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Computational chemistry has now been widely accepted as a useful tool for shortening
lead times in early drug discovery. When selecting new potential drug targets, it is
important to assess the likelihood of finding suitable starting points for lead generation
before pursuing costly high-throughput screening campaigns. By exploiting available
high-resolution crystal structures, an in silico druggability assessment can facilitate the
decision of whether, and in cases where several protein family members exist, which of
these to pursue experimentally. Many of the algorithms and software suites commonly
applied for in silico druggability assessment are complex, technically challenging and
not always user-friendly. Here we applied the intuitive open access servers of DoGSite,
FTMap and CryptoSite to comprehensively predict ligand binding pockets, druggability
scores and conformationally active regions of the NUDIX protein family. In parallel we
analyzed potential ligand binding sites, their druggability and pocket parameter using
Schrödinger’s SiteMap. Then an in silico docking cascade of a subset of the ZINC
FragNow library using the Glide docking program was performed to assess identified
pockets for large-scale small-molecule binding. Subsequently, this initial dual ranking of
druggable sites within the NUDIX protein family was benchmarked against experimental
hit rates obtained both in-house and by others from traditional biochemical and fragment
screening campaigns. The observed correlation suggests that the presented user-friendly
workflow of a dual parallel in silico druggability assessment is applicable as a standalone
method for decision on target prioritization and exclusion in future screening campaigns.

Keywords: druggability, nudix, drug discovery, workflow, malachite green

INTRODUCTION

The nucleoside diphosphates attached to sequence-x (NUDIX) hydrolase protein family was
recently comprehensively and exhaustively reviewed by Carreras-Puigvert et al. (2017) NUDIX
proteins possess a conserved sequence, called the NUDIX box, i.e., Gx5Ex5[UA]xREx2EExGU),
which differs little between individual members which are otherwise of low sequence similarity.
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Structural and domain analysis revealed three major groups and
one outlier, NUDT22, mostly based on their already reported
activity against substrate classes such as diphosphoinositol
polyphosphates (Caffrey et al., 1999, 2000) and NADH
diphosphates (Abdelraheim et al., 2003). Subsequently, a
systematical screening against a large set of substrates was
performed and painted a rather promiscuous picture of
the NUDIX hydrolases, indicating backup functionality or
redundancy. Consequently, a global expression analysis was
performed and showed a clear dependency on tissue of origin
and the corresponding cancer tissue. Interestingly, NUDT1,
NUDT5, and NUDT14 amongst others were present in a cluster
of highly expressed proteins, confirming a potential role in
cancer as reported earlier (Choi et al., 2011; Gad et al., 2014;
Huber et al., 2014; Wright et al., 2016). Importantly, when
evaluated for epistasis, it became apparent that several NUDIX
members sustain relations as measured in cell viability and
cell cycle perturbations and that these interactions are more
important for cancerous cells. With this overview in structure,
expression, substrate specificity and relation, the NUDIX protein
family members gained considerable attention as potential drug
targets. The original interest in pharmacological modulation
of NUDIX members was sparked by the notion that NUDT1
is overexpressed in several cancer cell types, while its role in
healthy cells can largely be compensated for as evidenced by
the normal life-span of knock-out mice (Tsuzuki et al., 2001).
Besides GTP and dGTP, NUDT1 hydrolyzes several oxidatively
damaged DNA nucleotides including 8-oxo-dGTP and 2-OH-
dATP, thus preventing their incorporation into DNA, which

FIGURE 1 | Published NUDIX inhibitors: TH588 was developed as a first in class NUDT1 inhibitor at Science for Life Laboratory and Karolinska Institutet (Gad et al.,
2014); (S)-Crizotinib is a potent NUDT1 inhibitor and the enantiomer of (R)-Crizotinib (Huber et al., 2014), a clinically applied tyrosine kinase inhibitor; optimized by
Astra-Zeneca; AZ-15, AZ-21 and AZ-24 are distinct chemotype inhibitors targeting NUDT1 (Kettle et al., 2016); BAY-707 (Ellermann et al., 2017) was discovered as a
NUTD1 inhibitor by Sprint Bioscience; IACS-4759 (Petrocchi et al., 2016) is a NUDT1 inhibitor developed by MD Anderson; MI-743 is a selective inhibitor of NUDT1 in
gastric cancers (Zhou et al., 2019); Compound 5 was reported by Gilead and inhibits NUDT1 (Farand et al., 2020); TH5427 was synthesized as a lead compound
against NUDT5 (Page et al., 2018); NUDT7-COV-1 is a covalent inhibitor generated by electrophile screening and fragment combination (Resnick et al., 2019).

otherwise would lead to DNA damage and ultimately cell death.
This led to the hypothesis that increased expression of NUDT1,
and hence improved sanitization capacity of oxidatively damaged
DNA bases from the nucleotide pool, would enable cancer cells
to cope with the increased oxidative stress they are exposed
to compared with healthy cells. Gad and coworkers published
TH588 (Figure 1) as the first small-molecule NUDT1 inhibitor
with efficacy in mouse xenograft models (Gad et al., 2014),
although subsequent potent and selective NUDT1 inhibitors
disclosed by AstraZeneca, MD Anderson, Gilead and Sprint
Bioscience/Bayer failed to reproduce these findings with regards
to cytotoxicity (Figure 1) (Kettle et al., 2016; Petrocchi et al.,
2016; Ellermann et al., 2017; Farand et al., 2020). The validity of
NUDT1 as an anticancer target has thus been questioned and is
still under debate (Warpman Berglund et al., 2016; Samaranayake
et al., 2017). Regardless, these studies served to demonstrate
significant amenability to small-molecule inhibition of NUDT1,
justifying the question as to how this translates to other members
of the NUDIX family.

Besides NUDT1, a series of potent, drug-like NUDT5
inhibitors have been described by Page and coworkers (Page et al.,
2018). The lead compound TH5427 (Figure 1) was shown to
block progestin-dependent, PAR-derived nuclear ATP synthesis
and subsequent chromatin remodeling, gene regulation and
proliferation in breast cancer cells, suggesting that targeting
NUDT5 may represent a novel therapeutic approach for breast
cancer treatment. Most recently, the covalent NUDT7 inhibitor
NUDT7-COV-1 was developed by employing electrophilic
fragment screening and a fragment combination approach
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(Figure 1) (Resnick et al., 2019). To the best of our knowledge no
potent inhibitors for any of the other NUDIX hydrolase members
have been disclosed to date, although there are public data on
hit rates for selected family members on the Structural Genomics
Consortium homepage1, 2.

