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Human papillomavirus (HPV) is the most common sexually transmitted virus. The

high-risk HPV types (i.e., HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59) are

considered to be the main etiological agents of genital tract cancers, such as cervical,

vulvar, vaginal, penile, and anal cancers, and of a subset of head and neck cancers. Three

prophylactic HPV vaccines are available that are bivalent (vs. HPV16, 18), tetravalent (vs.

HPV6, 11, 16, 18), and non-avalent (vs. HPV6, 11, 16, 18, 31, 33,45, 52, 58). All of

these vaccines are based on recombinant DNA technology, and they are prepared from

the purified L1 protein that self-assembles to form the HPV type-specific empty shells

(i.e., virus-like particles). These vaccines are highly immunogenic and induce specific

antibodies. Therapeutic vaccines differ from prophylactic vaccines, as they are designed

to generate cell-mediated immunity against transformed cells, rather than neutralizing

antibodies. Among the HPV proteins, the E6 and E7 oncoproteins are considered almost

ideal as targets for immunotherapy of cervical cancer, as they are essential for the onset

and evolution of malignancy and are constitutively expressed in both premalignant and

invasive lesions. Several strategies have been investigated for HPV therapeutic vaccines

designed to enhance CD4+ and CD8+ T-cell responses, including genetic vaccines (i.e.,

DNA/ RNA/virus/ bacterial), and protein-based, peptide-based or dendritic-cell-based

vaccines. However, no vaccine has yet been licensed for therapeutic use. Several

studies have suggested that administration of prophylactic vaccines immediately after

surgical treatment of CIN2 cervical lesions can be considered as an adjuvant to prevent

reactivation or reinfection, and other studies have described the relevance of prophylactic

vaccines in the management of genital warts. This review summarizes the leading

features of therapeutic vaccines, which mainly target the early oncoproteins E6 and

E7, and prophylactic vaccines, which are based on the L1 capsid protein. Through

an analysis of the specific immunogenic properties of these two types of vaccines,

we discuss why and how prophylactic vaccines can be effective in the treatment of

HPV-related lesions and relapse.
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INTRODUCTION

Despite the introduction of prophylactic vaccines, the incidence
of human papillomavirus (HPV)-related tumors remains high
(1), particularly in developing countries of the sub-Saharan
region. The current HPV prophylactic vaccines have indications
for use in women up to the age of 45 years, but they are
predominantly administered to adolescent of 9–15 years. As
most cancers develop decades after an initial HPV infection, the
impact of this vaccination program will be seen in the long-
term. Therefore, setting-up a therapeutic vaccine that can provide
results similar to surgical treatment or chemotherapy represents a
challenge for the eradication of HPV-induced tumors. However,
therapeutic vaccines are not yet available for clinical practice.

Several studies have suggested that administration of HPV
prophylactic vaccines after surgical treatment of high-grade
cervical intraepithelial neoplasia (CIN2-3) can be considered as
an adjuvant to prevent HPV reactivation or reinfection. The
relevance of prophylactic vaccines has also been demonstrated in
the management of genital warts, although clinical studies have
not delivered univocal results to date.

In this review, the HPV-related tumors and the life cycle of
HPV are described, to better understand the characteristics of
the different viral proteins that are targeted by prophylactic and
therapeutic vaccines. Then, we summarize the leading features
of prophylactic and therapeutic vaccines that target the L1 and
E6, E7 oncoproteins, respectively. Finally, through an analysis
of the specific immunogenic properties of these two types of
vaccines, we discuss how prophylactic vaccines can be effective
for the treatment of HPV-related lesions, and for prevention of
HPV-related relapse.

HPV PREVALENCE

Human papillomavirus is the main agent of sexually transmitted
diseases, and it can cause cancer in different anatomical districts
with different prevalences (2). The highest proportion of HPV
attribution as responsible for a cancer is for the cervix, where
>99% of specimens are HPV-positive. In 2012, HPV-invasive
cervical cancers reached >500,000 cases, which resulted in
∼250,000 deaths around the world1. HPV-related cancers are
differently distributed across genders: among women, 8.6% of
cancers are linked to HPV infections, while in men, <1% of
cancers are attributable to HPV2,3. Differences are also observed
in the geographic distributions of invasive cervical cancers:
more than 85% occur in developing countries, where cervical
screening programs and HPV vaccination campaigns are rarely
available4 (3, 4). HPV infection in a cervical site is frequently
asymptomatic, and >90% of these resolve within 2 years without
medical intervention (5), apparently through rapid immune
clearance. However, the protective power of natural anti-HPV
antibodies and the duration of immunity after infection are not

1https://gco.iarc.fr/
2https://publications.iarc.fr/108
3https://monographs.iarc.fr/wp-content/uploads/2018/06/mono100B-11.pdf
4http://globocan.iarc.fr/old/FactSheets/cancers/cervix-new.asp

fully understood. Also, only 50–60% of women show detectable
anti-HPV antibodies after infection (6).

There are 15 high-risk (HR)-HPV genotypes that can lead to
cancers of the cervix, anus, penis, vagina, vulva, and oropharynx
(i.e., HPV16, 18, 3, 33, 35, 39, 45, 51, 52, 56, 58, 68, 73, 82)
(7). The relevance of HPV to each of these individual cancers is
now considered.

Cervical Cancer
Overall, 90% of cervical cancers are attributed to HR-HPV
types. HPV16 and HPV18 are the most prevalent in invasive
cervical cancer, where they account for 62.5 and 15.7% of
cases, respectively (8). HPV-associated cancers include cervical
squamous cell carcinoma (70%), cervical adenocarcinoma (25%),
and mixed histology tumors (7)5. An immunocompromised
status represents a risk factor for cervical dysplasia, as well as for
latent reactivation of HPV at genital sites. Patients with human
immunodeficiency virus (HIV) infection have a 5-fold greater
risk of acquiring HPV-associated cervical cancer than those
without HIV infection. Precancerous (squamous) intraepithelial
lesions are categorized as low-grade (LSIL) and high-grade
(HSIL) (9).

