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Abstract

Little is known about the association between the single nucleotide polymorphisms (SNPs) and haplotypes of the dedicator of cytokinesis 7
(DOCK7), pro-protein convertase subtilisin/kexin type 9 (PCSK9) and polypeptide N-acetylgalactosaminyltransferase 2 (GALNT2) and serum
lipid traits in the Chinese populations. This study was to determine the association between nine SNPs in the three genes and their haplotypes
and hypercholesterolaemia (HCH)/hypertriglyceridaemia (HTG), and to identify the possible gene–gene interactions among these SNPs. Geno-
typing was performed in 733 HCH and 540 HTG participants. The haplotype of C-C-G-C-T-G-C-C-G [in the order of DOCK7 rs1168013 (G>C),
rs10889332 (C>T); PCSK9 rs615563 (G>A), rs7552841 (C>T), rs11206517 (T>G); and GALNT2 rs1997947 (G>A), rs2760537 (C>T),
rs4846913 (C>A) and rs11122316 (G>A) SNPs] was associated with increased risk of HCH and HTG. The haplotypes of C-C-G-C-T-G-C-C-A
and G-C-G-T-T-G-T-C-G were associated with a reduced risk of HCH and HTG. The haplotypes of G-C-G-C-T-G-C-C-A and G-C-G-C-T-G-T-C-G
were associated with increased risk of HCH. The haplotypes of C-T-G-C-T-G-C-C-G, G-C-A-C-T-G-C-C-G and G-C-G-C-T-G-C-C-A were associ-
ated with an increased risk of HTG. The haplotypes of G-C-G-C-T-G-T-C-A and G-C-G-T-T-G-T-C-G were associated with a reduced risk of HTG.
In addition, possible inter-locus interactions among the DOCK7, PCSK9 and GALNT2 SNPs were also noted. However, further functional studies
of these genes are still required to clarify which SNPs are functional and how these genes actually affect the serum lipid levels.
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Introduction

Cardiovascular disease (CVD) is the major cause of premature death
in both European [1] and American countries [2] and the rest of the
world [3]. It is an important cause of disability [4] and contributes
substantially to the escalating costs of health care [5]. Hyperlipi-
daemia—the risk factor for CVD [6] and related complications [7]
leading to high morbidity and mortality [8]. The 2013 American Col-
lege of Cardiology/American Heart Association Guideline on the Treat-
ment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular
Risk in Adults represents a major shift from prior cholesterol manage-
ment guidelines [9]. The new guidelines introduce several major para-
digm shifts, which include: aiming for atherosclerotic CVD risk
reduction [10] as opposed to targeting low-density lipoprotein choles-
terol (LDL-C) levels [11], and recommend an integrated approach to

managing hyperlipidaemia to decrease atherosclerotic CVD risk [12].
Although lipid modification was mainly focused on reducing the LDL-
C level in the past [13], lowering total cholesterol (TC) [14], triglyc-
eride (TG) [15] and LDL-C levels were found to be more beneficial
than lowering LDL-C alone [16]. Although the risk for hyperlipidaemia
has largely been attributed to adult lifestyle factors [17] such as poor
nutrition [18], lack of exercise [19] and smoking [20], there is now
strong evidence suggesting that predisposition to the development of
hyperlipidaemia begins with heredity [21]. It has been demonstrated
that identifications of gene variants involved in hyperlipidaemia could
provide a clue to search for novel pathogenesis and thereby new ther-
apeutic or preventive methods for CVD.