One aspect not addressed in the recent comprehensive review
(Carreras-Puigvert et al., 2017) is an assessment of the potential
druggability of the different NUDIX family members, i.e., their
amenability to be modulated by drug-like small molecules.
With the recent dawn of PROTACs, synthetic neoantigens and
biologics, but also established targeting strategies like allosteric
modulation or active site inhibition, several scenarios of how to
target a protein may be exploited.With that in mind, druggability
as such is no longer restricted to active site inhibition of a protein
by a small molecule with an optimized small-molecule drug-
like profile. Both orthosteric or catalytic sites and secondary,
allosteric sites, may be equally interesting to be targeted for the
development of small-molecule chemical probes and potential
drug candidates. As high-resolution crystal structures of 18 out
of the 22 human NUDIX hydrolases are now available, a family-
wide in silico druggability assessment for available sites is feasible.

Here we use several open-access binding site analysismethods,
i.e., DoGSite (Volkamer et al., 2012)3, CryptoSite (Cimermancic
et al., 2016)4, and FTMap (Kozakov et al., 2015)5, as well as
the commercial SiteMap and in silico fragment screening of a
fragment library using Glide to probe the NUDIX hydrolase
protein structures for potential small-molecule binding sites
and assess their druggability and suitability for a prospective
drug discovery campaign. This established in silico prioritization
workflow within the NUDIX family is further supported
by results obtained from biochemical screens employing the
malachite green assay (Baykov et al., 1988) as well as differential
scanning fluorimetry (DSF) (Niesen et al., 2007) fragment
screens for some of the family members. This correlation
with own experimental results and those published previously
highlights the benefit of this comparably low-cost computational
assessment workflow prior to applying experimental screening
methods for the rapid evaluation of target druggability.

MATERIALS AND METHODS

Protein Preparation and Validation
Available crystal structures of human NUDIX hydrolases with
the highest resolution were imported into Maestro (Schrödinger
Suite 2019-1, Schrödinger, LLC, New York, NY, 2019.) The
structures were then prepared using the Protein Preparation
Wizard as implemented in the Schrödinger Suite. Briefly, raw
PDB structures were processed by automatically assigning bond

1Fragment Screening. Available online at: https://www.thesgc.org/fragment-
screening (accessed August 8, 2019).
2NUDT15.Manuscript Submitted.
3Zentrum für Bioinformatik: Universität Hamburg - Proteins Plus Server. Available
online at: https://proteins.plus/ (accessed June 3, 2019).
4Cryptic binding site. Available online at: https://modbase.compbio.ucsf.edu/
cryptosite/ (accessed June 3, 2019).
5FTMap: A Small Molecule Mapping Server. Available online at: http://ftmap.bu.
edu/login.php (accessed June 3, 2019).

orders, adding hydrogens, creating zero-order bonds to metals,
converting selenomethionine to methionine, adding missing
side-chains, creating possible disulfide bridges, deleting waters
beyond 5.0 Å of hetero groups (if present), and generating
hetero protonation states at pH 7.0. Residues with alternate
positions were locked in the conformations with the highest
average occupancy. Small ligands and metal ions originating
from crystallization buffer were removed. The hydrogen bonding
networks were optimized automatically, by sampling water
orientations and optimization of hydroxyls, Asn, Gln, and His
residue states using ProtAssign. Any remaining water molecules
were subsequently removed. A restrained minimization was
then performed using the OPLS3e force field, until an RMSD
convergence of 0.30 Å was reached for the heavy atoms. Finally,
the minimized NUDIX structures were aligned to the structure
of NUDT1 (3Q93) with respect to the backbone atoms of the
A chain.

DoGSite
The protein structures as prepared above were exported as
PDB files, uploaded to the DoGSite server and assessed for
binding sites and their corresponding DrugScores according to
the published protocol (Volkamer et al., 2012). Pocket Size and
DrugScores were extracted for all identified sites and annotated
to pocket numbers.

FTMap
All prepared PDB files were uploaded to the FTMap server and
interrogated for number of probes per cluster found according to
the published protocols (Kozakov et al., 2015; Vajda et al., 2018).

CryptoSite
All prepared PDB files were uploaded to CryptoSite server and
assessed for amino acid flexibility according to the published
protocol (Cimermancic et al., 2016). Amino acid residues
exceeding a Cryptic Site Score of 0.10 were extracted.

SiteMap
Prepared protein structures were submitted to SiteMap analyses
as implemented in Schrödinger Suite 2019-1. The 5 top-ranked
potential binding sites were identified. At least 15 site points
per reported sites were required. The more restricted definition
of hydrophobicity together with a standard grid (0.7 Å) were
used. Site maps at 4 Å or more from the nearest site points were
cropped. Clustering of the SiteMap parameters was performed
using the heatmaply library in R6. The SiteMap parameters were
transformed using “percentize,” and average linking was used
for clustering.

Virtual Fragment Screening
1) Fragment subset selection: a subset of the ZINC Frags Now set

(Irwin et al., 2012) was created by applying a number of filters
implemented in a Knime workflow (Knime 3.5.2, Berthold
et al., 2008). Foremost, only fragments available from a list
of 19 preferred suppliers, composed by a team of experienced

6Introduction to Heatmaply. Available online at: https://cran.r-project.org/web/
packages/heatmaply/vignettes/heatmaply.html (accessed April 16, 2020).
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medicinal chemists were considered. These were then filtered
using a cascade of structural filters, including REOS (Walters
and Murcko, 2002), PAINS (Baell and Holloway, 2010)
and a set of in-house filters (ScrapFilter) compiled over
the years. Lipinski-type descriptors (SlogP, TPSA, AMW,
NumLipinskiHBA, NumLipinskiHBD, NumRotatableBonds,
NumHeavyAtoms, NumRings, NumAromaticRings) were
then calculated using the RDKit Descriptor Calculation
node. An additional descriptor HetRatio was then calculated
as the ratio of NumLipinskiHBA and NumHeavyAtoms,
and fragments with HetRatio <0.2 or >0.5 were filtered
out. Finally, remaining outliers were removed by applying
Gaussian Z-score normalization on the descriptor space,
and then filtering out fragments with descriptor values
deviating more than 3 units from the mean. The entire
filtering cascade reduced the original input file of 704,041
structures as downloaded from ZINC to 205,891 fragments
(Supplementary Data Sheet 1).