Anal Cancer
Anal intraepithelial neoplasia (AIN1-3) represents the precursor
of invasive anal cancers, where 65% are cervical squamous cell
carcinomas. For both sexes, 88–94% of these cancerous lesions
are positive for HPV DNA, with HPV16 as the most commonly
detected (∼87% of HPV-positive tumors), while only 9% of these
anal cancers harbors HR-HPV186.

Annually, about 18,000 women are diagnosed with anal cancer
worldwide, and this cancer is more frequent in women than
in men (10). Furthermore, anal cancer incidence is increasing,
which appears to be due to changes in sexual risk factors for HPV
transmission (11). Persistent anal HPV infection is the major
cause of anal cancer7 (12). Women with a history of cervical
cancer and cervical intraepithelial neoplasia grade 3 (HSIL)
are also at increased risk of anal cancer. Cervical HR-HPV–
positivity is associated with anal HR-HPV prevalence. In a study
carried out by Lin, anal HR-HPV prevalence was significantly
higher in cervical HR-HPV–positive women (43%) vs. cervical
HR-HPV–negative women (9%) (13). These associations were
even stronger for HPV16-positivity: in cervical HPV16-positive
women, anal HPV16 prevalence was 41%, while in the HPV16-
negative cervical group, anal HPV16 prevalence was 2%.

In men, the risk of anal cancer development is strictly related
to sexual behavior and HIV immune status (14).

Penile Cancer
Approximately 50% of penile cancers can be attributed to HPV
infections, although HPV also infects healthy subjects without
progressing to neoplasia. In a British study carried out among
43 couples, 69% of the men were HPV-positive in the uro-genital
tract (15). Another study in the USA showed similar high levels of

5https://seer.cancer.gov/archive/csr/1975_2004/
6https://monographs.iarc.fr/wp-content/uploads/2018/06/mono90.pdf
7https://monographs.iarc.fr/wp-content/uploads/2018/06/mono100B.pdf
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HPV prevalence, with 65.5% of the men HPV-positive: 51.2% of
them harbored at least one typed HPV, and 14.3% of them were
positive for an unclassified HPV infection (16). HPV clearance
is observed in 75% of cases within 1 year (17). HPV-positivity
is greater in penile intraepithelial neoplasia (PIN 1,2,3), which
is considered the precursor of penile cancer, and in basaloid
histological neoplasia (range, 75–80%) than in invasive cervical
squamous cell carcinoma (range, 30–60%). HPV16 and HPV18
are the HPV types that are most frequently associated with all
types of penile cancers2.

Vulvar Cancer
It is estimated that 40–50% of vulvar cancers are associated
with HPV. Overall, vulvar cancers represented 3% of gynecologic
cancers in 2002 (18), and 60% of were observed in developed
countries (18, 19)8. Vulvar intraepithelial neoplasia (VIN) is
considered a precursor of vulvar squamous cell carcinoma, which
represents >90% of vulvar cancers (20). The World Health
Organization recognizes a three-grade system of VIN (i.e., VIN1-
3), and VIN3 is considered as a precursor of invasive vulvar
cancer. However, until recently, VIN2-3 had been considered
as HSIL, and VIN1 (or LSIL) is no longer used, as there
is misclassification of these low-grade lesions: these are often
actually condilomata acuminata with transient HPV infection,
or an inflammatory status of the vulva (21). VIN can be caused
by two distinct etiological agents: HPV, which is linked to the
usual form of VIN (uVIN), and differentiated VIN (dVIN) is
associated with lichen sclerosus (22, 23). Generally, uVIN is
common among young women, while dVIN is frequently seen
for post-menopausal women. In VIN3/HSIL lesions, HPV16 had
been detected in >91% of cases (24).

Vaginal Cancer
Cancer of the vagina is rare, and it accounts for only 2% of
gynecological neoplasia. Nevertheless, from 2000 to 2015 there
was an increase in vaginal cancer, which corresponded to 0.4% of
vulvar carcinomas in the USA9. Vaginal intraepithelial neoplasia
(VAIN) is considered a pre-malignant lesion. Previously, a three-
tiered classified was used (VAIN1-3) according to epithelial
involvement. In 2014, the World Health Organization revised
this classification by substituting VAIN2-3 withHSIL, andVAIN1
with LSIL (25). About 82% of high-grade lesions (i.e., vaginal
intraepithelial lesions, VAIN3, HSIL) and 91% of invasive vaginal
carcinomas test positive for HPV DNA and/or HPV antibodies.
HPV16 is the most prevalent HPV type in HSIL and vaginal
cancers2 (26–29).

Head and Neck Cancer
The most common head and neck cancers are squamous cell
carcinomas (HNC) and they include neoplasia of the oral cavity,
tongue, tonsils, oropharynx, hypopharynx, and larynx. The HR-
HPV types most frequently detected in head and neck cancers are
HPV16, followed by HPV182 (30, 31). Head and neck cancers are
frequent in southern-central Asia (32); however, an increase in

8https://www.ncbi.nlm.nih.gov/books/NBK12354/
9http://www.seer.cancer.gov

head and neck cancer incidence has been seen over recent years
in developed countries (33) and among Caucasian men (34).
Tonsillectomies can increase the overall survival rates of patients
with diagnosis of tonsil carcinoma (35), but it does not influence
the overall risk of oropharyngeal cancer (36).

A reduction in HPV-positive oropharyngeal cancer is
observed in people with a specific genetic locus in the human
leukocyte antigen region (HLA-DRB1∗1301-HLA-DQA1∗0103-
HLA-DQB1∗0603) (37). This protective effect might involve
increased immune targeting of HPV-infected cells through the
major histocompatibility complex haplotype binding to HPV
peptides, resulting in a strong CD4+ T-cell response (38).

Respiratory Papillomatosis
Different annual incidences of respiratory papillomatosis have
been reported in different countries. For example, in Denmark,
similar incidence has been reported in children (juvenile onset)
(3.6/100,000 children) and in adults (3.9/100,000 adults) (38),
while in the USA the annual respiratory papillomatosis incidence
is 3-fold higher in children than in adults (4.6 vs. 3.9/100,000
children/adults) (39).

