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Objective: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by
progressive deterioration of memory and cognition. Mild cognitive impairment (MCI) has
been implicated as a prodromal phase of AD. Although abnormal functional connectivity
(FC) has been demonstrated in AD and MCI, the clinical differentiation of AD, MCI, and
normal aging remains difficult, and the distinction between MCI and normal aging is
especially problematic. We hypothesized that FC between the hippocampus and other
brain structures is altered in AD and MCI, and that measurement of abnormal FC could
have diagnostic utility for the classification of different AD stages.

Methods: Elderly adults aged 60–85 years were assigned to AD, MCI, or normal
control (NC) groups based on clinical criteria. Functional magnetic resonance scanning
was completed by 119 subjects. Five dimension reduction/classification methods were
applied, using hippocampus-derived FC strengths as input features. Classification
performance of the five dimensionality reduction methods was compared between AD,
MCI, and NC groups.

Results: FCs between the hippocampus and left insula, left thalamus, cerebellum, right
lingual gyrus, posterior cingulate cortex, and precuneus were significantly reduced in AD
and MCI. Support vector machine learning coupled with sparse principal component
analysis demonstrated the best discriminative performance, yielding classification
accuracies of 82.02% (AD vs. NC), 81.33% (MCI vs. NC), and 81.08% (AD vs. MCI).
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Conclusion: Hippocampus-seed-based FCs were significantly different between AD,
MCI, and NC groups. FC assessment combined with widely used machine learning
methods can improve AD differential diagnosis, and may be especially useful to
distinguish MCI from normal aging.

Keywords: Alzheimer’s disease, hippocampus, functional connectivity, classification, SVM

INTRODUCTION

Alzheimer’s disease (AD) is a progressive and irreversible
neurodegenerative disease that leads to cognitive and physiologic
dysfunction. The predicted 2050 prevalence of AD is estimated
at 135.46 million patients (Fan et al., 2019). The histopathology
of AD includes neuronal and synaptic degeneration, as well
as senile plaque formation featuring extracellular deposits
of β-amyloid protein (Glenner and Wong, 1984; Braak and
Braak, 1991b, 1998) and intracellular neurofibrillary tangles
comprised of hyperphosphorylated tau protein (Bancher et al.,
1989; Braak and Braak, 1995). However, AD is idiopathic, and
current therapies only alleviate symptoms or delay progression.
Investigating the pathophysiology of AD is essential to elucidate
its potential etiologies.

Brain functional connectivity (FC) is a descriptive measure
of spatiotemporal correlations between distinct regions of the
cerebral cortex (Friston et al., 1993; Wang et al., 2006) that
can yield new insights into the relationship between brain
functional deficits and underlying structural disruptions (Kaiser,
2011; Wee et al., 2011). Multiple lines of evidence suggest that
AD and several psychiatric diseases are related to disruption or
enhancement of FC (Bullmore and Sporns, 2009; Qiao et al.,
2017). In turn, the efficacy of cognitive behavioral therapy for
manic depressive disorder and post-traumatic stress disorder
may result from strengthened FC between cortical centers of
cognitive control and the amygdala, potentially enhancing top-
down control of dysregulated affective processes (Shou et al.,
2017). However, most studies have focused narrowly on brain
regions with abnormal connectivity, and have not further
extracted the characteristics of these regional abnormalities to
facilitate differential diagnosis. Clinically relevant information
encoded in abnormal connectivity could be used to improve
clinical diagnosis and disease classification.

Machine learning has been widely used in medical image
processing due to its sensitive identification of patterns within
large data sets. Numerous algorithms have been proposed
to extract features from magnetic resonance and computed
tomographic (CT) images to classify stages of AD. However,
meaningful intermediate functional and structural information
of the brain is unavailable (Cao et al., 2017, 2018). Novel
machine learning algorithms provide new approaches to analyze
differences in FC; these interdisciplinary research tools may
promote the further development of medical imaging. For
example, by extracting 93 volumetric features, Zhang et al. (2011)
adopted a linear support vector machine (SVM) to evaluate the
classification of AD. However, most studies only use structural
magnetic resonance imaging (MRI) results such as voxel-
wise tissue probability (Klöppel et al., 2008), cortical thickness

(Desikan et al., 2009), and hippocampal volumes (Gerardin et al.,
2009) to classify AD or MCI.