2) Ligand preparation: the selected fragment subset was then
prepared for docking using LigPrep (Schrödinger): the
OPLS3e force field was used for minimizations; possible
ionization states at pH 7.0 ± 2.0 were generated using
Epik (Shelley et al., 2007; Greenwood et al., 2010), metal
binding states were added, and tautomers were generated;
specified chiralities were retained and at most 4 stereoisomers
were generated per structure. This yielded 345,044 structures
for docking.

3) Receptor grid generation: Glide docking grids (Friesner et al.,
2004, 2006; Halgren et al., 2004) were generated for each target
protein by focusing the grid box on the center of the site
with the highest Dscore as determined by SiteMap (Halgren,
2007, 2009). The size of the box enclosing the grid was set to
16 Å. No constraints, rotatable groups or excluded volumes
were defined.

4) Virtual screening: The Virtual Screening Workflow as
implemented in Schrödinger Suite was used for docking,
scoring, and ranking of the top-1,000 fragments against the
sites with the highest Dscore as determined by SiteMap.
The workflow comprised a cascade of docking steps with
increased accuracy (Glide HTVS → SP → XP), where
the top-10% ranked ligands are passed on to the next step.
After Glide XP docking the top-1,000 ranked fragments were
retained for druggability assessment based on their combined
docking scores.

Biochemical Screening
Small-molecule screening of NUDT2, NUDT15, and NUDT16
at a compound concentration of 10µM was conducted using
coupled enzymatic assays as already described for NUDT1
(Gad et al., 2014) and NUDT5 (Page et al., 2018). In brief
this involved the purification of recombinant proteins following
overexpression in E. coli and subsequent validation of coupled
enzymatic assays based on cognate substrates for each of these
[Ap4A for NUDT2, dGTP for NUDT15 and ADP for NUDT16
(Trésaugues et al., 2015)]2. The assays for NUDT2 and NUDT15
were based on enzymatic release of inorganic pyrophosphate
and subsequent degradation to two molecules of inorganic

phosphate in the presence of excess inorganic pyrophosphatase.
Levels of inorganic phosphate are measured using an established
procedure for such measurements in 384-well format in our lab
(see e.g., Gad et al., 2014; Page et al., 2018). The screening of
NUDT16 was based on enzymatic processing of ADP to release
one molecule of inorganic phosphate, such that the coupled
enzyme was not needed in this assay. All assays were optimized
to allow their application at close to the Km of each substrate and
with an incubation time chosen to ensure consumption of <30%
of substrate and near linearity of assay signal increase with time.

Slightly different screening sets have been applied for
the family members, with only a smaller subset of 5,500
compounds in common. All screens conducted at Chemical
Biology Consortium Sweden have 16 each of negative (DMSO
only – 0% inhibition) and positive controls (no enzyme or
inhibitor at concentration that gives 100% inhibition). These are
located in columns 23 and 24 of the 384-well plates and they are
used to normalize the response in each well-containing library
compounds to a % inhibition value. Hit limits are defined based
on the average plus three standard deviations of the response
for all library compounds and hit rates are provided as the
percentage of library compounds above this limit. The malachite
green assay has been extensively used for screening purposes in
our lab as it is associated with low interference rates, as evidenced
by the lack of common hits appearing in screens of NUDT1
(Gad et al., 2014), NUDT5 (Page et al., 2018), dCTPase (Llona-
Minguez et al., 2016), dUTPase and ITPase besides the herein
reported NUDIX proteins (Supplementary Material – Screens
using malachite green).

DSF Fragment Screening
NUDT1, NUDT2, NUDT5, and NUDT15 druggability was
further experimentally assessed through fragment screening by
DSF. Different fragments sets were screened over time, reflecting
history and development of the available fragment sets. The
initial fragment library comprised 450 fragments selected from
the Chemical Biology Consortium Sweden reagent store at the
Karolinska Institutet, and this set was screened against NUDT1
and NUDT5. Over time this library was complemented with sets
of nucleobase analogs acquired from the NCI Developmental
Therapeutics Program, which was grown to a subset of 200
compounds. This set, together with the 450-member library,
thus totaling 650 fragments, was screened against NUDT2.
Subsequently the 450-member library was complemented with
550 additional fragments from the Chemical Biology Consortium
Sweden reagent store in order to generate a more diverse generic
fragment library of 1,000 compounds. This second version
together with the 200 nucleobase analogs acquired from NCI
was screened against NUDT15. The proteins were expressed
and purified as previously reported (Carreras-Puigvert et al.,
2017). Fragment screening by DSF was essentially performed
as described in detail by Niesen et al. (2007) All fragments
were screened at a final concentration of 500µM. Positive
controls for each target were used at 100µM. Assay buffer was
composed of 100mM Tris Acetate, 40mM NaCl, and 10mM
Mg Acetate. Sypro Orange (S6650, Molecular Probes, 5000x) was
used as the fluorescent dye. Native melting points of the proteins
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under the assay conditions were 50.0, 50.0, 76.0, and 57.0◦C
for NUDT1, NUDT2, NUDT5, and NUDT15, respectively.
Screening was performed in 96-well Q-PCR plates using a
BioRad 96CFX real-time PCR detection system with temperature
increments of 1.0◦C.More details of the assay conditions for each
target are provided in the Supplementary Material – Fragment
screen conditions.

RESULTS AND DISCUSSION

Automated Arm - Step 1: DoGSite and
FTMap Predict Druggable Catalytic Sites
and Potentially Druggable Secondary Sites
We started by compiling a list of available high-resolution
crystal structures of human NUDIX proteins (Table 1). Due to
the systematic work of the Structural Genomics Consortium,
the majority of structures were solved with high sequence
coverage (Supplementary Material – SiteMap secondary sites)
and are often available together with screening data1. PDBs
were imported to Maestro and prepared as described in
the Method part. To enable application in the automated
workflow, the prepared proteins were exported as new PDB
files (Figure 2). In a first step, these files were uploaded
to the DoGSite server. DoGSite is a web-based open-access
algorithm that interrogates rigid protein structures for binding
hotspots, including druggability prediction (Volkamer et al.,
2012). Initially, a grid covering the protein identifies grid points
that overlap with protein atoms. Application of a difference
of Gaussian (DoG) filter then screens for preferred binding
spots of sphere-like objects. Combination of several hotspots
creates subpockets, which, if neighboring, are merged into
a pocket. Several geometric and physico-chemical properties
are automatically calculated for the predicted pockets and
subpockets. A machine learning model trained on a set of known
druggable proteins is then used to predict the druggability of the
pockets, expressed as DrugScore. Reported as a factor between
0 and 1.0 a DrugScore over 0.5 and closer to 1.0 corresponds to
good druggability.