HPV6 and HPV11 are the main genotypes detected in
respiratory papillomatosis. As spontaneous regression is rarely
observed, surgical treatment is necessary to prevent progression
of the lesions. Moreover, recurrence of papillomatosis is often
observed, and retreatment is needed in most cases, which comes
at a high economic burden (40). Although no structured trials
have been carried out to date, HPV vaccine administration prior
to the onset of sexual behavior might have a positive impact on
prevention of respiratory papillomatosis in adulthood.

Genital Warts
Human papillomavirus infection can not only cause cancer,
but also benign genital warts. These are very diffuse in the
young and in adults, with prevalence from 4 to 11% (41–43).
Treatment of genital warts includes therapies with imiquimod
and podophyllotoxin, or surgical procedures, or cryotherapy and
tricloroacetic acid. These medical interventions represent high
costs for both private insurance (44) and health systems (45).

Condylomas were classically considered a benign lesion, with
the exception of Buscke-Lowenstein tumors. This large tumor
can undergo local invasion and can transform into anal cervical
squamous cell carcinoma (46).

VIRAL CHARACTERISTICS AND IMMUNE
RESPONSES

Life Cycle of HPV
Human papillomaviruses are non-enveloped icosahedral viruses
that consist of 72 capsomers and are 55 nm in diameter. The
viral genome is a circular double stranded DNA of ∼8,000 bp
in length.

According to the time-regulated expression of proteins
during the viral cycle, three functional genome regions can be
distinguished: (i) the early region that encodes the E1, E2, E4,
E5, E6, E7, E8 viral proteins that have regulatory functions in
infected epithelial cells; (ii) the late region that encodes the two

Frontiers in Immunology | www.frontiersin.org 3 February 2020 | Volume 11 | Article 188

https://www.ncbi.nlm.nih.gov/books/NBK12354/
http://www.seer.cancer.gov
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Garbuglia et al. Prophylactic and Therapeutic Vaccines in Preventing HPV-Related Diseases

viral capsid proteins L1 and L2; and (iii) the long control regions
(also known as upstream regulatory regions) that contain cis-
acting regulatory sequences that are involved in the control of
viral replication and post-transcriptional phases (Figure 1).

Different viral proteins are expressed in different layers of the
epithelium. The early proteins are expressed in basal epithelial
cells, while the late proteins are expressed in the granular layer
that includes more differentiated cells, and from where the virus
is assembled and released. E1 is an ATPase helicase that is
involved with E2 in viral replication and transcription regulation.
The E1 and E2 complex interacts with the long control region
ori site, which is considered to be the origin of HPV DNA
replication (47–53). In the initial phase of infection, the HPV
DNA genome is in the episomal form. It shows low amplification
activity and there are ∼100 copies/cell (54). E2 ensures episomal
maintenance of the HPV genome through interactions with
other cellular factors. For example, Bromo-domain protein 4
(BRD4) is a mitotic chromosome-associated protein that is a
critical binding partner for E2 for this activity (55). BRD4 and
E2 co-localize on condensed mitotic chromosomes, and mediate
episome segregation (55). E2 also regulates transcription of the
E6 and E7 oncoproteins, the expression of which depends on
an early promoter. E1 to E4 are encoded by a spliced RNA, and
along with E5, they are translated under early promoter control
in undifferentiated cells, and they appear to facilitate efficient
productive replication in differentiating cells (56, 57).

E6 and E7 are small proteins of about 150 and 100 amino
acids, respectively. The E6 oncoprotein acts through its PDZ-
binding motif, which promotes its interactions with PDZ
domains in multidomain proteins, to alter their functionality.
These PDZ domains are present in many multidomain proteins
that regulate key steps in the cellular processes of apoptosis,
adhesion, and polarity (37–43, 58). E6 also impairs the
activity of the p53 protein, which prevents DNA damage
accumulation through induction of DNA repair, cell-cycle arrest,
or apoptosis, which leads to transformation of HPV chronically
infected cells.

The main targets of E7 are the pRB, p107, and p130 proteins,
which are components of a complex that can repress the E2F
transcription factor (59, 60). When E7 interacts with pRB, p107,
and p130, it induces their degradation, and so E2F is free to
activate genes such as cyclins A and E, to promote transition
from G1 to S-phase of the cell cycle (61). The productive viral
cycle also includes the synthesis of the late proteins L1 and L2 in
the suprabasal epithelial cell layers, and this step is characterized
by a change in mRNA splicing (62, 63). Icosahedral virions are
composed of 360 L1 proteins that are organized in pentamers,
each of which is associated with one monomer of L2. The
productive life cycle is completed when the virions self-assemble,
after packaging of the amplified HPV DNA genome, with the
viral particles then shed from the epithelial cell layers (64).

Natural Immune Response
The immune response has an important role in clearing
most HPV infections, although sometime the virus cannot be
eliminated and can persist for several years, which represents
a risk factor for neoplasia development (65). HPV-associated

neoplastic progression is linked to dysregulated expression of
the early viral genes. Specifically, increased expression of the E6
and E7 proteins in the basal epithelium leads to increased cell-
cycle entry and loss of differentiation across the epithelium. The
main cause of dysregulated HPV gene expression is integration
of the viral genome into the host chromosomes (66). HPV
DNA integrates randomly into the host DNA. During this
process, the viral DNA can often be broken at any position
within the E1-E2 region, with the loss of E2 function, and the
consequent overexpression of E6 and E7 that promotes cellular
transformation (67–69). However, a proportion of cervical
cancers are associated with episomal DNA only. In such cases, the
E2 open reading frame integrity is maintained, and this protein is
expressed throughout the progression of the malignancy.

