the effect of the recently described broadly neutralizing antibodies (bNAbs) 
on this mode of transmission remains unknown. Here we identify a subset of bNAbs that inhibit 
both cell-free and cell-mediated infection in primary CD4+ lymphocytes. These antibodies target 
either the CD4-binding site (NIH45-46 and 3BNC60) or the glycan/V3 loop (10-1074 and 
PGT121) on HIV-1 gp120 and act at low concentrations by inhibiting multiple steps of viral cell 
to cell transmission. These antibodies accumulate at virological synapses and impair the cluster-
ing and fusion of infected and target cells and the transfer of viral material to uninfected 
T cells. In addition, they block viral cell to cell transmission to plasmacytoid DCs and thereby 
interfere with type-I IFN production. Thus, only a subset of bNAbs can efficiently prevent HIV-1 
cell to cell transmission, and this property should be considered an important characteristic 
defining antibody potency for therapeutic or prophylactic antiviral strategies.

© 2013 Malbec et al. This article is distributed under the terms of an  
Attribution–Noncommercial–Share Alike–No Mirror Sites license for the 
first six months after the publication date (see http://www.rupress.org/terms). 
After six months it is available under a Creative Commons License (Attribution– 
Noncommercial–Share Alike 3.0 Unported license, as described at http://creative-
commons.org/licenses/by-nc-sa/3.0/).
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(Dimitrov et al., 1993; Sourisseau et al., 2007; Sattentau, 2011; 
Murooka et al., 2012; Dale et al., 2013). In addition, this form 
of dissemination appears to be less susceptible to inhibition by 
antiretroviral drugs than cell-free virus transmission (Chen  
et al., 2007; Sigal et al., 2011; Abela et al., 2012).

Cell to cell spread of HIV-1 is in large part mediated through 
virological synapses, where viral particles accumulate at the inter-
face between infected cells and targets (Sattentau, 2011; Dale  
et al., 2013). Synapse formation involves HIV-1 Env-CD4 co-
receptor interactions and requires cytoskeletal rearrangements 
and adhesion molecules (Sattentau, 2011; Dale et al., 2013).

Here, we examined the antiviral activity of a panel of 15 
newly identified bNAbs targeting all known sites of vulnerabil-
ity in conventional neutralization and cell to cell transmission 
assays. We show that only a subset of the bNAbs that target the 
CD4-binding site or the glycan/V3 loop efficiently neutralize 
cell to cell viral transfer in co-cultures of infected T cells with 
primary lymphocytes. We further characterized the antiviral 
mechanisms used by the effective antibodies and report that 
they affect multiple steps of viral cell to cell transfer.

PGT128, and the 10-1074 family), a conformational epitope on 
gp120 (3BC176), a domain in the vicinity of the CD4bs 
(8ANC195), and the gp41 membrane-proximal external region 
(MPER; 2F5, 4E10, and 10E8; Scheid et al., 2009, 2011; Walker 
et al., 2011; Wu et al., 2011; Kwong and Mascola, 2012;  
Mouquet et al., 2012; West et al., 2012; Liao et al., 2013). Some 
of these antibodies display remarkable antiviral activity with 
median 50% inhibitory concentrations (IC50s) < 0.2 µg/ml for 
up to 95% of isolates tested (Diskin et al., 2011; Scheid et al., 
2011; Walker et al., 2011; Wu et al., 2011; Burton et al., 2012; 
Liao et al., 2013).