Application of this algorithm to NUDIX crystal structures
identified between two and ten pockets with a wide range of
DrugScores (Figure 3 and Supplementary Material - DogSite).
Between one and four bindings sites were judged druggable by
the DoGSite algorithm. For some of the NUDIX hydrolases the
natural substrates and their binding sites are yet to be deciphered.
In addition, with the broad targeting possibilities provided by
PROTACs (An and Fu, 2018) or allosteric inhibitors (Wenthur
et al., 2014; Aretz et al., 2018), it is not necessarily required
to target a catalytic pocket to convey a desired phenotype.
Thus, the single highest-ranking site of each NUDIX structure,
often corresponding to the known substrate binding site, was
used to calculate a NUDIX druggability score. With an average
druggability score of 0.80, the NUDIX family of proteins qualify
as good predicted drug targets. As a positive control and
validated target when it comes to chemical amenability, NUDT1
(3Q93) reaches a similar score of 0.81. The protein tyrosine
phosphatase 1B (PTP1B) was included into the assessment

TABLE 1 | High-resolution crystal structures used in this study.

Protein name PDB code References

NUDT1, MTH1 3Q93 Tresaugues et al., 2011a

NUDT2, APAH1 3U53 Ge et al., 2013

NUDT3, DIPP1 2FVV Thorsell et al., 2009

NUDT4, DIPP2 5LTU Srikannathasan et al., 2017a

NUDT5, HSPC115 6GRU Dubianok et al., 2018

NUDT6, FGF2AS 3H95 Tresaugues et al., 2009a

NUDT7 5T3P Srikannathasan et al., 2017b

NUDT9 1Q33 Shen et al., 2003

NUDT10, DIPP3A 3MCF Tresaugues et al., 2010

NUDT12 6SCX Wu et al., 2019

NUDT14, UGPP 3Q91 Tresaugues et al., 2011b

NUDT15, MTH2 5BON Carter et al., 2015

NUDT16 3COU Tresaugues et al., 2008

NUDT17 5LF8 Mathea et al., 2017a

NUDT18, MTH3 3GG6 Tresaugues et al., 2009b

NUDT20, DCP2 5MP0 Mathea et al., 2017b

NUDT21 3BAP Coseno et al., 2008

NUDT22 5LF9 Tallant et al., 2017

PTP1B* 2HNP Barford et al., 1994

*Added as reference protein.

(2HNP) as this is generally known to be a challenging target for
classical drug discovery approaches. PTP1B, like other tyrosine
phosphatases, contains a relatively polar substrate pocket which
can accommodate phosphate isosteres. In the last two decades,
small molecules targeting this pocket have been shown to fail
eliciting sufficient effects in vivo (Zhang and Zhang, 2007;
Krishnan et al., 2018). Instead a non-classical approach of
allosteric inhibition is currently under evaluation in clinical
trials (Mullard, 2018). When interrogated with DoGSite, PTP1B
(2HNP) scores 0.72 only by combination of two subpockets
through a narrow channel.

An interesting observation is that all NUDIXmembers, except
NUDT4 (0.72, 5LTU) and NUDT18 (0.63, 3GG6), individually
score a high DrugScore around 0.80. Furthermore, it can
be observed that several members, including NUDT6 (3H95,
0.78), NUDT7 (5T3P, 0.77), NUDT9 (1Q33, 0.82), NUDT17
(5LF8, 0.79), NUDT12 (6SCX, 0.85), and NUDT22 (5LF9, 0.81,
Figure 4), are predicted to possess a second high-ranking pocket.
These sites may increase the potential for pharmacological
targeting of the corresponding proteins, for instance by
masking a protein-protein interaction or a cofactor binding site.
Identification of a second high-ranking pocket remote from the
catalytic site, however, may also point toward an artifact in
the crystal structure due to the construct used for expression
or lack of electron density. For a comparison of resolved and
expressed sequences please refer to Supplementary Material –
SiteMap secondary sites. Thus, when inspected for their location,
it became apparent that secondary sites can be distinguished
as either neighboring to the top-ranked site or being located
more remotely.

The druggability of the identified pockets can be further
assessed using FTMap (Kozakov et al., 2015; Yueh et al.,
2019). FTMap interrogates the protein surface for contributions
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FIGURE 2 | In silico druggability prioritization workflow – High-resolution crystal structures and comprehensive commercial space compound databases are freely
available. PDBs are prepared by protein preparation wizard (Thorsell et al., 2009), inspected for structural flaws and limitations and exported as new structure files. In a
first step, the structures are assessed for binding sites and site druggability by algorithms using rigid proteins or allowing for flexible behavior, i.e. DoGSite (Volkamer
et al., 2012) and CryptoSite (Cimermancic et al., 2016). To eliminate artifacts due to protein construct choice, limitations of crystal structure resolution or
co-crystallization of additional protein copies, all identified sites are counter-screened by FTMap (Kozakov et al., 2015). In a second and parallel step, the same
structures are initially assessed for binding sites, druggability and pocket parameter using SiteMap (Halgren, 2007, 2009). A separate Knime (Berthold et al., 2008)
workflow for the elimination of promiscuous functionalities is followed by Ligand Preparation which builds an applicable set of small molecules including a number of
tautomers and stereoisomers. In a three-step cascade this set is then docked (Friesner et al., 2004, 2006; Halgren et al., 2004) against the highest-ranking site as
identified by SiteMap. The median docking score of the top-1,000 fragments is used to assess druggability based on commercial fragment space. In a final step,
prioritization of targets passing both parallel screening schemes may be performed based on published experimental screening data or own future screening efforts
during translation to the lab.