In natural infections, both humoral- and cell-mediated
immune responses are induced. Genital infection with oncogenic
HPV is common, but only a minority of infected patients
develop epithelial lesions or cancer (70). Spontaneous clearance
of an established infection is likely to be mediated by the
cellular immune responses. Indeed, strong Th1 CD4+ T-cell
responses that are specific for HPV16 E6, E7, and E2 have been
frequently detected in peripheral blood mononuclear cells of
healthy individuals (71). In contrast, responses against HPV16
E6, E7, and E2 have rarely been detected in patients with HPV16-
positive genital lesions or antigen-specific proliferative responses
that show a non-inflammatory cytokine profile (72, 73).

Similarly, effective HPV18-specific T-cell responses are only
seen in healthy controls, and not in HPV18-positive patients
(74). For the role of CD8+ T-cells in disease regression, a
comparison of CD8+ T-cell responses to E6 and E7 using
enzyme-linked immunospot assays in individuals with incident
or prevalent HPV 16 or 18 infections did not show any significant
difference in the frequency of positivity between these two patient
groups (33 vs. 40%) (75). At variance with this, in CIN2/3
lesions, more CD8+ T-cells were seen for the epidermis of
tissues that went on to regress (76). Also, large numbers of
intraepithelial CD8+ tumor-infiltrating lymphocytes have been
associated with an absence of lymph-node metastases in patients
with large early stage cervical cancer (76). Taken together,
these findings indicate that the development of high-risk HPV-
positive cervical cancer is associated with failure of HPV-specific
T-cell responses.

The humoral immune response to HPV infection is mainly
directed against conformational epitopes in the variable regions
of the major coat protein L1 (77). This develops slowly, and
is usually weak. Indeed, seroconversion appears to occur 6–18
months after infection, and type-specific antibodies to L1 are
detected in 60–70% of womenwho acquire HPV infection (6, 78).
HPV-seroprevalence is considerably lower in men than women,
and it has been suggested that HPV-seropositive women might
have higher antibody levels than HPV-seropositive men (79).

IgG and IgA are the most abundant isotypes in sera from
natural infections. Other HPV antigens (e.g., E1, E2, E6, L2) do
not commonly induce antibody responses in patients with acute
or persistent HPV infections.

Studies that have investigated whether naturally acquired
HPV antibodies can protect against subsequent HPV infections
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FIGURE 1 | Linear diagram of HPV16 genome showing the eight open reading frames (ORFs), the early (pAE), and the late (pAL) polyadenilation sites; p97, promoter

of E6 and E7 viral oncoproteins; p670, promoter of the late proteins.

have reported mixed results (80–82). More recently a systematic
review and meta-analysis that included >24,000 individuals
showed that natural HPV antibodies provide protection against
subsequent type-specific genital HPV infections in females.
However, given that the antibody titers in natural immunity
are considerably lower than those observed with vaccination,
and that antibody responses are preferentially induced in
women and are not induced in all infected individuals, it
is likely that protection through the development of natural
immunity is inferior to protection obtained from HPV
vaccination (83).

HPV VACCINES

Prophylactic Vaccines
Three prophylactic vaccines for prevention of HPV infection are
available at present: a bivalent vaccine against HPV16 andHPV18
(Cervarix) that was approved in 2007; a tetravalent vaccine
against HPV6, 11, 16, and 18 (Gardasil) that was approved in
2006; and a nonavalent vaccine against HPV6, 11, 18, 31, 33,
45, 52, 58 (Gardasil 9) that was approved in 2016. However, the
non-avalent vaccine is the only HPV vaccine that is currently
available in the USA, and it was approved for males and females
from 9 to 45 years by the US Food and Drug Administration in
late 2018.

Initially, the administration of the HPV vaccines was in three
doses, with the more recent change to a two-dose schedule driven
by evaluation of girls aged 9–13 years who had received either
two or three doses. The antibody responses of the young women
(aged 16–26 years) who had followed a two-dose schedule were
similar to those who received all three doses (84). Therefore,
in 2016, the Advisory Committee on Immunization Practice
declared that there was only the need for two doses of vaccine
for those under 15 years of age. However, for females who
start the vaccination between 15 and 45 years old, a three-dose
schedule is recommended (at 0, 1–2, and 6 months) (84, 85)10.
Also immunocompromised patients should follow the three-dose
schedule regardless of sex and age at vaccination (86).

10https://www.cdc.gov/hpv/dowloads/9vhpv-guidance.pdf

All three of these vaccines use recombinant DNA
technology and are prepared from the purified L1 protein,
which self-assembles to form HPV type-specific empty shells
(virus-like particles; VLPs). Only intact VLPs can generate
protective antibodies, which supports the evidence that
conformational epitopes of L1 are required to generate
neutralizing antibodies (87).

The evidence that HPV VLP vaccines protect against
high viral challenges through induction of neutralizing anti-
L1 antibodies was obtained in preclinical studies in animals,
which thus provided the strong rationale for development
of VLP-based vaccines. In particular, in a canine model of
experimentally induced oral papillomas, it was demonstrated that
dogs vaccinated with the major capsid protein, L1, of canine
oral papillomavirus developed antibodies against canine oral
papillomavirus and became completely resistant to the viral
challenge (88). Similarly, vaccination of rabbits with L1 VLPs
protected them against papillomas induced by cottontail rabbit
papillomavirus (89). In addition, in both of these animal models,
passive transfer of immune serum protected the dogs and rabbits
against the canine oral papillomavirus and cottontail rabbit
papillomavirus challenges, respectively.

In humans, analysis of vaccine-induced antibody responses
measured by several methods has demonstrated that almost 100%
of vaccinated individuals generate a strong type-restricted serum
antibody response to L1 VLP. These methods have included
conventional enzyme-linked immunosorbent assays, competitive
radioimmunoassays, competitive Luminex-based immunoassays,
and pseudovirion-based neutralization assays.