Hippocampal function is essential to memory performance;
impairments are associated with AD. The utility of hippocampal
shape and volume measurements to support the diagnosis of
AD has been evaluated in multiple MRI studies (Gerardin
et al., 2009; Amoroso et al., 2018). Platero and Tobar (2016)
proposed a fast multiple-atlas segmentation method to measure
hippocampal volume for the discrimination of AD/MCI patients
from elderly controls. However, volumetric analysis is limited
to the evaluation of local changes, and may be confounded by
a high degree of normal variation. In addition to structural
MRI, another important modality for the diagnosis of AD or
MCI is resting-state functional MRI (fMRI). To date, the vast
majority of studies that combine MRI with machine learning to
classify AD or MCI have used region of interest-based rather
than voxel-wise analysis (Meier et al., 2012; Wang C. et al., 2019).
Voxel-wise FC analysis (Bejr-Kasem et al., 2018; Bagarinao et al.,
2020) using the hippocampus as a seed region could represent
a more targeted approach to demonstrate relationships between
the hippocampus and the whole brain, and could potentially
facilitate the differential diagnosis of MCI and AD.

MATERIALS AND METHODS

Study Design
Elderly adults aged 60–85 years were assigned to AD, MCI,
or normal control (NC) groups based on clinical criteria (see
below), and then underwent fMRI scanning. We first selected
the hippocampus as the seed region and constructed FC maps
in a voxel-wise manner. We then used five machine learning
algorithms to reduce dimensionality using hippocampus-derived
FC strengths as input features to classify patients with AD
or MCI, and normal controls (NC), and compared the
accuracy of the five algorithms. The study protocol was
approved by the Medical Ethics Committee of Qilu Hospital of
Shandong University.

Participants
Written informed consent was obtained from all subjects or their
families using an informed consent approved by the Medical
Ethics Committee of Qilu Hospital of Shandong University.
Inclusion criteria included (1) right-handedness; (2) age of 60–85
years; and (3) ability to perform neuropsychological testing and
tolerate MR scanning.

Exclusion criteria included: (1) metabolic diseases, such
as hypothyroidism and vitamin B12/folic acid deficiencies;
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(2) history of psychiatric disorders such as depression or
schizophrenia; (3) history of neurologic diseases associated with
cognitive deficits (e.g., Parkinson’s syndrome or epilepsy); (4)
history of drug or alcohol abuse; (5) receipt of neurotropic
medications; (6) contraindications to MRI; and (7) CT or MRI
abnormalities consistent with brain infarction or hemorrhage.
Enrollment was limited to Chinese Han subjects to avoid
population stratification artifacts.

After enrollment, subjects were assigned to either the AD,
MCI, or NC group. AD subjects were selected according
to the following inclusion criteria: (1) diagnosis of probable
AD according to the National Institute of Neurological and
Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association criteria; and (2)
Clinical Dementia Rating (CDR) of 1 or 2. Subjects were assigned
to the MCI group as described previously (Petersen et al., 1999)
based upon: (1) subjective memory complaints of at least 6
months duration; and (2) CDR of 0.5. Inclusion criteria for
NCs included: (1) normal physical status; (2) CDR of 0; and
(3) absence of subjective memory complaints. Demographic and
clinical variables that were evaluated for all groups included
gender, age, educational level, Mini-mental Status Examination
(MMSE) score, and CDR.

Data Acquisition
A Siemens verio 3.0 Tesla MR scanner (Erlangen, Germany)
was used to generate MR images. Tight and comfortable foam
padding was used to minimize head movement, and earplugs
were provided to mask scanner noise. Resting-state fMRI data
were obtained using Gradient-Echo Single-Shot Echo-Planar
Imaging sequence (GRE-SS-EPI) with the following imaging
parameters: repetition time (TR)/echo time (TE) 2000/30 ms;
field of view (FOV) 220 mm × 220 mm; matrix 64 × 64; flip
angle (FA) 90◦; slice thickness = 3 mm; and slice gap 1 mm;
36 transversal slices; 180 volumes. Subjects were instructed to
close their eyes, remain awake and as stationary as possible, and
not to concentrate on particular thoughts for the duration of
the fMRI scan. Sagittal 3D T1-weighted images were generated
by magnetization-prepared rapid acquisition gradient echo
sequence (TR/TE 2000/2.3 ms; inversion time 900 ms; FA 9◦;
matrix 256× 256; slice thickness 1 mm, no gap; 192 slices).