to ligand-free energy. Small organic molecules, reflecting the
complexity of potential active substances, are scored using a
detailed energy function. Some regions bind several clusters
of probes and thus identify as a binding hotspot. Earlier,
this orthogonal method was applied on pockets identified by
CryptoSite (Vajda et al., 2018), where high druggability would
correspond to an FTMap cluster populating these sites and
containing at least 16 probes. When similarly examined for
the number of bound probes, all highest-ranking sites of each
NUDIX protein except for NUDT4 (5LTU) and NUDT18
(3GG6), reached more than 16 probes confirming the good
druggability of the expected active sites of the enzyme family
(Figure 3 and Supplementary Material - FTMap). NUDT4
(5LTU) and NUDT18 (3GG6), which showed a lower DrugScore
before, failed to contain more than 16 probes and are the only
family members with a lower druggability assessment based on
DoGSite and FTMap. Assessment of PTP1B (2HNP) returned all
FTMap probe clusters to be located in the smaller of the two
sites predicted by DoGSite (DrugScore 0.38). When evaluated
with FTMap, secondary sites of NUDT6 (3H95), NUDT7
(5T3P), NUDT9 (1Q33), NUDT17 (5LF8), and NUDT22 (5LF9,
Figure 4) neighboring the highest-ranking site tend to harbor
more probes than those sites found remotely. All remote

secondary sites, i.e., NUDT9 (1Q33), NUDT17 (5LF8) and
NUDT 12 (6SCX), fail to incorporate the required 16 probes.
Of those located much closer to the highest-ranking pocket,
only NUDT7 (5T3P) fails to accommodate 16 or more probes
underscoring the potential use in pharmacological targeting
additionally to the neighboring highest-ranking pocket.

Automated Arm – Step 2: CryptoSite and
FTMap Confirm Druggable Active Binding
Pockets With High Flexibility
Druggability predictions using DoGSite are based on rigid
protein structures, not allowing for flexibility typically induced by
larger natural substrates or specifically designed small molecules
(Michel et al., 2019). Another aspect is the potential existence
of allosteric sites. Typically, a crystal structure of a compound
bound to the allosteric site or comprehensive protein dynamics
calculations based on several distinct crystal structures are
required for their discovery. The CryptoSite algorithm however,
can give first insights in whether an already identified active site
or a shallow pocket allows for high single amino acid flexibility
(Cimermancic et al., 2016). Networks of these flexible cryptic
sites could indicate concerted movements of the protein, possibly
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FIGURE 3 | Binding pocket identification and druggability assessment in the automated arm: (A) rigid protein assessment with DogSite identifies a number of binding
sites within a range of predicted druggability scores; (B) FTMap identifies a number of cluster per protein and only NUDT4 and NUDT18 fail to contain enough
samples per cluster in the active site; (C,D) flexible protein assessment with CryptoSite identifies amino acid residues with different degrees of conformational
freedom. Including the top scoring residues these networks largely overlap with pockets identified by DogSite.

forming an allosteric site or conformational changes relevant for
substrate binding and protein function. Cryptic scores returned
by the algorithm above 0.10 and higher consider a site as cryptic
and thus flexible.

When interrogated with CryptoSite, NUDIX hydrolases
showed an increased number of cryptic sites around the highest-
ranking site as identified before by DoGSite, indicating an
extended and flexible three-dimensional network of amino acid
residues (Figure 3 and Supplementary Material - CryptoSite).
Between 11 and 86 and on average 40 residues scored higher
than 0.10 (NUDT1, 42; PTP1B, 33). The highest scoring
residues reached values between 0.26 and 0.52 and on average
0.40 (NUDT1, 0.49; PTP1B, 0.33). NUDT10 failed to form a
cryptic network while NUDT6, NUDT7 and NUDT22 (Figure 4)
possessed a second cluster of cryptic sites overlapping with the
second highest-ranking sites as identified by DoGSite. Except
for NUDT4 (5LTU) and NUDT18 (3GG6), all cryptic networks
of the protein family members were populated by more than
16 probes in FTMap (Figure 3 and Supplementary Material –
FTMap).

The result of this initial druggability assessment suggest
that NUDIX hydrolases are on average good drug targets with
regard to their expected or known active sites. Further, only

a few members of the family possess a second druggable site
as based on DoGSite and FTMap analyses, and even fewer
exhibit conformational flexible sites remote from the identified
active site.

User Arm – Step 1: SiteMap Binding Site
Prediction and Druggability Assessment
In a second parallel approach we assessed druggability using
SiteMap and a Glide-based virtual screening workflow applied
to a KNIME filtered fragment library (Figure 2). SiteMap, an
application to identify binding pockets and predict druggability,
is implemented in the Schrödinger small-molecule modeling
suite. Binding pockets identified on the protein surface are given
a score, the Dscore, which is based on pocket parameters such as
size, exposure to solvent, enclosure by protein, ratio of hydrogen
bond donors and acceptors and importantly hydrophilicity,
hydrophobicity and a determined ratio thereof. This druggability
score favors proteins with a higher hydrophobic/hydrophilic
ratio and thus allows for an early assessment of pocket polarity as
required for binding of small-molecule drugs. Typical Dscores for
druggable protein pockets are above 1.108 while Dscores below
0.871 suggest a difficult to drug protein (Halgren, 2007, 2009).
In addition, comparing individual pocket parameters allows for
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FIGURE 4 | Druggable sites of NUDT22 as identified in the automated and the user arm: (A) Rigid assessment with DoGSite identifies a second highly druggable site
(orange, DrugScore 0.81) in close proximity to the highest-ranking site (yellow, DrugScore 0.82); (B) Flexible assessment with CryptoSite predicts 52 amino acid
residues around both pockets as part of an extended 3D network. Highlighted amino acid residues possess cryptic score over 0.2; (C) FTMap confirms all cluster
hotspots and at least 16 probes within 5 Å radius of either of the binding sites (site 1: pink; site 2: light blue) or high cryptic value sites. (D) SiteMap combines the two
sites identified by DogSite into a single large binding pocket with an evenly distribution of hydrophobic (yellow) and hydrophilic (red and purple) patches; (E) cascade
docking of the ZINC fragment library shows a preference for the active site, while the second druggable site is only engaged by members of one chemotype among
the top 1000 fragments. The assessment highlights NUDT22 comprising two adjacent druggable sites which in a prospective drug discovery campaign could be
targeted separately or in combination.

a detailed picture of druggability and for specific assessment of
proteins with similar Dscores and/or sequence.