The antiviral activity of bNAbs is typically measured in 
vitro using cell-free pseudovirus particles and reporter cell lines, 
such as the HeLa-derived TzMbl cell (Heyndrickx et al., 2012). 
In these assays, neutralization is mediated by inhibition of free 
virus binding to cellular receptors and/or by inhibition of viral 
fusion. Although cell-free HIV-1 is infectious, the virus repli-
cates more efficiently and rapidly through direct contact be-
tween cells, and this mode of transmission likely mediates a 
significant fraction of viral spread and immune evasion in vivo 

Figure 1. An assay for analyzing inhibition of HIV-1 cell to cell transmission by bNAbs. (a) bNAbs NIH45-46 and 8ANC195 (15 µg/ml) were incu-
bated for 1 h with primary CD4+ T cells infected with HIV-1 (NL4.3 or NLAD8 strains). FarRed-loaded autologous target CD4+ T cells were added, and Gag+ 
target cells were measured 48 h later by flow cytometry. One representative experiment (out of four) is shown. The reverse transcription inhibitor NVP 
was used as a positive control. NI, noninfected cells. (b) Cell-associated inhibition assays were performed as in panel a. bNAbs were used at the indicated 
doses, and the percentage of inhibition of infection was calculated. For cell-free infections, viruses (NL4.3 or NLAD8 strains) were incubated with the indi-
cated bNAbs for 1 h and then added to HeLa-derived P4C5 target cells, which carry an HIV-1 LTR–-gal reported cassette. After 36 h, infection was quan-
tified by measuring -gal activity. Data are mean ± SD from four independent experiments. Lines represent fitted results.
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one inactive (8ANC195) bNAb are shown in Fig. 1 b. The 
most active antibodies in the cell to cell transmission assay were 
NIH45-46 and 3BNC60, which target the CD4bs, and clon-
ally related anti-glycan/V3 antibodies, 10-1074, 10-996, 
and PGT121 (Table 1 and Fig. S1; IC50s < 0.9–2.5 µg/ml). 
Time of addition experiments showed that NIH45-46 and 
3BNC60 remained strongly active when added up to 6 h 
after the beginning of the co-culture (not depicted). How-
ever, the antibody concentrations required to inhibit cell to cell 
transmission were 10–20-fold higher than cell-free transmis-
sion (Table 1 and Fig. S1). As previously reported (Abela et al., 
2012), VRC01, a less active clonal relative of NIH45-46, 
was only partially effective in blocking cell to cell transmis-
sion, with 65 and 85% inhibition of NLAD8 and NL4.3, 
respectively, at concentrations of 15 µg/ml. NIH45-46 and 
3BNC60 also inhibited viral spread when CD4+ T cells 
were co-cultured with MOLT cells chronically infected 
with BaL (not depicted). In contrast, most of the other anti-
bodies tested were relatively ineffective, including the two 
anti-MPER antibodies and PG16. 10E8 was only partially 
active against NL43, with 75% inhibition at a concentration 
of 15 µg/ml, and PG16 showed only 60% inhibition at this 
concentration.

Some of the bNAbs were also tested for their ability to 
block cell to cell transmission of two transmitted/founder (T/F) 
HIV-1 viruses (Salazar-Gonzalez et al., 2009; Ochsenbauer  
et al., 2012). The IC50s of the antibodies against these vi-
ruses were generally similar to those observed with NLAD8 
(Table 2). The more active bNAbs against T/F viruses were 
PG16, 10-1074, and 3BNC60 (Table 2).

The first step in cell to cell spread is the formation of 
conjugates between infected cells and targets, a process which 
is dependent on Env (Massanella et al., 2009). To examine 

RESULTS AND DISCUSSION
We initially assessed the efficacy of the selected bNAbs to  
inhibit HIV-1 cell to cell transmission in culture using flow 
cytometry (Sourisseau et al., 2007). Primary CD4+ T cells 
infected with either NLAD8 or NL4.3 HIV-1 strains were 
incubated with bNAbs before co-culture with autologous 
target cells labeled with FarRed. Infection of target cells was 
measured by Gag expression. In the absence of bNAbs, 15–50% 
of the recipient cells were Gag+ after 48 h (representative ex-
periments are shown in Fig. 1 a). Under these conditions, the 
contribution of cell-free virus to infection was negligible 
because Gag expression by the recipient cells was abrogated  
by separation of donors and targets in a transwell chamber or 
when cultures were gently shaken to avoid prolonged con-
tacts (Sourisseau et al., 2007). Moreover, Gag expression in 
target cells was caused by de novo synthesis because it was 
significantly reduced in the presence of reverse transcription 
inhibitor (nevirapine [NVP]; Fig. 1 a).