Data Preprocessing
Preprocessing of functional images was accomplished by using
the Resting-State fMRI Data Analysis Toolkit plus V1.23
(RESTplus)1 based on MATLAB. Considering the magnetic field
instability and the frequency of movement artifacts during the
initial scanning period, the first 10 volumes were removed and the
remaining 170 volumes were evaluated. Slice-timing correction
was performed to ensure the consistency of slice acquisition
times. The resulting fMRI data sequences were realigned to
compensate for head movement. Because small head movements
contaminate FC results (Power et al., 2012), scans with more
than 3 mm maximum translation in x, y or z, or 3◦ of maximum
rotation about three axes were excluded. Framewise displacement

1http://restfmri.net/forum/index.php

(FD) was calculated to index volume-to-volume displacement in
the head position. The FD was calculated from the derivatives of
the rigid body realignment estimates used to realign fMRI data
(Power et al., 2012). fMRI data sequences were then normalized
by DARTEL using T1 image “New Segment” and smoothed
with a 4-mm full-width half-maximum Gaussian kernel. Detrend
was then performed to improve image quality, and to estimate
nuisance covariates that included cerebrospinal fluid and white
matter signals and six head motion parameters. Finally, band-
pass filters were performed between 0.01 and 0.08 Hz.

Functional Connectivity
As an important structure for memory function, the
hippocampus may be especially relevant to the study of
Alzheimer’s disease. Consequently, we selected the hippocampus
as a seed region. However, because the neurophysiologies of
the left and right the hippocampus may differ, we used both
hippocampal aspects (from the Anatomical Automatic Labeling
template) as seeds, and performed voxel-wise calculations of
FC. The Pearson correlation coefficient between the time series
of seeds and each voxel measures the consistency of their
activities, which is defined as functional connection strength.
Three-dimensional FC maps were generated for each seed.
Fisher-z transformation was used to improve the normality of
functional connectivity (Lowe et al., 1998).

Statistical Analysis
Demographic and clinical characteristics were compared by the
Chi-square and non-parametric Kruskal–Wallis tests. The latter
was used to compare variables that are not subject to normal
distributions. Statistical analyses were performed with Statistical
Package for the Social Sciences (SPSS, Chicago, IL, United States,
version 22.0) and significance threshold was set to p< 0.05.

Left and right hippocampus seed-based FC maps were
subjected to statistical analysis. Analysis of covariance
(ANCOVA) was used to differentiate FC values among the
three groups. Meanwhile, the union of the significant regions
of the one-sample t-test in the three groups was used as the
mask of ANCOVA. Significant difference of statistical results was
set at p < 0.05 (with a combined threshold of p < 0.05 and a
minimum cluster size of 71 voxels), which was corrected by the
AlphaSim program in RESTplus software. Brain regions with
significant differences were extracted as masks. Two-sample
post-hoc t tests of intra-mask FC maps were performed by Data
Processing and Analysis for Brain Imaging2 between each pair of
the three groups (AD vs. MCI, AD vs. NC, and MCI vs. NC). The
intergroup significance level was set at p< 0.05 (with a combined
threshold of p< 0.05 corrected by the AlphaSim program).