When SiteMap was applied on the NUDIX hydrolases, the
obtained Dscores of the highest-ranking sites were between

0.51 and 1.11 with an average of 0.88 (Figure 5A and
Supplementary Material -SiteMap). Interestingly, except for
NUDT4, all identified highest-ranking sites were in overlapping
regions or even identical with sites identified with DoGSite
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FIGURE 5 | Predictive value of in silico assessment and docking for in vitro screening hit rates and suitability of fragment screens for chemical probe generation: (A) in
silico druggability assessment of pockets identified by SiteMap correlates well with the observed ZINC Fragments Now (ZFN) median docking scores of the highest
ranking 1000 fragments (R = −0.717); (B) when translated to in vitro to either DSF or X-Ray screens using fragment libraries with overlapping chemical space, a
similar correlation can be observed, highlighting the suitability of a purely in silico druggability workflow as a standalone method (R = −0.826); (C) DSF fragment
screens reported here yielded strong stabilizing fragment hits that are structural subunits of reported ligands for NUDT1 (Gad et al., 2014; Huber et al., 2014).

FIGURE 6 | Clustering of investigated NUDIX family members based on the primary SiteMap parameters of the top-ranked sites, resulting in a clear separation of the
members deemed druggable (green branches) and those deemed undruggable (red branches).

(Supplementary Material - FTMap). Thus, the returned lower
Dscore values for NUDT4 (0.51) and NUDT18 (0.61) were
consistent between these approaches. In addition, judging
by SiteMap, NUDT3 (0.74), NUDT6 (0.77), NUDT10 (0.59),
NUDT20 (0.73), and PTP1B (2HNP, 0.78) were classed as
difficult drug targets. The highest-ranking members and thus
favored drug targets in the family were NUDT1 (1.02), NUDT5
(1.11) NUDT7 (1.04), NUDT9 (1.01), NUDT12 (1.05), NUDT15

(1.00), NUDT17 (1.01), and NUDT22 (1.04, Figure 3). Due to
the chosen cut-off distance to merge identified pockets (5 Å),
SiteMap identified large extended pockets which included several
subpockets. Furthermore, as NUDT5, NUDT12, and NUDT15
are functional homodimers, these have two high-ranking pockets.
Of these, NUDT12 and NUDT15 contain a third druggable
site. NUDT7on the other hand possesses a second high-ranking
pocket (Dscore 0.82).
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Clustering of the highest-scoring SiteMap pockets using
the primary SiteMap parameters shows a clear separation
of druggable versus undruggable NUDIX members and
allows for comparison of members which are (dis)similar
in terms of their active site properties rather than based on
sequence (dis)similarities (Figure 6). Full-length sequence
identity is generally low among the NUDIX family members
(see Supplementary Material, Percentage Identity), with the
exception of NUDT3, NUDT4, NUDT10, and NUDT11. The
former 3 being deemed challenging targets and NUDT11 was
not evaluated due to lack of structural data. General selectivity
issues are thus not anticipated when targeting a specific NUDIX
family member. On the other hand, several members have some
degree of overlap in their substrate specificity, e.g. NUDT1, 15
and 18 as a subgroup, and NUDT5, NUDT9, NUDT12, and
NUDT14 as a second subgroup (Carreras-Puigvert et al., 2017),
implying that their active sites share some structural similarity.
In this context, the SiteMap parameter profile of NUDT5 is a
good reference as it has the highest Dscore of all members. In
comparison, NUDT9 has a less favorable balance in hydrophobic
and hydrophilic character, while the active site of NUDT12
is somewhat more exposed than NUDT5, but also larger.
Although these 3 members have high Dscores, classing them
clearly as druggable, they vary in their capacity to accommodate
different fragments, as it is reflected by their different median
docking scores further down (Figure 5). NUDT14 is considered
challenging, primarily due to its smaller active site which also is
more exposed.

NUDT15 and NUDT18 have been hypothesized to be able
to act as back-up enzymes for NUDT1 due to their overlapping
substrate specificities. Comparison of their SiteMap parameter
profiles shows clear differences despite NUDT1 and NUDT15
being among the NUDIX members with highest Dscores. The
active site of NUDT15 is somewhat smaller and more enclosed
than for NUDT1 due to an inward movement of a helix (Carter
et al., 2015). NUDT18 is considered to be challenging due to its
small and more exposed active site. This also results in a poor
fragment scoring profile (please see below). Collectively, these
differences in site parameters allow for the development of highly
selective chemical probes, as witnessed for NUDT1 and NUDT5
(Gad et al., 2014; Page et al., 2018).

User Arm – Step 2: in silico Docking of
ZINC Library
As a final druggability assessment and potential to identify
starting points amenable for a fragment growing-based drug
discovery campaign out of commercial fragment space, we
performed in silico docking campaigns of the ZINC Frag
now database (Irwin et al., 2012) against the structures under
consideration. The comprehensive fragment library was filtered
against unwanted structural motifs and prepared for docking
using a KNIME workflow (Berthold et al., 2008). For a detailed
description, please refer to the Methods part of this manuscript.
Ultimately, 205,891 fragments remained after filtering the
original set of 704,041 ZINC fragments. Using the Schrödinger

suite, ligand preparation and grid generation for the highest-
ranking pocket as identified by SiteMap were performed to
enable virtual screening of this subset applying three stages
of accuracy. In each stage, the top-ranked 10% of compounds
were retained and passed on to the next stage. Finally, the
top-ranked 1,000 fragments were used to calculate a median
docking score enabling assessment of druggability based on
commercially available fragment space. The returned median
docking scores, where lower is better, ranged from−4.0 to −11.4
kcal/mol with an average of−6.8 kcal/mol. NUDT1 and NUDT5,
both validated drug targets in the literature, scored−11.4 and
−9.9 kcal/mol respectively. In addition, and judged by the
median docking score, NUDT17 (−8.8 kcal/mol) is a third
promising drug target. PTP1B (−6.8 kcal/mol) scores average
among the NUDIX family members, while the scores for
NUDT4 (−4.0 kcal/mol), NUDT10 (−4.3 kcal/mol), NUDT20
(−4.7 kcal/mol) and NUDT18 (−5.0 kcal/mol) indicate a
potentially challenging drug discovery campaign (Figure 5A).
When using the median docking scores and plotted against
their respective SiteMap Dscores, a good inverse correlation
(R = −0.717, Bravais-Pearson) can be observed (Figure 5),
suggesting an in silico-based prioritization scheme of drug
discovery campaigns against NUDIX proteins. Thus, fragment
docking against the top-ranked SiteMap pockets recapitulates
their druggability potential but additionally provides potential
starting points readily accessible for fragment-based drug
discovery campaigns.