Very large genome-wide association studies (GWAS) of hyperlipi-
daemia have identified few novel loci that appear to influence lipid
metabolism [22–24], including the DOCK7 [25], PCSK9 [26] and
GALNT2 [27] loci on chromosome 1. Assessment of the association
between the DOCK7, PCSK9 and GALNT2 loci identified through
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GWAS [28–30] with the risk of hyperlipidaemia has become funda-
mental in the validation of these signals. DOCK7 (gene ID: 85440,
MedGen: CN189147, OMIM: 615859) is located on chromosome
1p31.3 (Exon count: 53) and encodes for DOCK7 protein. The protein
encoded by this gene is a guanine nucleotide exchange factor (GEF)
that plays a role in axon formation [31] and neuronal polarization
[32]. The encoded protein displays GEF activity towards RAC1 and
RAC3 Rho small GTPases, but not towards CDC42 [33]. DOCK7 inter-
action with TACC3 controls interkinetic nuclear migration and the
genesis of neurons from radial glial progenitor cells during cortical
development [34]. Several transcript variants encoding different iso-
forms have been found for this gene [35]. PCSK9 (gene ID: 255738,
MedGen: C1863551, OMIM: 603776) is located on chromosome
1p32.3 (Exon count: 14). This gene encodes a member of the subtil-
isin-like pro-protein convertase family, which includes proteases that
process protein and peptide precursors trafficking through regulated
or constitutive branches of the secretory pathway [36]. The encoded
protein undergoes an autocatalytic processing event with its pro-seg-
ment in the ER and is constitutively secreted as an inactive protease
into the extracellular matrix and trans-Golgi network [37]. It is
expressed in liver, intestine and kidney tissues and escorts specific
receptors for lysosomal degradation. It plays a role in cholesterol and
fatty acid metabolism [38]. Mutations in this gene have been associ-
ated with autosomal dominant familial HCH [39]. GALNT2 (gene ID:
2590, OMIM: 602274) is located on chromosome 1q41-q42 (Exon
count: 20). This gene encodes a member of the glycosyltransferase 2
protein family. Members of this family initiate mucin-type O-glycosy-
lation of peptides in the Golgi apparatus. The encoded protein may be
involved in O-linked glycosylation of the immunoglobulin A1 hinge
region. This gene may influence TG levels, and may be involved in
type 2 diabetes, as well as several types of cancer [40].

Although the association of some DOCK7, PCSK9 and GALNT2
SNPs and serum lipid levels has been reported in several previous
studies, the association of the novel variants and their haplotypes and
possible gene–gene interaction with the risk of hyperlipidaemia has
never been detected previously. Therefore, this study was performed
(i) to assess the association of the DOCK7 (rs1168013 and
rs10889332), PCSK9 (rs615563, rs7552841 and rs1126517) and
GALNT2 (rs1997947, rs2760537, rs4846913 and rs11122316) SNPs
and serum lipid levels in individuals with HCH/HTG; (ii) to evaluate
the association of their haplotypes with the risk of HCH/HTG and (iii)
to identify the possible gene–gene interactions among these variants
in the Chinese population.

Materials and methods

Study populations

The participants were recruited from Dongxing City, Guangxi Zhuang

Autonomous Region, People’s Republic of China in 2012. A total of
1869 participants were randomly selected from our stratified, random-

ized samples [41]. There were 999 hyperlipidaemic (TC > 5.17 mmol/l

and/or TG > 1.70 mmol/l) and 870 normolipidaemic (TC ≤ 5.17 mmol/l

and TG ≤ 1.70) individuals, aged 18–80 years. The age and gender dis-
tribution were matched between the two populations. The participants

with a history of CVD including coronary artery disease and stroke, dia-

betes, chronic illness including cardiac, renal, thyroid problems and/or a

history of taking lipid-modulating medications such as statins or fibrates
were excluded. Within the hyperlipidaemic population to assess the

association of SNPs with risk of HCH and HTG separately, the hyperlipi-

daemic populations were subdivided into hypercholesterolaemic (TC >
5.17 mmol/l) and hypertriglyceridaemic (TG >1.70 mmol/l) groups.

Informed consents were obtained from all the participants after they

have received a full explanation of the study. The study was reviewed

and approved by the Ethics Committee of the First Affiliated Hospital,
Guangxi Medical University.

Epidemiological survey and biochemical
measurements

The epidemiological survey was carried out by using internationally

standardized methods and following a common protocol [42]. Informa-

tion on demographics, socio-economic status, lifestyle, past medical
history and family disease history was collected by using standardized

questionnaires. The intake of alcohol was quantified as the number of

liangs (about 50 g) of rice wine, corn wine, rum, beer or liquor con-

sumed during the preceding 12 months. Alcohol consumption was cate-
gorized into groups of grams of alcohol per day: 0 (non-drinkers), ≤25
and >25. Smoking status was categorized into the groups of cigarettes

per day: 0 (non-smokers), ≤20 and >20. The methods of blood pres-

sure, height, weight and waist circumference measurements have been
described in the previous studies. Fasting venous blood samples were

taken and the levels of serum TC, TG, HDL cholesterol (HDL-C), and

LDL-C in the samples were directly determined by enzymatic methods
with commercially available kits, Tcho-1, TG-LH (RANDOX Laboratories