We tested a panel of 15 bNAbs to investigate their ef-
fects on viral cell to cell transmission and in parallel mea-
sured their neutralization activity in a conventional cell-free 
assay (Abela et al., 2012; Heyndrickx et al., 2012). As ex-
pected, all bNAbs blocked cell-free infection with either 
NLAD8 or NL4.3, with IC50s varying from 0.05 to 9 µg/ml 
(Table 1 and Fig. S1). However, only a subset efficiently 
inhibited cell to cell transmission (Table 1 and Fig. S1). Rep-
resentative inhibition curves with one active (NIH45-46) and 

Table 1. Effect of bNAbs on cell-free and cell to cell HIV-1 
transmission

bNAbs IC50

NL4.3 NLAD8

Cell free Cell associated Cell free Cell associated

NIH45-46 0.06 1.2 0.2 2.5
3BNC60 0.05 0.9 0.1 2.3
VRC01 0.2 7.2a 0.3 12.1a

1NC9 0.2 4.5a 0.7 12.3a

12A12 9.4a X 2.6 X
8ANC195 4.0a X 5.7a X
10-1074 X X 0.1 1.6
PGT121 X X 0.1 1.3
10-1074GM X X 0.3 6.2
10-996 X X 0.1 1.7
10-1369 X X 0.4 10a

PG16 0.7a >15 0.05 0.5a

3BC176 0.7a X >15 X
10E8 0.1 6.7a 1.1 >15
4E10 4.3a X >15 >15

The indicated antibodies were tested against cell-free and cell-associated HIV-1 
infection as indicated in Fig. 1. Median inhibitory concentrations (IC50) were 
calculated from at least four independent experiments. The corresponding inhibition 
curves are displayed Fig. S1. Bold indicates IC50 < 0.5 µg/ml; italics indicate  
IC50 = 0.5–2 µg/ml; single underline indicates IC50 = 2–10 µg/ml; bold and underline 
indicate IC50 = 10–15 µg/ml. X, no neutralization (<25% inhibition at 15 µg/ml).
aPartial neutralization (<90% inhibition at 15 µg/ml).

Table 2. Antiviral activity of bNAbs on cell to cell 
transmission of two T/F HIV-1 strains

bNAbs IC50

WITO SUMA

NIH45-46 3.1 13.9a

3BNC60 3.4 3.3
VRC01 14.3a X
8ANC195 X 3.7a

10-1074 1.8 1.9
PG16 0.05 0.3
10E8 9.4a >15
3BC176 X X

Primary HIV-1 CD4+ T cells were infected with two T/F HIV-1 strains (WITO or 
SUMA). Infected cells were preincubated for 1 h with different doses of bNAbs 
before co-culture with autologous target cells stained with FarRed dye. After  
48 h, the fraction of productively infected (Gag+) target cells was measured by 
flow cytometry. The median inhibitory concentrations (IC50) were calculated with 
cells from three to four independent donors. Bold indicates IC50 < 0.5 µg/ml; 
italics indicate IC50 = 0.5–2 µg/ml; single underline indicates IC50 = 2–10 µg/ml; 
bold and underline indicate IC50 = 10–15 µg/ml. X, no neutralization (<25% 
inhibition at 15 µg/ml).
aPartial neutralization (<90% inhibition at 15 µg/ml).