The hydrophobicity of small-molecule drugs is a property
which needs to be delicately balanced since it affects multiple
parameters including solubility, permeability, plasma protein
binding and metabolism. Druggable binding pockets of target
proteins therefore require a certain hydrophobic-hydrophilic
balance to accommodate ligands with drug-like properties.When
applying a balance of at least 0.5 the SiteMap assessment
prefers NUDT1 (3Q93, 0.69), NUDT5 (6GRU, 1.34), NUDT7
(5T3P, 0.72), NUDT15 (5BON, 0.62), NUDT17 (5LF8, 0.50),
and NUDT22 (5LF9, 0.58) and disfavors NUDT3 (2FVV, 0.01),
NUDT4 (5LTU, 0.00), NUDT10 (3MCF, 0.01), and PTP1B
(2HNP, 0.05). With regard to their returned median fragment
docking scores, pocket polarity might correlate with either higher
or lower scores (Supplementary Material – ZINC fragment
docking and SiteMap). A possible explanation is, that the
library was filtered to fit a drug-like profile and thus preselects
for druggable proteins itself, ignoring their respective pocket
properties. Importantly, none of the crystal structures used here
were bound to high-affinity lead compounds originating from
drug discovery campaigns and hence no hydrophobic subpockets
induced by such compounds where probed in this study.

When combined, the top-1,000 ranked fragments
obtained for the 18 protein targets comprised 13,203 unique
fragments, indicating a certain amount of “promiscuity,”
i.e., fragments binding to 2 or more proteins (36% of
fragments). In fact, 73 fragments bound to 6 or more targets (see
Supplementary Material - Fragment promiscuity), with one
fragment hitting 11 out of 18 proteins. It should be noted that
the average docking scores were rather poor, ranging from−7.56
to −5.53 kcal/mol. Of interest is the notion that the proteins
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TABLE 2 | Summary of NUDIX protein family members in screens against fragment and in biochemical malachite green assays.

Protein Screening technique Size screening set Hit rate

NUDT7 Fragment covalent (Resnick et al., 2019) 993 36 (3.6%)

NUDT4 Fragment diamond Xray1 768 7 (0.9%)

NUDT5 Fragment diamond Xray1 768 113 (14.7%)

NUDT7 Fragment diamond Xray1 768 39 (5.1%)

NUDT21 Fragment diamond Xray1 768 43 (5.6%)

NUDT22 Fragment diamond Xray1 768 12 (1.6%)

NUDT1 Fragment DSF 450 44 (9.8%)

NUDT2 Fragment DSF 650 35 (5.3%)

NUDT5 Fragment DSF 450 0*

NUDT15 Fragment DSF 1,200 60 (5.0%)

NUDT1 Biochem screen malachite green 5,336 429 (8.0%)

NUDT2 Biochem screen malachite green 5,336 [11,992] 261 (4.9%) [235 (2.0%)**]

NUDT5 Biochem screen malachite green 5,336 [72,004] 3 (0.1%) [527 (0.7%)**]

NUDT15 Biochem screen malachite green 5,336 [17,908] 10 (0.2%) [98 (0.5%)**]

NUDT16 Biochem screen malachite green 5,336 7 (0.1%)

Please note the biochemical screen library grew over time. For comparison, results beyond the basic set of 5,336 compounds are presented in brackets. *Melting temperature unsuitable
for thermal shift screens; **Definition of hit more stringent.

deemed undruggable by SiteMap appeared to be enriched for
promiscuous fragment hits (except NUDT10 and NUDT20), as
opposed to druggable proteins (except NUDT15 and NUDT22).
A certain degree of promiscuity should be expected when
docking 200K fragments to multiple targets, as this is in line
with the basic concept of fragment-based drug discovery, i.e., the
ability of low-complexity fragments to interact with a multitude
of (sub)pockets across a wide range of proteins.

Correlation With Experimental
Fragment-Based and Biochemical
Screening Data
A number of fragment screens against NUDIX proteins have
been performed by others and us1. For a list of applied screening
techniques, library sets and hit rates, please see Table 2. When
the hit rates of the fragment screens were compared with the in
silico-derived median ZFN docking scores a good correlation was
observed (Bravais-Pearson 0.826; Figure 5B). This underscores
the applicability of in silico docking for rapid protein druggability
assessment. In agreement with most computational assessments,
NUDT1 and NUDT5 yield high hit rates of 9.8% and 14.7%,
respectively, while the experimental hit rate of 0.9% for NUDT4
confirms its challenging character predicted by computational
assessment. Other NUDIX proteins are in the range of common
hit rates for fragment screens and between 1.6 and 5.6% (Aretz
et al., 2014). This observation holds true for different sets
screened by different groups (Figures 5B, 7). Interestingly, the
DSF screen against NUDT1 found two structures with a strong
thermal stabilization of 5◦C. These structures are fragments
of the reported NUDT1 inhibitors TH588 (IC50: 2.1 nM) and
Crizotinib (IC50: 48 nM) and thus underscore the suitability
of DSF to find starting points for lead generation (Figure 5C).
However, DSF is not feasible for proteins with high nativemelting

points (e.g., NUDT5, 76◦C), and here in silico fragment screening
against druggable sites may be particularly advantageous.