Ltd., Crumlin Co. Antrim, UK), Cholestest N HDL, and Cholestest LDL

(Daiichi Pure Chemicals Co. Ltd., Tokyo, Japan) respectively. Serum

apolipoprotein (Apo) A1 and ApoB levels were assessed by the
immunoturbidimetric assay by using a commercial kit (RANDOX Labo-

ratories Ltd.). All determinations were performed with an autoanalyzer

(Hitachi Ltd., Tokyo, Japan). The normal values of serum TC, TG, HDL-

C, LDL-C, ApoA1 and ApoB levels and the ratio of ApoA1 to ApoB in
our Clinical Science Experiment Centre were 3.10–5.17, 0.56–1.70,
1.16–1.42, 2.70–3.10 mmol/l, 1.20–1.60, 0.80–1.05 g/l and 1.00–2.50
respectively [43].

SNP selection and genotyping

We selected nine SNPs in the DOCK7, PCSK9 and GALNT2 with the fol-

lowing assumptions: (i) Tag SNPs, which were established by Haploview

(version 4.2; Broad Institute of MIT and Harvard, Cambridge, Massachu-
setts, USA) or functional SNPs in functional areas of the gene fragments

(http://www.ncbi.nlm.nih.gov/SNP/snp); (ii) a known minor allele fre-

quency (MAF) higher than 1% in European ancestry from the Human Gen-

ome Project Database and (iii) the target SNP region should be
adequately replicated by PCR, and the polymorphic site should have a

commercially available restriction endonuclease enzyme cleavage site to

be genotyped with the restriction fragment length polymorphism (RFLP).

Genomic DNA was isolated from peripheral blood leucocytes
using the phenol–chloroform method [41]. Genotyping of nine SNPs
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was performed by PCR and RFLP. The characteristics of each SNP and
the details of each primer pair, annealing temperature, length of the

PCR products and corresponding restriction enzyme used for genotyp-

ing are summarized in Tables S1 and S2. The PCR products of the

samples (two samples of each genotype) were sequenced with an ABI
Prism 3100 (Applied Biosystems, International Equipment Trading Ltd.,

Vernon Hills, IL, USA) in Shanghai Sangon Biological Engineering Tech-

nology & Services Co. Ltd., Shanghai China.

Statistical analysis

The statistical analyses were performed with the statistical software

package SPSS 19.0 (SPSS Inc., Chicago, IL, USA). The quantitative vari-

ables were presented as the mean � S.D. for those, that are normally
distributed, and the medians and interquartile ranges for TG, which is

not normally distributed. General characteristics between the two

groups were compared by the Student’s unpaired t-test. The allele fre-

quency and genotype distribution, as well as haplotype frequency
between the groups were analysed by the chi-squared test; and the

Hardy–Weinberg equilibrium was verified with the standard goodness-

of-fit test. Pair-wise linkage disequilibria and haplotype frequencies
among the SNPs were analysed using Haploview (version 4.2; Broad

Institute of MIT and Harvard). The association between the genotypes

and serum lipid parameters was tested by ANCOVA. Any variants associ-

ated with the serum lipid parameter at a value of P < 0.005 (corre-
sponding to P < 0.05 after adjusting for 9 independent tests by the

Bonferroni correction) were considered statistically significant. Uncondi-

tional logistic regression was used to assess the correlation between

the risk of hyperlipidaemia and genotypes (DOCK7 rs1168013: GG = 1,
CG = 2, CC = 3; rs10889332: CC = 1, CT = 2, TT = 3; PCSK9

rs615563: GG = 1, AG = 2, AA = 3; rs7552841: CC = 1, CT = 2, TT =
3; rs11206517: TT = 1, GT = 2, GG = 3; GALNT2 rs1997947: GG = 1,
AG = 2, AA = 3; rs2760537: CC = 1, CT = 2, TT = 3; rs4846913: CC =
1, AC = 2, AA = 3 and rs11122316: GG = 1, AG = 2, AA = 3). Age, sex,

body mass index (BMI), smoking and alcohol consumption were

adjusted for the statistical analysis. Two-sided P < 0.05 was considered
statistically significant.