http://www.jem.org/cgi/content/full/jem.20131244/DC1
http://www.jem.org/cgi/content/full/jem.20131244/DC1
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formation of clusters with cells expressing HIV-BaL (Fig. 2, 
a and b). In contrast, the other bNAbs did not show measur-
able inhibitory effects (Fig. 2, a and b). Of note, 10E8 in-
creased formation of conjugates with NL4.3 and was 
ineffective against BaL (Fig. 2, a and b). It is possible that 

the mechanism of inhibition of cell to cell transmission by 
bNAbs, we initially assayed their effects on conjugate forma-
tion. Preincubation of NL4.3- or BaL-infected lymphocytes 
with NIH45-46, 3BNC60, or VRC01 decreased the forma-
tion of conjugates, and 10-1074 and PGT121 inhibited the 

Figure 2. Effect of bNAbs on formation of conjugates of infected and target cells. (a) CFSE-stained MOLT cells chronically infected with 
HIV-1 NL4.3 or BaL strains were preincubated for 1 h with 15 µg/ml NIH45-46 bNAb and then co-cultured with FarRed-stained primary CD4+ T cells. 
After 2 h, conjugates of donors and targets (CFSE+FarRed+) were quantified by flow cytometry. (left) Flow plots from one representative experiment 
are shown. (right) Frequency of conjugates with noninfected (NI) and NL4.3- or BaL-infected MOLT cells in the absence of bNAb. Each dot represents 
an experiment with primary target T cells from independent donors. The bars represent SD. *, P < 0.05. (b) Conjugate formation in the presence of the 
indicated bNAbs (15 µg/ml) as determined in panel a. Data are shown from six independent experiments. The percentage of cell-forming conjugates  
is shown. *, P < 0.05 (Wilcoxon matched pairs test). (c) HeLa cells stably expressing HIV-1 Env (NL4.3) and Tat were preincubated for 1 h with the indi-
cated bNAbs (15 µg/ml) before overnight co-culture with HeLa P4C5 cells, which carry an HIV-1 LTR–-gal reporter cassette. Upon syncytia forma-
tion, Tat will transactivate the HIV-1 LTR. Levels of syncytia were quantified by measuring -gal activity. Data represent mean ± SD of triplicate 
samples from six independent experiments. *, P < 0.05.
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10E8, which blocks Env-mediated fusion without affecting 
Env-CD4 interaction, may stabilize cell conjugates in the ab-
sence of cell fusion.

Contact between Env+ cells and target cells can lead to 
formation of syncytia. Therefore, we assessed the effect of 
bNAbs on syncytia formation using a quantitative assay, in 
which HeLa cells expressing Env (from NL4.3) and Tat are 
mixed with HeLa cells expressing CD4 and HIV-1 LTR–-gal 
reporter cassette (P4C5 cells; Schwartz et al., 1994). -gal ex-
pression is induced upon fusion and transfer of Tat between 
the two cell types. NIH45-46, 3BNC60, and VRC01 blocked 
fusion as did the anti-gp41 MPER 10E8 (Fig. 2 c). In con-
trast, bNAbs that failed to inhibit cell to cell transmission of 
NL4.3 had little or no effect on fusion (Fig. 2 c).

After formation of cell conjugates, viral particles are trans-
ferred from infected cells to targets. To measure viral transfer, 
we examined Gag expression in target cells by flow cytometry. 
4 h after initiation of the co-culture, 4–6% of target cells were 
Gag+ (Fig. 3 a). NIH45-46, 3BNC60, VRC01, and 10-1074 
decreased transfer of NL4.3 and/or NLAD8, whereas the 
other antibodies were inactive (Fig. 3 a). Immunofluorescence 
and confocal imaging further demonstrated that preincuba-
tion of donor cells with NIH45-46 or 3BNC60 led to accu-
mulation of the bNAb at the virological synapse and to 
colocalization with Gag (Fig. 3 b). Moreover, an examination 
of target cells that captured viral particles despite the presence 
of bNAbs demonstrated that these viruses were generally, if 
not always, coated with bNAbs (Fig. 3 c).