Initial and follow-up studies that assessed the immunogenicity
of the HPV 16/18 AS04-adjuvant vaccine in 15- to 25-year-old
women showed that after vaccination, anti-HPV16 and anti-
HPV18 total IgG antibodies peaked at month 7, reached a plateau
between months 18 and 24, and remained constant for up to 76
months (90). Measurement of the neutralizing antibodies using
pseudovirion-based neutralization assays confirmed high levels
of functional antibodies as well. Then evaluation of long-term
immunogenicity of the HPV16/18 vaccine in the serum of 15-
to 55-year-old females revealed that the seropositivity for anti-
HPV16 remained high in all of the age groups 10 years after the
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first vaccination. For anti-HPV18, there were more seropositive
females in the 15- to 25-year-old group (99.2%) than for the 26-
to 45-year-olds (93.7%) and 46- to 55-year-olds (83.8%) (90). In
these studies, the anti-HPV16 and anti-HPV18 titers remained
above natural infection levels in all of the age groups, and more
interestingly, they were predicted to persist for more than 30
years after vaccination (91).

Comparisons of the immunogenicities of the HPV16/18
and HPV6/11/16/18 vaccines in healthy women aged 18–45
years revealed that 7 months after vaccination, the serum
neutralizing antibody responses elicited by the bivalent vaccine
were significantly higher than those for the HPV6/11/16/18
vaccine. The differences in these responses for HPV16 and
HPV18 were maintained at month 24, and also up to month 60
in women aged 18–45 years.

Antibody titers induced by vaccination are higher than those
produced by natural infection11. Responses to HPV vaccination
is weakly influenced by gender, with higher seroconversion in
males than females (99 vs. 93%), and by age, with higher antibody
titers in women aged 9–15 years (92, 93). The FUTURE I trial
demonstrated that the efficacy of the tetravalent HPV vaccine
was 100% against condyloma in HPV-naïve women, and 70%
(vaginal condyloma) to 78% (vulvar condyloma) in the overall
population. The efficacy of the non-avalent vaccine is comparable
to that of the tetravalent vaccine against condyloma (94).
Prophylactic HPV vaccines show excellent protection against
high-grade CIN (i.e., CIN2, CIN3) and adenocarcinoma in
situ for HR-HPV–naïve women. In particular, the non-avalent
vaccine showed the highest efficacy for prevention of onset of
CIN1 (relative risk reduction, 98.9%), CIN2 (97.1%), and CIN3
(100%) neoplasia (95).

Data for vaccine prevention against AIN are more limited.
In the Guanacaste study, the tetravalent HPV vaccine prevented
HPV16/18 infection in anal anatomic sites in 84% of women
who were HPV-seronegative at baseline (96). Palefsky reported
77.5% prevention of AIN among HPV-naïve men aged 16–
26 years who had sex with men (MSM) (97). The tetravalent
vaccine also protects heterosexual naïve men from both
anogenital HPV infections and HPV lesions, with an efficacy
against infections and associated lesions of >90% (98). Also
a Finnish randomized trial reported significant reduction of
genital HPV infections in men following HPV16/18 vaccine
administration (99).

For oropharyngeal cancer prevention, a risk reduction of
93.3% for precursor lesions of HPV-induced oral cancer was
reported for the Guanacaste study (96). However, further studies
are needed to demonstrate the efficacy of these vaccines on
oropharyngeal cancer development.

Therapeutic Vaccines
The therapeutic vaccines differ from the prophylactic vaccines
as they are aimed at the generation of cell-mediated immunity,
rather than neutralizing antibodies. Although prophylactic
vaccines can prevent HPV infections in 100% of cases, and
precancerous cervical lesions (i.e., CIN) caused by the HPV

11http://www.rho.org/files/WHO_HPV_tech_info_nocover_2007.pdf

TABLE 1 | Conventional treatment of HPV-related cancers.

Cancer HPV related lesion Conventional treatment

High-grade CIN 1. Loop electrosurgical excision procedure.

2. Cold knife.

3. Cone biopsy.

4. Electrofulgaration.

5. Cold-coagulation.

6. Cryotherapy.

Cervical cancer 1. Conization.

2. Radical hysterectomy.

3. Chemotherapy.

Vulvar intraepithelial neoplasia

(VIN) and vulvar cancer

1. Surgical excision.

2. Topical agents (imiquimod).

3. Photodynamic therapy.

AIN and anal cancer 1. Ablative.

2. Chemotherapy (5-fluoracil,

imiquimod, cidofovir).

PeIN and penile cancer 1. Surgical treatment.

2. Cisplatinum-based regimen.

CIN, cervical intraepithelial neoplasia; AIN, anal intraepithelial neoplasia; PeIN, penile

intraepithelial neoplasia.

genotypes included in the vaccine, HPV-related lesions remain
a public problem worldwide for several reasons: (i) only 8%
of low and middle income countries have introduced HPV
vaccination programs12; (ii) HPV types that are not included
in vaccines might be responsible for cancers (100); (iii) the cost
of requirements for a cold chain and the absence of sanitary
infrastructure limits HPV vaccine deployment in developing
countries; and (iv) HPV vaccines are recommended for young
women (9–26 years old), and as women older than 26 years are
not vaccinated, they can develop cancers. It is also estimated that
the impact of HPV vaccination on cancer incidence might not be
appreciated for at least 20 years from any mass vaccination.

Currently, the treatment of high-grade disease (CIN2-3)
includes electrosurgical excision of the transformation zone, with
carbon dioxide lasers or knives used to perform conization, where
the entire transformation zone is removed (101, 102) (Table 1).
Incomplete excision, however, can occur, and HPV transformed
cells can remain, which will facilitate recurrent neoplasia. Hence,
there is the need for a therapeutic vaccine that can fully eliminate
malignant cells.

The aim of a therapeutic vaccine against HPV is to
induce in-vivo virus-specific T-cell responses against established
HPV infections and lesions. For therapeutic vaccination
to deliver unequivocal clinical benefits, improvements must
be achieved at two levels: by maximizing the induction
of T-cell responses with optimal amplitude, specificity and
effector profile; and by ensuring that vaccine-induced T-
cells can reach the tumor site and perform their functions
without restraint (103).