Dimensionality Reduction
Machine learning methods have multiple applications in AD
because they can learn data features quickly and efficiently,
and can also fit the distributions of new data. Various machine
learning algorithms have been applied to AD diagnosis. However,
if a small number of four-dimensional fMRI images are directly

2http://rfmri.org/dpabi
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classified using machine learning methods, performance will
be poor and prone to over-fitting. We took the FC values of
the significant difference regions as individual characteristics,
supplemented by machine learning methods, to reduce over-
fitting and realize the classification of small-size samples. Taking
the regions with significant differences as masks, related subject
FC values in each mask were extracted and spliced into a
feature vector, which is the basis of using machine learning
for classification. Feature vectors contain dozens or hundreds
of functional connection values; consequently, the sample size
of our subjects is relatively small compared to the number
of features. This type of data can easily cause the Curse of
Dimensionality problem. Dimensionality reduction can save
computer memory requirements and prevent model over-fitting
by eliminating redundant features and reducing computational
complexity. Therefore, it is necessary to select features that are
more useful for classification, and to map high-dimensional
features to a low-dimensional space effectively. The following
methods have good performance in dimensionality reduction:
variance-threshold, mutual information, principal component
analysis, and sparse principal component analysis.

Variance-Threshold
Features whose variance is less than the set value were removed by
the variance threshold method. The variance calculation method
is shown in equation (1). Small variance indicates that data are
concentrated near a value; consequently, their contribution to
classification is relatively small. Insufficient threshold indicates
that only a small number of features are excluded, while excessive
threshold indicates a tendency to lose important information.
Consequently, the selection of an appropriate variance threshold
is critical.

Var (a)=
1
m

m∑
i=1

(ai−µ)2 (1)

Mutual Information
Mutual information is used to evaluate the correlation
between independent and dependent variables. MI can
measure the correlation between features and labels, to
select features highly related to labels. The MI method is usually
implemented by selecting a suitable threshold and defined
as equation (2).

I (X;Y)=
∑
xεX

∑
yεY

p
(
x, y

)
log

p
(
x, y

)
p (x) p

(
y
) (2)

Principal Component Analysis
Principal component analysis (Jolliffe, 1988) is a widely used
dimensionality reduction technique with a strict mathematical
foundation. Data is transferred from the original p-dimensional
coordinate system to a new coordinate system, with the largest
variance taken as the first coordinate axis direction, because the
maximum data variance yields the most valuable information.
The second new coordinate axis selects the direction which is
orthogonal to the first new coordinate axis and has the second
largest variance. This process is repeated n times. This process

can be realized by singular value decomposition of the feature
matrix, as shown in equation (3). Let X be a n×p matrix, where
n is the number of subjects and p is the number of features.
Through the resulting coordinate system, most of the variance is
contained in the first several coordinate axes, while the variance
of the later axes is almost zero. Consequently, dimensionality may
be reduced by selecting the first few axes and excluding the later
axes for analysis.

X = UDVT (3)

where, T indicates transpose, U indicates the principal
components of unit length, and the columns of V are
the corresponding loadings of the principal components.
Most of the information will be contained in the first few
principle components.

Sparse Principal Component Analysis
The SPCA algorithm reduces dimensionality and the size of
explicitly used variables (Zou et al., 2006). PCA can be formulated
as a regression-type optimization problem, thus the elastic net
(Zou and Hastie, 2003) can be directly integrated into the
regression criterion to produce sparse loadings (Zou et al., 2006).
The optimization function of SPCA is expressed by equation
(4), where X is the data matrix, and the second and third items
are elastic net penalty terms. Whereas, the same λ is used for
all k components, different λ1,j are allowed to penalize the
loadings of different principal components. Optimization can be
solved by fixing α and β, and finally sparse principal components
can be obtained.

Efficient algorithms to realize SPCA for both regular
multivariate data (n>p) and gene expression arrays (n� p) have
been developed. Our data are directly applicable to the latter (Zou
et al., 2006).

(̂
α, β̂

)
= arg min

α,β

n∑
i=1

∣∣∣Xi−αβTXi

∣∣∣2+λ

k∑
j=1

∣∣βj∣∣2+ k∑
j=1

λ1,j
∣∣βj∣∣1

(4)
subject to α Tα = Ik.
We performed the above dimensionality reduction methods

on the FC features to extract efficient patterns for classifications.