Several biochemical screening campaigns against NUDIX
proteins have also been performed in our laboratories. While
compound libraries have varied somewhat between targets,
reflecting development of the compound libraries over time,
there is a small core set of about 5,300 chemically diverse
compounds that have been tested for all proteins. It is noteworthy
that these screens were performed based on a common screening
platform employing a coupled enzymatic assay with a malachite
green readout. This cost-effective assay has been frequently
employed in our lab, including screens on other nucleotide-
processing targets such as dCTPase (Llona-Minguez et al., 2016),
ITPase and dUTPase, and with robust performance in compound
sets beyond 100,000 compounds (all unpublished). A key reason
for this is the low rates of interference with the coupled enzymes
and the absorbance readout at 630 nm, as evidenced by a low
appearance of common hits. Also, the presence of PAINS and
aggregators within hit lists is generally low for this family of
proteins (Supplementary Material – Screens using malachite
green), demonstrating robust screening performance of the
recombinantly produced proteins and other assay components.
The biochemical screen outcomes are summarized in detail in
Table 2 and in the Supplementary Material – Screens using
malachite green. In line with assessments of chemical amenability
and learnings in the fragment-based screens, the majority of
targets generated hits that confirmed activity in follow-up studies,
with NUDT1 demonstrating an extreme hit rate in this sub-set.
This significant amenability is in line with the publication of hits
from multiple groups. A critical outlier in this set was NUDT5,
which demonstrated hit rates as low as notoriously challenging
targets dUTPase and ITPase, while predictions and fragment-
based screening showed the opposite (Supplementary Material

– Fragment screening hit rates). Already at the time of screening
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we had a reason to revisit the screening data for NUDT5 and
follow-up studies demonstrated competition between active site
hits and a structurally important Mg2+ (Costa and Dieckmann,
2011; Vardakou et al., 2014). After correction of the assay
buffer, by lowering the MgCl2 concentration 10-fold, we
observed significantly higher hit rates in the subsequently applied
compound sets and identified compounds that could be further
optimized to nM potencies (Page et al., 2018). As a general
observation and for the five NUDIX protein members screened,
no correlation between ZINC fragment docking scores and
observed hit rates from biochemical screening can be observed
(Supplementary Material – Screens using malachite green). In
contrast to the covered fragment library chemical space, a
rule-of-five compliant library of few thousand compounds may
complement the search for a chemical starting point but may be
limited in coverage of chemical space itself. However, in the past
we have shown, that embarking on drug discovery campaigns
from observed hits in both fragment and biochemical screen
lead to successful generation of chemical probes for a number
of NUDIX protein family members and other pyrophosphatases
(Gad et al., 2014; Llona-Minguez et al., 2016; Page et al., 2018)2.

CONCLUSION AND SUMMARY

Here we presented a dual in silico druggability assessment
workflow suitable for large-scale evaluation of proteins and
protein families, applied to the NUDIX family. Initially, we
introduced a hands-on workflow solely based on the protein
crystal structure using the open access server of DogSite
(Volkamer et al., 2012) and FTMap (Kozakov et al., 2015) for
rigid and CryptoSite (Cimermancic et al., 2016) and FTMap
for dynamic assessment. Importantly, before using these servers,
thorough manual protein structure verification is necessary to

exclude artifacts due to crystal packing, construct used and
resolution limits. On the one hand, DogSite returns both identity
and score of druggable sites, while FTMap docks small organic
solvent molecules. Especially in cases of sparsely evaluated
proteins or protein complexes this dual assessment may be
beneficial for structural assessment and potential chemical
probe generation. On the other hand, CryptoSite identifies
conformationally active amino acid residues. In the past, the
returned cryptic scores have been correlated with FTMap solvent
docking and eased decision on whether or where potential
allosteric sites may be situated (Vajda et al., 2018). Timewise,
this quick computational assessment may be achieved within
days for singular proteins and weeks for small protein families.
Depending on local load and choice of sever location the return
time is usually minutes for DogSite, hours for FTMap, and 1
day for CryptoSite. The detailed assessment and correlation of
data from the different algorithms allows for the rationalization
of targeting strategies. In case of the NUDIX proteins, NUDT22
for example showed to have high scores in DogSite and FTMap
with CryptoSite confirming flexibility around two closely related
sites. Further, in the past we have shown that comparing
different crystals structures of the same protein can allow for
the observation of targetable conformations more suitable small-
molecule development (Michel et al., 2019). With the open access
deposition of all screening data by the SGC, a similar albeit
more time consuming approach is possible for a number of
NUDIX proteins1.

In a second, user-guided arm we assessed protein druggability
employing several implemented functions in Schrödinger’s
commercial small-molecule modeling suite combined with freely
available KNIME (Berthold et al., 2008). First, proteins were
interrogated for potential binding pockets and the corresponding
DScores using SiteMap. The highest ranking pockets were then

FIGURE 7 | Comparison of fragment libraries used in screens against NUDIX protein family members: Laboratory for Chemical Biology at Karolinska Institutet (LCBKI)
DSF fragment library of the first generation (DSF 1.0, blue), additional members of a second generation DSF fragment library (DSF 2.0, red), Nucleobase analogs (NCI,
light blue) and Diamond-SGC Poised Library (DSPL, green) with respect to: (A) physicochemical property coverage and diversity, expressed as the first two principal
components (pc1 and pc2) obtained from a principal component analysis (PCA) on six Lipinski-type properties; (B) clogP against Molecular weight.
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used to perform cascade docking with a filtered ZINC fragment
library (Irwin et al., 2012). Subsequently, the median docking
score of the top-1,000 ranked fragments was used as a chemical
space-based druggability assessment. Both parameters, DScore
and median docking score form the basis of this second in
silico druggability assessment and require few days per protein,
depending on the user set up and the size of the used in silico
library. The observed docking scores correlate well with predicted
DScores (Figure 5A) and additionally provide commercially
accessible chemical starting points for the development of
chemical probes. At last, when compared with experimental
fragment screens based on X-ray crystallography, a covalent
set and thermal stabilization in DSF, a similar correlation
was observed between hit rates and median docking scores
(Figure 5B), even when using chemically distinct screening
sets (Figure 7). This supports the applicability of an in silico
druggability workflow as a standalone method for protein
assessment and speaks for the chemical space coverage of
fragment libraries generated at CBCS and Diamond/SGC
(Michel et al., 2019)7.

In summary, we report here a fully in silico druggability
assessment of the NUDIX protein family, that serves as a
standalone method and a workflow to identify the most suitable
members for a drug discovery campaign. We show that the dual
assessment correlates well with experimental results and further
allows for the in silico identification of secondary druggable sites,
alternative targeting strategies and structural basis for fragment
growing campaigns. Importantly, the workflow allows for rapid
assessment of any protein with reported structures in the protein
data bank and as such should be broadly applicable in early drug
discovery campaigns.
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