Among the HPV proteins, the E6 and E7 oncoproteins are
considered to be almost ideal targets for immunotherapy of
cervical cancer, as these proteins are essential for the onset and

12https://apps.who.int/iris/bitstream/handle/10665/251810/WER9148.pdf;

jsessionid=12D591BAA8A2E02CEB5223020DFC3526?sequence=1
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evolution of malignancy, and are constitutively expressed in
both premalignant and invasive lesions, while being absent in
healthy cells (104). E6 and E7 have therefore been included in
most therapeutic vaccines developed to date. Usually, a DNA
sequence that encodes a fusion protein of E6 and E7 is inserted
into a vector, and mutations are introduced into the regions
that are responsible for the E6 interactions with p53, and the E7
interactions with pRB, to reduce their oncogenic power. The E1
and E2 viral proteins are also attractive candidates for therapeutic
vaccines that target early viral infections, as they are highly
expressed before viral genome integration (105).

Several strategies have been investigated for HPV therapeutic
vaccines designed to enhance CD4+ and CD8+ T-cell responses,
including genetic vaccines (e.g., DNA/ RNA/ virus/ bacterial),
and protein-based, peptide-based or dendritic-cell-based
vaccines. Among the bacterial vectors, live attenuated Listeria
monocytogenes has been used to generate a promising HPV
therapeutic vaccine. L. monocytogenes is considered a potent
vaccine vector because it enters professional antigen-presenting
cells and induces antigen-presenting cell maturation, and
strong innate and adaptive immunity (106). In addition,
L. monocytogenes grows very efficiently in vitro and lacks
lipopolysaccharides, which are a major toxicity factor with
Gram-negative bacteria (104). The safety of a recombinant live
attenuated L. monocytogenes secreting E7 as a fusion protein
joined to non-hemolytic listeriolysin O (Lm-LLO-E7) was
demonstrated in a phase I clinical study that was conducted
with 15 patients with late-stage metastatic cervical cancer
(107). Evaluation of the efficacy of Lm-LLO-E7 (also known
as ADXS11-001) in a prospective phase II clinical trial as
second-line and third line for patients with recurrent metastatic
cervical cancer showed that 12-month overall survival was
38%, which exceeded the historical overall survival of such
patients, of 25%. A phase III clinical trial of Lm-LLO-E7 for
high-grade cervical cancer is being conducted at the time of
writing (see NCT02853604).

Encouraging data have also been obtained in clinical studies
that have tested DNA-based vaccines. DNA vaccination consists
of direct introduction into tissues of a plasmid that contains
the DNA sequence that encodes the antigen(s) against which an
immune response is sought. This relies on in-situ production of
the antigen(s) as a result of the transfection of antigen-presenting
cells and non-antigen-presenting cells, with the presentation
of the expressed antigen(s) by both MHC class I and class II
molecules. Furthermore, this results in activation of all three arms
of the adaptive immune response (i.e., helper T cells, cytotoxic T
cells, antibodies).

However, although DNA vaccines have been shown to
induce balanced CD4+ and CD8+ T cells as well as humoral
immune responses in small animal models, clinical data from
multiple studies have demonstrated that they induce poor T-cell
responses (108).

Many strategies to facilitate antigen processing and
presentation, and also antigen delivery, have been adopted
to ameliorate the immunogenicity of DNA vaccines against
HPV (109–111).

A phase I study was carried out using the DNA vaccine
VGX-3100 that consists of a mixture of two plasmids that
encode the optimized consensus of the E6 and E7 genes of HPV
genotypes 16 and 18. These were delivered via intramuscular
injection, followed by electroporation, with 18 patients who
had been previously treated for cervical intraepithelial neoplasia
(CIN2/3). This study showed that 78% of the patients developed
CD8+ T-cell responses, and 100% showed antibody positivity
to at least two vaccine antigens (112). Notably, the peripheral
blood T-cell responses elicited by VGX-3100 were an order of
magnitude greater than naturally occurring responses, and a log
unit greater than those previously reported for HPV therapeutic
vaccines (112).

In 2015, the efficacy, safety, and immunogenicity of VGX-
3100 was assessed in a phase II clinical trial in patients
with CIN2/3. In the per-protocol analysis, 30.6% of the
placebo recipients and 49.5% of the VGX-3100 recipients
showed histological regression. Concomitant histopathological
regression and viral clearance occurred in 14.3% of placebo
recipients compared with 40.2% of vaccinated recipients (113).
Post-hoc immunological analysis here demonstrated that VGX-
3100 elicited significantly increased frequency of T-cell responses
against HPV16/18 E6 and E7, and that the magnitude of the T-
cell response against E6 was associated with clinical outcome.
Humoral immune responses were also lower in placebo recipients
than in VGX-3100 recipients, and the antibody responses against
HPV16, HPV18, and E7 were significantly higher in the patients
who had concomitant histopathological regression and viral
clearance, compared to those who did not (113). A phase III
clinical trial of VGX-3100 for women with CIN was initiated in
2017, and it is expected to end in 2021 (see NCT03185013).

Viral vectors including adenoviruses, adeno-associated
viruses, alphaviruses, and vaccinia viruses (e.g., modified vaccinia
Ankara virus; MVA) can be used to express the E2, E6, and E7
oncoproteins, and they can stimulate CD4+ and CD8+ T-cell
responses. A MVA vector was used to produce the Tipapkinogen
Sovacivec vaccine, which includes three exogenous genes that
encode the human cytokine interleukin-2, and non-oncogenic E6
and E7. This vaccinia virus can induce interferon-α production
and express HPV16 E6 and E7, which are presented by dendritic
cells to activate naïve T cells in lymph nodes. At a follow-up
of 2.5 years, compared to the placebo cohort at 10% viral
clearance, the administration of Tipapkinogen Sovacivec vaccine
provided complete resolution for 24% of patients with CIN2/3,
irrespective of their HR-HPV baseline infection (i.e., HPV16, 18,
31, 33, 35, 39, 45, 52, 56, 58, 59, or 68). However, despite this
significantly improved HPV viral clearance with this vaccine, it
has still not been licensed for clinical use because of the modest
efficacy (104).