Figure 3. Effect of bNAbs on HIV-1 capture by target cells. (a) Primary HIV-1–infected CD4+ T cells (NL4.3 or NLAD8 strains) were preincubated for 
1 h with the indicated bNAbs (15 µg/ml) before co-culture with autologous target cells stained with FarRed. After 4 h, the fraction of target cells having 
captured viral material (Gag+) was measured by flow cytometry. Data are mean ± SD of six independent experiments. *, P < 0.05. (b) FarRed+ HIV-1–infected 
CD4+ T cells or Jurkat cells were preincubated for 1 h with the indicated bNAbs before a 1.5-h co-culture with target cells stained with CFSE. Cells were 
stained with anti-Gag mAbs and with a secondary anti–human antibody (yellow) to visualize the bNAb. Examples of virological synapses in primary CD4+ 
T cells (top) and in Jurkat cells (bottom) are shown. D, donor cell; T, target cell. (c) The co-cultures of primary CD4+ T cells described in b were analyzed for 
target cells that were not or no longer in contact with donor cells. Images are representative of three independent experiments. Bars, 5 µm.
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findings, it was reported to be poorly active (Chen et al., 2007;  
Massanella et al., 2009; Martin et al., 2010; Abela et al., 2012). 
Here, we show that many of the 15 bNAbs tested, including 
some of the most active antibodies to six different sites of 
vulnerability on the envelope, were ineffective in HIV-1 cell 
to cell transmission. However, five bNAbs, isolated from four 
different patients (NIH45-46, 3BNC60, PGT121, 10-1074, 
and PG16) blocked the intercellular spread of the tested 
viruses at IC50s of 0.05–2.5 µg/ml. NIH45-46 and 3BNC60 
target the CD4-binding site, whereas 10-1074 and PGT121 
bind to a complex epitope composed of glycans and the V3 
loop epitope on HIV-1 gp120 (Scheid et al., 2009; Walker  
et al., 2011; Wu et al., 2011; Kwong and Mascola, 2012; 
Mouquet et al., 2012; Liao et al., 2013). Of note, 10-1074 and 
PGT121 efficiently inhibited cell-free and cell to cell trans-
mission of all R5 viruses tested but were inactive against 
the X4 strain NL4.3. Further work will help determining 
whether V3-directed bNAbs inhibit other X4 isolates.

The bNAbs inhibiting cell to cell viral spread were those 
acting at a low concentration against free virus (IC50 <  
0.2 µg/ml; Scheid et al., 2011; Walker et al., 2011). This suggests 
that very high levels of potency in cell-free virion assays are 

Plasmacytoid DC (pDCs) sense HIV-1–infected cells and 
react by producing type-I IFN (Lepelley et al., 2011). To deter-
mine whether bNAbs inhibit the recognition of infected lym-
phocytes by pDCs, infected donor cells were preincubated 
with bNAbs and co-cultured with target PBMCs. The levels 
of type-I IFN were measured in supernatants after 18 h of co-
culture. NIH45-46, 3BNC60, VRC01, and 10-1074 inhibited 
IFN induction by lymphocytes infected with NL4.3 and/or 
NLAD8, whereas PG16 and 10E8 were inactive (Fig. 4 a). In 
addition, the role of antibodies in blocking transmission was 
examined using the pDC-like cell line Gen2.2 as target cells 
(Lepelley et al., 2011). NIH45-46, 3BNC60, VRC01, 10-1074, 
PG16, and 10E8 blocked HIV-1 infection of Gen2.2 cells 
(Fig. 4 b). Moreover, bNAbs that blocked Gen2.2 infection 
also inhibited induction of the IFN-induced protein MxA. 
Thus, in addition to inhibiting lymphocyte to lymphocyte 
viral spread, the most active bNAbs block transmission from 
lymphocytes to pDCs and impair innate immune sensing of 
the virus.