Classification and Evaluation
Support vector machine with a radial basis function kernel
was selected for binary classification. SVM optimizes models
by introducing relaxation variables and adjusting penalty
coefficients. For each pair of the three groups (AD vs. NC, AD vs.
MCI, and MCI vs. NC), we extracted the functional connection
values (left and right, respectively) from regions with significant
differences in the two-sample post-hoc t test as mask (left and
right, respectively), and then fused the left and right functional
connection values to form a n p feature matrix, in which n is
the total number of subjects in the two compared groups, and p
is the total number of features (FC values). After dimensionality
reduction, feature matrices were classified by SVM.

Leave-one-out cross validation (LOOCV) was used to evaluate
the accuracy of the three binary classification tasks. One subject
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is used as the test set, and the remaining subjects are used as
the training set for dimensionality reduction and classification
experiments. Specifically in each iteration, the training set is
performed dimensionality reduction and classification first, and
then the testing set is used to test the effect of the training model.
LOOCV performs n iterations (n is the number of individuals
in the binary classification tasks) after the statistical analysis.
Each iteration uses one subject to test the model, while the
remaining subjects are used to train the model. This procedure
was repeated until each subject was used as a test set once. The
final classification accuracy shown in Table 1 was expressed as the
percentage of subjects correctly predicted by these models. We
perform let-one-out experiments before the statistical analysis
to evaluate the experimental results consistency as shown in
Figure 1. Left and right hippocampus seed-based FC maps have
good repeatability and reproducibility in 10 iterations. The FC
maps comparison of each iterations in detail were shown in
Supplementary Material.

RESULTS

Participants
A total of 127 right-handed elderly Chinese adults were enrolled.
Eight subjects (6 AD, 1 MCI, and 1 NC) were excluded from
analyses due to excessive head motion during scanning. The
remaining 119 subjects included 44, 30, and 45 in the AD,
MCI, and NC groups, respectively. There were no significant
intergroup differences in age, gender, or years of education.
However, MMSE scores were significantly different between the
three groups (Kruskal-Wallis test, p < 0.001) and between each
pair of groups (Bonferroni corrected, p< 0.05/3) (Table 2).

Hippocampal Connectivity Analyses
Within Normal Control, Mild Cognitive
Impairment, and Alzheimer’s Disease
Groups
The NC group displayed significant connectivity between the
left and right hippocampus and several brain regions that
included the medial prefrontal cortex, posterior cingulate cortex
(PCC), precuneus, inferior temporal cortex and inferior parietal
cortex, and overlapped with regions of the default-mode network
(Raichle et al., 2001). The number of regions with significant
functional connections to the left and right hippocampus was
substantially reduced in the AD and MCI groups compared to
the NC group (Figure 2).

Differences in Hippocampal Connectivity
Among Alzheimer’s Disease, Mild
Cognitive Impairment, and Normal
Control Groups
Left Hippocampus as Seed
Post-hoc t tests revealed that the AD group had decreased FC in
the PCC and increased FC in the left insula compared with the
NC group. Compared with the MCI group, the AD group showed

TABLE 1 | Demographic and behavioral characteristics.

AD MCI NC p value

Number 44 30 45

Male/Female 16/28 17/13 15/30 0.104

Age (Mean ± SD)
years

67.43 ± 7.37 67.5 ± 7.28 65.0 ± 6.31 0.317

Education
(Mean ± SD) years

9.93 ± 3.98 8.97 ± 3.88 10.49 ± 3.83 0.223

MMSE score
(Mean ± SD)

19.27 ± 3.22 22.57 ± 2.45 28.07 ± 1.94 <0.001

CDR score
(Mean ± SD)

1.20 ± 0.51 0.5 0 <0.001

MMSE, Mini-Mental State Examination; CDR, Clinical Dementia Rating.

significantly decreased FC in left thalamus and cerebellum.
Compared with the NC group, the MCI group showed increased
FC in the right lingual gyrus and left thalamus (Figure 3).

Right Hippocampus as Seed
The AD group showed significantly decreased FC in the PCC
compared with the NC group. In addition, the AD group
exhibited decreased FC in the PCC, precuneus, and cerebellum
compared to the MCI group (Figure 3). No significant FC
differences were demonstrated between the MCI and NC groups.