Finally, a vaccine designed on recombinant MVA that
contained the bovine papillomavirus E2 protein (MVA E2) was
used to treat HPV-induced ano-genital intraepithelial lesions.
A phase III study showed that 90% of female patients had
complete elimination of lesions after treatment with MVA E2,
with 100% seen for men. All of these patients treated with
MVA E2 developed antibodies against the MVA E2 vaccine and
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generated a specific cytotoxic response against the papilloma-
transformed cells (114).

Interestingly, novel vaccination strategies aimed to maximize
systemic as well as genital resident memory T cell responses to
treat sexually transmitted infections and human papilloma virus
neoplasia are being developed. In this context several studies have
investigated the effect of either the topical delivery of host and
pathogen derived immunomodulatory molecules or the delivery
route of immunization in the induction of cervicovaginal long
lived CD8+ T cell responses (115).

HPV PROPHYLACTIC VACCINES USED AS
THERAPEUTIC VACCINES

The treatment of premalignant lesions (CIN2,3) by LLEP
or conization sometimes fails to prevent lesion recurrence
(116–118). This is often linked to incomplete excision of
transformation zone consciously carried out by gynecologists.
In fact, evidence shows that large excision of the cervix can
compromise cervix integrity and can cause adverse neonatal
outcome with preterm risk (119, 120). Moreover, recurrence risk
is greater in presence of HR HPV infection (116, 121).

A systematic review of studies of the treatment of high-grade
lesions (HSIL/ CIN2-3) reported that a median of 28% of the
women remained positive for oncogenic HPV types 3 months
after treatment. A decrease in this HPV persistence was seen
during follow-up, as it fell to 21% after 6 months (102). Also,
higher risks for the development of cervical and vaginal neoplasia
have been reported for women who had previously been treated
for CIN3, in comparison to the general female population, with
this higher risk persisting for 20–25 years, and possibly longer
(122). The risk of cervical cancer after treatment also increases
with age. A large study with long-term follow-up for women
treated for CIN3 reported standard incidence and mortality
ratios (i.e., treated vs. placebo) for cervical and vaginal cancers
of 10.58 and 7.60, respectively, for women aged 60–69 years, and
2.03 and 1.52, respectively, for women aged 30–39 years (123).
Also, women who had previously reported CIN3 lesions showed
greater probability of developing other HPV-related neoplasia of
the genital tract (e.g., vaginal, vulvar, anal) or the oropharyngeal
district (124).

As no vaccine has yet been licensed for therapeutic
use, the prophylactic vaccines have been tested in several
trials to determine their effectiveness for prevention of HPV
disease recurrence or reinfection after CIN2-3 treatment. The
recurrence for MSM who undergo treatment for high-grade anal
intraepithelial neoplasia (HGAIN) is particularly high, as 50%
show recurrence within 1 year (123). This makes it essential
to find a treatment that can reduce the development of high-
grade lesions in treated patients. In 2011, the effectiveness of
the tetravalent HPV vaccine for the prevention of recurrent
HGAIN was evaluated in HIV-negative, self-identified MSM
with a history of biopsy-proven and treated HGAIN. In the
340.4 person-years of follow-up, 30.7% of the non-vaccinated
patients developed recurrent HGAIN, compared to 13.6% of the
vaccinated patients. Among these patients who were infected

with HR-HPV types, the tetravalent vaccine was associated with
significantly decreased risk of recurrent HGAIN at 2 years
from study entry (hazard ratio, 0.47). To explain the partial
effectiveness of the tetravalent vaccine in this study, it was
speculated that some of these patients might have developed
diseases that were related to the HPV genotypes not covered by
the tetravalent vaccine or to multiple HPV infections. Further,
some HGAIN might not have been identified and treated
before the vaccinations, or the viral integration into the host
genome had already occurred. Unfortunately, these aspects were
not investigated.

In 2013, Kang et al. investigated the effectiveness of the
tetravalent HPV vaccine to prevent recurrence of CIN2-3 in
patients with high-grade CIN treated by the loop electrosurgical
excision procedure (125). Recurrence was seen for 7.2% of
the non-vaccinated patients and by 2.5% of the vaccinated
patients. In patients infected with HPV16 and/or HPV18, 8.5%
of the non-vaccinated patients and 2.5% of the vaccinated
patients developed recurrent disease related to these HPV types.
Although encouraging, these data indicate that the prophylactic
HPV vaccine had weak activity against such HPV16/18-related
high-grade lesions. Recently, a prospective clinical project,
the SPERANZA study, was carried out to determine the
effectiveness of the tetravalent vaccine for reduction of the risk
of clinical relapse in women treated for CIN2 (126). Overall,
344 women were included in the study, and 6.4% of the non-
vaccinated women showed clinical disease recurrence, while
for the vaccinated women, there was only 1.2% recurrence.
Vaccination here was associated with significantly reduced
risk of subsequent HPV-related high-grade CIN after cervical
surgery, at 81.2%. For the non-vaccinated women, the recurrent
clinical disease was attributed to HPV11, 16, 18, 31, 33, 45,
53, 82, while for the vaccinated women, the two cases of
clinical disease recurrence were associated with HPV33 and
HPV82. In this study, about 40% of the patients enrolled were
>36 years old, although neither the age range nor the age
of women with recurrent clinical disease were reported, and
thus it cannot be determined if the efficacy of the tetravalent
HPV vaccine was influenced by the age of the patients at
the time of their vaccination. At variance with this, a study
by Hildesheim et al. included 1,711 women with carcinogenic
human HPV infection and 311 women who received loop
electrosurgical excision for cervical precancer. Here, there was
no evidence that HPV16/18 vaccination alters the fate of an
HPV infection present at the time of vaccination, or the rates
of cervical infections and lesions after loop electrosurgical
excision. For these HPV16/18 infections, in the cohort of
women with HPV infection but without precancer, the efficacy
of clearance was 5.4%, with progression to CIN1 seen for
15.5%, and to CIN2, for 0.3%. Moreover, after the loop
electrosurgical excision, the vaccination had no significant effects
onHPV16/18 infections and/orHPV16/18-associated cytological
and histological lesions (127).