To date, only VRC01 among the second generation, more 
potent, bNAbs has been assayed for its ability to block HIV-1 
cell to cell transmission, and in agreement with our own 

Figure 4. Effect of bNAbs on HIV-1 sensing by hematopoietic cells. (a) HIV-1–infected MT4C5 lymphoblastoid T cells were incubated for 1 h with 
the indicated bNAbs (15 µg/ml) and used as donors. Target cells were PBMCs, and levels of type-I IFN released in supernatants were measured 18 h later. 
NI, co-culture with noninfected cells. Data are mean ± SD of at least three independent experiments. *, P < 0.05. (b and c) HIV-infected MT4C5 cells were 
incubated with the indicated bNAbs for 1 h before mixing with Gen2.2 cells. After 48 h, the levels of cells productively infected (Gag+; b) or expressing the 
IFN-stimulated protein MxA (c) were measured by flow cytometry. Data are mean ± SD of at least three independent experiments. *, P < 0.05.
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Viral cell to cell transmission assay. Donor cells were infected with the 
indicated HIV-1 strains and used a few days later, when 10–75% of the cells 
were Gag+. Target cells were labeled with FarRed or 2.5 µM CFSE (Molecular 
Probes). Donors were preincubated with the indicated doses of bNAbs. 
Donor and target cells were then mixed at a 1:2 ratio in 96-well plates at a 
final concentration of 1.5 × 106/ml in 200 µl. After 48 h, cells were stained 
for intracellular Gag (KC57 mAb; Beckman Coulter) and analyzed by flow 
cytometry. When stated, 12.5 nM NVP was added 1 h before co-culture.

Cell-free infection of P4C5 cells. The neutralization activity of bNAbs was 
evaluated on P4C5 cells (HeLa CD4+CCR5+ cells carrying an HIV-1 LTR–
-gal reporter cassette). 1 d before infection, 7 × 103 cells were plated in 
96-well plates. Cells were infected in triplicate with 1 or 5 ng Gag p24. Viruses 
were incubated with the indicated bNAbs for 1 h before infection. After 36 h, 
cells were lysed in PBS, 0.1% NP-40, and 5 mM MgCl2 and incubated with the 
-gal substrate CPRG (Roche), before measurement of 570-nm OD.

Calculation of IC50. Dose–response inhibition curves were drawn by fitting 
data from three to six independent experiments to sigmoid dose–response 
curves (variable slope) using Prism software (GraphPad Software). Percentage 
of inhibition was defined as (percent signal in nontreated target cells  
percent signal in bNAb-treated cells)/(percent signal in nontreated target 
cells) × 100. The IC50 was calculated with Prism.

Analysis of conjugate formation between infected and target cells. 
Chronically infected MOLT cells (2 × 105/well) were stained with CFSE 
and preincubated in 96-well plates with 15 µg/ml bNAbs for 1 h at 37°C, 
before adding 2 × 105 FarRed-labeled CD4 T cells for 2 h (Massanella et al., 
2009). Cellular contacts were measured by flow cytometry. CFSE+FarRed+ 
cells were considered as cellular conjugates. The percentage of conjugates was 
calculated as follows: (conjugates/total conjugates + MOLT cells + CD4  
T cells) × 100.

Analysis of HIV-1 capture by target cells. Primary donor cells were in-
fected with HIV-1 and used a few days later, when 10–75% of the cells were 
Gag+. The indicated target cells were labeled with FarRed or 2.5 µM CFSE 
(Molecular Probes). Donors were incubated with bNAbs for 1 h. Donor and 
target cells were then mixed at a 1:2 ratio in 96-well plates at a final concen-
tration of 1.5 × 106/ml in 200 µl. After 4 h, target cells were stained for Gag 
and analyzed by flow cytometry.