Classification Accuracy
Sparse principal component analysis combined with SVM
achieved the best classification performance, with an accuracy of
82.02% (AD vs. NC), 81.08% (AD vs. MCI), and 81.33% (MCI
vs. NC). SPCA+SVM exhibited the largest area under the ROC
curve and had the best classification performance as shown in
Figure 4.

DISCUSSION

We analyzed FC maps of both the left and right hippocampus,
which are of critical importance to memory function and early
deficits in AD and MCI. Bilateral hippocampal-whole brain FC
maps of AD, MCI, and normal elderly controls were subjected
to dimensionality reduction and classification. The combination
of SPCA and SVM yielded high classification accuracies, and
may offer an accurate modality to facilitate the differential
diagnosis of MCI and AD.

Abnormal FCs were located primarily in the PCC, precuneus,
insula, lingual gyrus, thalamus, and cerebellum in the AD and
MCI groups. The PCC and precuneus are core regions of the
default-mode network initially described by Raichle et al. (2001)
that has been closely linked with episodic memory (Daselaar
et al., 2004; Greicius et al., 2004). Functional deficits of these
regions are associated with cognitive deficits. For example, the
PCC plays an important role in spatial orientation, self-appraisal,
internal monitoring, and memory processing (Gusnard et al.,
2001; Greicius et al., 2003). In addition, abnormal resting-state
hippocampal-PCC FC has been reported in both AD and MCI
(Wang et al., 2006; Sorg et al., 2007). Moreover, precuneal
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FIGURE 1 | A preprocessing, feature extraction, and classification framework.

TABLE 2 | Recognition accuracy of dimensionality reduction methods.

AD vs.NC (%) MCI vs. NC (%) AD vs. MCI (%)

SVM 78.65 76.00 77.03

VAR+SVM 78.65 76.00 78.38

MI+SVM 78.65 77.33 77.03

PCA+SVM 77.53 76.00 79.73

SPCA+SVM 82.02 81.33 81.08

The bold values are the best results of our experiments.

dysfunction plays a fundamental role in the memory impairment
of early AD (Koch et al., 2018). Consistent with previous studies,
our findings suggest that decreased FC in the PCC and precuneus
might reflect impaired memory and cognition in AD and MCI.

More specifically, the MCI group showed increased FC
in the left thalamus and right lingual gyrus compared with
the NC group. Previous studies have indicated that the
thalamus plays an important role in declarative memory and
in modulating communication in all areas of the cerebral
cortex (Van der Werf et al., 2003; de Rover et al., 2008). Amyloid
deposits and neurofibrillary tangles have been found in the
thalamus in MCI (Braak and Braak, 1991a), and significant
thalamic gray matter loss has been reported in AD (Karas
et al., 2004). Recently, Wang J. et al. (2019) found that FC
was increased in the lingual gyrus in MCI, suggesting disease-
related compensatory adaptations of brain networks, consistent
with our results.

Notably, compared with the NC group, the AD group showed
enhanced connectivity of the middle and posterior left insula.
The insula regulates cerebral circulation and facilitates memory
as well as emotional and sensory processes (Bonthius et al., 2005).
AD is associated with insular gray matter loss (Guo et al., 2012),
and disrupted connectivity (Xie et al., 2012; Liu et al., 2018). Our
finding of increased FC of the left insula in AD is noteworthy
because it might represent a compensatory adaptation to offset
impaired memory and cognition. Lin et al. (2017) found
higher fractional amplitude of low-frequency fluctuations in the
insula and inferior frontal gyrus in a group at genetic risk of
AD, suggesting that these regions play a critical role in the
mitigation of neurodegeneration. Furthermore, neurofibrillary
tangle density is significantly greater in the agranular cortex
located in anterior insula than in the dysgranular and granular
cortex of the middle and posterior insula of AD patients
(Bonthius et al., 2005), which suggests increased vulnerability
of the anterior insula. Thus, increased FC of the middle and
posterior insula might represent a compensatory mechanism to
re-establish normal brain function.