The data obtained on the efficacy of the tetravalent HPV
vaccine for the prevention of anal condylomas are, however, more
encouraging (128). Three hundred and thirteen MSM (mean
age, 42 years) were enrolled for a median of 981 days. During
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the follow-up, condyloma developed in 18.8% of non-vaccinated
patients, and in 8.6% of vaccinated patients. Moreover, several
clinical studies have demonstrated activity for HPV vaccination
in the treatment of genital warts (129–131).

Altogether, these data suggest that there is possibility that
prophylactic vaccines reduce the risk of HSIL recurrence
in previously infected patients, although the exact protective
mechanisms in infected individuals is not understood. The
high risk of recurring infections is consistent with either
auto-inoculation across anatomic sites or new inoculation or
episodic reactivation of latent infection. AsHPV vaccines prevent
infection by induction of L1-specific antibodies that block viral
entry, and L1 is not generally expressed during the oncogenic
process, it is expected that these vaccines will be effective in the
prevention of auto-inoculation or new infections.

The greater effectiveness obtained with prophylactic vaccines
in the prevention and regression of genital warts might
be related to the integration state of the HPV genome. In
genital warts, the virus is not generally integrated into the
host genome, and therefore viral particles are produced. In
this case, the prophylactic vaccines that block viral entry
through induction of L1-specific antibodies can prevent
reinfections, which will favor the elimination of the virus.
Conversely, in high-grade lesions, the virus genome is often
integrated into the host genome, and infected cells do not
express L1 and do not produce viral particles. Thus, as
transformed cells are frequently in the basal layer of the
derma, they will not be recognized by vaccine-induced
antibodies, which are ineffective in the control of the
disease course.

Furthermore, there are some cases in the treatment of HPV-
related cancers where the use of prophylactic vaccines might not
be recommended:

(1) Anal and cervical cancers that are not attributable to the
HPV types that are included in the non-avalent HPV vaccine.
Several studies have demonstrated that half of the HPV infections
in MSM are caused by HPV types that are not included in
the non-avalent HPV vaccine (132, 133) (Table 2). Here, over 2
years of observation, only about 30% of HIV-positive MSM had
incidents of HR-HPV infections that were covered by the non-
avalent vaccine (134). This situation can be also observed for
women (Table 2).

(2) HPV DNA-negative cervical tumors. Over recent decades,
several studies have reported that some cervical cancers are
HPV-negative (135–139). Often, HPV DNA negativity is due
to the sensitivity of the methods used in the HPV DNA
detection, and so samples that have tested as HPV-negative
might show as HPV-positive when retested with more sensitive
assays (e.g., nested PCR) (136). The Cancer Genome and
Molecular Characterization of Cervical Cancer Study used
next-generation sequencing to characterize primary cervical
cancers, and it established that 5% of the specimens were
HPV-negative. This subset of HPV DNA-negative cancers
is mainly observed among adenocarcinoma cancers, and
predominantly in gastric-type adenocarcinomas. The pattern of
immunostaining of gastric-type adenocarcinomas shows strong
and diffuse positivity for MUC-6 and HIK1083 antibodies,

TABLE 2 | Detail of cervical and anal samples from HIV positive patients with

squamous intraepithelial lesions and HPV DNA negative or positive for HPV types

that are not included in nonavalent vaccine.

N. of cases (%) Pt

HPV- 9v Neg

N. of cases (%) Pt

HPV DNA Neg

Cervical samples LSIL (n = 231) 72 (31.2) 70 (30.3)

HSIL (n = 55) 17 (30.9) 6 (10.9)

Anal samples AIN 1 (n = 18) 9 (50) 3 (16.7)

AIN 2 (n = 7) 5 (71.4) 0

AIN 3 (n = 1) 1 0

Pt, patient; LSIL, Low Grade Squamous Intraepithelial Lesion; HSIL, High Grade

Squamous Intraepithelial Lesion; AIN, Anal intraepithelial neoplasia; 9v, nonavalent

vaccine. These data are partially presented in CME event “Novità nel campo dell’infezione

da HPV,” Rome, 20th June 2018 INMI L Spallanzani IRCCS.

which recognize epitopes of gastric pyloric glycoproteins,
although they are p16 negative, which is a cell-cycle regulatory
protein (140). Gastric-type adenocarcinomas have significantly
higher rates of recurrence and mortality than HPV-positive
cancers (141, 142). Furthermore, progression and regression
of gastric-type adenocarcinomas are independent of HPV
infection, and thus HPV vaccine administration here would
be inappropriate.

CONCLUSIONS

The data reported in this review highlight the significant
efforts that have been carried out to set-up therapeutic vaccines
against HPV-related malignancies. Although several approaches
to produce an effective vaccine have been attempted, including
the use of proteins, synthetic peptides, and viral proteins
expressed in different vectors, and although some of the data
appear encouraging, no therapeutic vaccines have been licensed
in clinical practice yet. Recently, prophylactic vaccines have
been used for treatment of recurrent forms or reinfections
in subjects who have previously undergone surgical resection.
However, the trials here have offered conflicting results, and
vaccination did not guarantee 100% effectiveness. This is
probably due to a residual burden of transformed cells that can
persist after the surgical treatment, and that are not targeted
by the humoral L1-specific immune response induced by the
prophylactic vaccines. Although it cannot be excluded that the
therapeutic potential of prophylactic vaccines could be improved
by using different adjuvants or route of immunization, an
additional limit in using prophylactic vaccines for therapeutic
purposes is seen by the evidence that the non-avalent vaccine
does not include all of the HR-HPV types. As the real
extent of protection given by the non-avalent vaccine against
other HPV types is not known, its use in the treatment of
tumors related to these other HR-HPV types is questionable.
Furthermore, for endometrial adenocarcinomas, such as gastric-
type adenocarcinomas, which are HPV DNA-negative, careful
virological and histological diagnosis must be made before
administration of HPV prophylactic vaccines to treat HPV
recurrence or reinfection.
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