Syncytia assay. HeLa 243 cells, which stably express the HIV-1 NL4.3 Env 
and Tat proteins (Schwartz et al., 1994), seeded at 8 × 103 cells in 96-well 
plates, were preincubated for 1 h with 15 µg/ml bNAbs, before addition of 
8 × 103 P4C5 cells for 8 h. Upon cell fusion, Tat transactivates the HIV-1 
LTR and drives expression of -gal, at levels which correlate with the 
amount of syncytia (Schwartz et al., 1994).

Immunofluorescence analysis. HIV-infected primary donor CD4+ 
T cells were treated with the indicated bNAbs for 1 h before addition of 
autologous targets. After 1 h of co-culture, cells were fixed and double Gag/
bNAb stainings were performed with a mouse mAb anti-p24 and a second-
ary anti–human antibody to visualize the bNAb. Confocal microscopy analy-
sis was performed on an LSM700 (Carl Zeiss) using a 40 or 63 objective. 
Z-series of optical sections were performed at 0.2–0.5-µm increments.

Sensing of HIV-infected cells by hematopoietic cells. The indicated 
infected donor cells were incubated for 1 h with the bNAb and mixed with 
target cells (PBMCs or Gen2.2) at a ratio of 1:2 in 96-well plates at a final 
concentration of 2–3 × 106/ml in 100 µl for PBMCs, or 106/ml in 200 µl for 
Gen2.2, as described previously (Lepelley et al., 2011). After a co-culture of 
18 h (PBMCs) or 48 h (Gen2.2), type I IFN levels and expression of the 
protein MxA were measured as described previously (Lepelley et al., 2011; 
Puigdomènech et al., 2013).

required for antibodies to block viral cell–cell spread. But 
potency alone may not be sufficient, as indicated by 10E8, 
which fails to reach 80% neutralizing activity in cell to cell 
transmission despite potencies that are nearly comparable 
with the effective antibodies in cell-free assays. It is notewor-
thy that the concentrations required to inhibit cell to cell 
transmission were at least 10–20-fold higher than for free 
virus. Similarly, the serum concentrations of bNAbs required 
to inhibit infection in mouse or monkey models of HIV-1 
infection are also 1–2 logs higher than in cell-free assays 
(Balazs et al., 2012; Klein et al., 2012a; Moldt et al., 2012; 
Pietzsch et al., 2012). Cell to cell transmission may therefore 
provide a more reliable method for predicting the potency of 
bNAbs in vivo.

Our experiments show that the most active bNAbs interfere 
with cell to cell transmission by efficiently impairing formation 
of clusters between infected cells and targets, the appearance of 
syncytia, and transfer of viral material to recipient cells and by 
accumulating at the virological synapse. Moreover, they also dec-
orate any free viral particles that may still have been captured by 
target cells. Additional experimentation will be required to de-
termine whether the various bNAbs display differing abilities to 
accumulate at sites of cell–cell contacts and to impair the forma-
tion of virological synapses. It will also be of interest to further 
examine how these bNAbs interfere with viral cell to cell trans-
mission between myeloid DCs and lymphocytes.

HIV-1 cell to cell transmission is likely playing a predomi-
nant role in infected individuals (Murooka et al., 2012). Our 
results confirm that this mode of viral spread may represent 
a means to escape the selection pressure exerted by most of the 
bNAbs (Ganesh et al., 2004; Abela et al., 2012). Our obser-
vations may also help explain why some bNAbs like 3BC176 
are ineffective in vivo (Klein et al., 2012b), whereas others like 
10-1074 and a derivative of NIH45-46 (45-46W) suppressed 
viral loads below detection (Klein et al., 2012b). Consistent 
with this idea, 10E8, which does not efficiently inhibit HIV-1 
cell to cell transmission, failed to suppress viremia in vivo and 
failed to select antibody-resistant HIV-1 variants (Fig. S2). We 
speculate that bNAbs that effectively interfere with cell to cell 
transmission in vitro will also display efficient and long-lasting 
therapeutic or prophylactic properties in vivo.
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