Computer-aided classification techniques that combine
machine learning methods to MRI or PET have been
applied for the diagnosis of AD or MCI (Ortiz et al., 2016;
Lu et al., 2018). The most widely used classifier is SVM,
which extracts information from MRI or PET images to build
predictive classification models that facilitate clinical diagnosis
(Cortes and Vapnik, 1995; Rathore et al., 2017). However,
high-dimensionality and small-size training samples cause
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FIGURE 2 | Representation of connectivity of the left and right hippocampus to multiple cortical regions in AD, MCI, and NC groups. Although connections to
multiple regions are noted in AD and MCI, their number and extent are reduced compared to NC.

FIGURE 3 | Significant hippocampal FC differences in AD, MCI, and NC groups. For left hippocampal FC: Decreased FC in the PCC, increased FC in the left insula
in AD group compared with the NC group. Compared with the MCI group, the AD group showed decreased FC in the left thalamus and cerebellum. The MCI group
showed increased FC in the right lingual gyrus and left thalamus compared with the NC group. For right hippocampal FC: FC in PCC was significantly decreased in
the AD group compared with NC group. Significantly decreased FC in PCC, precuneus and cerebellum in AD group compared to the MCI group. Blue and red
regions indicate decreased or increased FC, respectively.

the Curse of Dimensionality and performance degradation.
Therefore, reductions of the dimensionality of feature vectors
are necessary. MI and VAR are usually applied to select efficient

features, while PCA and SPCA can extract essential patterns
from large data sets. Feature selection is used to identify
representative features and to reduce the dimensionality of the
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FIGURE 4 | Comparison of the ROC curves based on SVM, VAR+SVM, MI+SVM, PCA+SVM, and SPCA+SVM. ROC curves and AUC show that SPCA combined
with SVM has the best performance for the three tasks.

feature space, and demonstrates good classification performance.
The retention of an excessive number of features weakens
the effect of dimensionality reduction, while the analysis of
an insufficient number of features can result in the loss of
important information. In the case of high-dimensional data,
MI and VAR performance characteristics are limited. Feature
extraction is used to transform high-dimensional feature vectors
into low-dimensional feature vectors through a method of
mapping or transformation. Traditional PCA is widely used in
various applications, but the process of high-dimensional to
low-dimensional mapping is actually a linear combination of
original feature variables. The performance of PCA degrades
when faced with high-dimensional data. SPCA is an extension
of PCA, that has an extra sparse loading structure by using
the Lasso (elastic net) (Zou and Hastie, 2003; Zou et al., 2006).
The regularized sparse model facilitates the simplification
of feature vectors and the alleviation of over-fitting. During
the optimization procedure, Lasso penalty can search for

uncorrelated directions and reduce discriminative projection
vectors. In addition, the sparse constraint facilitates noise
reduction in the function connection value and the extraction
of robust features. Consequently, SPCA enables sparse results
and facilitates the mapping of high to low dimensions. Our
final experimental results also demonstrate the effectiveness
and robustness of our proposed framework. Moreover, for data
with size n × p (n� p), setting λ to infinity as proposed in
SPCA accelerates the calculation process. The highly accurate
classification results generated by our algorithm suggest that
abnormal FC between the hippocampus and whole brain is a
clinically relevant and reliable diagnostic biomarker.

LIMITATIONS

Our study had several limitations. First, the sample size in
this study was relatively small. A much larger sample should
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be collected to improve the robustness and generalizability
of the classification model. Second, multimodal features
such as diffusion tensor imaging, cognitive scale scores, and
cerebrospinal fluid tau protein levels should also be investigated,
which may lead to higher classification accuracy. Finally, a
comparison of our results with large benchmark datasets would
be valuable. The implementation of a classification model based
on public datasets should be considered for future research.

CONCLUSION

We calculated FCs between the bilateral hippocampus and the
whole brain in AD, MCI, and NC. Both the left and right
hippocampus have significantly enhanced or attenuated FC to
multiple important brain regions, primarily the PCC, left insula,
left thalamus, and cerebellum. The abnormal FC values of each
subject were extracted as discriminative patterns, which when
combined with SPCA for dimensionality reduction and SVM
for classification, facilitated the highly accurate differentiation of
MCI from NC. Our results suggests that abnormal hippocampal
connectivity may serve as a potential neuroimaging biomarker to
expedite the early diagnosis of AD and MCI.
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