The inter-locus interaction was analysed by generalized multifactor

dimensionality reduction (GMDR) method, using GMDR software. The

cross-validation consistency score provides the degree of consistency
when the selected interaction is identified as the best model among all

possibilities considered. The testing balanced accuracy provides the

degree of interaction, which accurately predicts the case–control status
with scores between 0.50 (indicating that the model predicts no better
than the chance) and 1.00 (indicating perfect prediction). A sign test or

a permutation test provides P-value for predicting accuracy to measure

the significance of an identified model. The best model is selected as
the combination of marker with maximum cross-validation consistency

and minimum prediction error.

Results

Characteristics of the studied populations

Tables 1 and 2 compare the general characteristics and serum lipid
levels between the HCH and non-HCH populations and between the

HTG and non-HTG populations respectively. Both HCH and HTG indi-
viduals had significantly higher anthropometric parameters than their
control individuals (P < 0.05–0.001). The age and gender distribu-
tion, height, pulse pressure and the % of participants who smoked
and consumed alcohol were not different between both the HCH and
HTG individuals (P > 0.05). There was no difference in the level of
systolic blood pressure between the HTG and non-HTG populations
(P > 0.05).

Genotype and allele frequencies

Tables 3 and 4 describe the genotype and allele frequencies of the
DOCK7, PCSK9 and GALNT2 SNPs. The genotype distribution of all
nine SNPs agreed with Hardy–Weinberg equilibrium (P > 0.05 for
all). The genotype frequency of the rs1168013, rs10889332,
rs615563, rs7552841, rs1997947, rs2760537 and rs4846913 SNPs
and the allele frequencies of the rs10889332, rs615563, rs7552841,
rs1997947, rs2760537 and rs4846913 SNPs were significantly differ-
ent between the HCH and non-HCH populations (P < 0.05–0.01). On
the other hand, the genotype and allele frequencies of the
rs10889332, rs615563, rs7552841, rs11206517, rs1997947,
rs2760537, rs4846913 and rs11122316 SNPs and the allele fre-
quency of the rs10889332, rs615563, rs7552841, rs11206517,
rs1997947, rs2760537, rs4846913 and rs11122316 SNPs were sig-
nificantly different between the HTG and non-HTG groups (P < 0.05–
0.001).

Genotypes and serum lipid levels

Table 5 depicts the association between the genotypes and serum
lipid levels in the hypercholesterolaemic and normocholesterolaemic
populations. After the Bonferroni correction of P-values, the levels of
TC (rs10889332 and rs7552841), TG (rs10889332, rs7552841,
rs11206517, rs1997947, rs4846913 and rs11122316), HDL-C
(rs1168013, rs11206517, rs1997947 and rs4846913), LDL-C
(rs7552841 and rs1997947), ApoA1 (rs10889332, rs1997947 and
rs4846913), ApoB (rs1168013, rs10889332 and rs7552841) and the
ratio of ApoA1 to ApoB (rs1168013, rs10889332 and rs7552841) in
the hypercholesterolaemic participants were different between the
three genotypes (P < 0.005–0.001), whereas the levels of TC
(rs1997947 and rs2760537), TG (rs10889332, rs615563, rs7552841,
rs1997947, rs4846913 and rs11122316), ApoB (rs615563,
rs7552841, and rs1997947), and the ratio of ApoA1 to ApoB
(rs4846913) in the normocholesterolaemic individuals were different
between the three genotypes (P < 0.005–0.001). Table 6 depicts the
association between the genotypes and serum lipid levels in the
hypertriglyceridaemic and normotriglyceridaemic populations. The
levels of TG (rs1168013, rs10889332 and rs7552841), ApoA1
(rs4846913) and the ratio of ApoA1 to ApoB (rs10889332) in the
hypertriglyceridaemic population were different between the geno-
types (P < 0.005–0.001); whereas the levels of TC (rs1088933,
rs615563 and rs7552841), TG (rs10889332, rs615563, rs1997947,
rs2760537, rs4846913 and rs11122316) and HDL-C (rs1168013,
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rs615563, rs11206517, rs1997947 and rs4846913), LDL-C
(rs10889332 and rs7552841), ApoA1 (rs1997947 and rs4846913),
ApoB (rs10889332, rs615563, rs7552841 and rs11206517) and the
ratio of ApoA1 to ApoB (rs615563, rs7552841, rs11206517 and
rs1997947) in the normotriglyceridaemic population were different
between the genotypes (P < 0.005–0.001).

After adjusting age, gender, BMI, smoking and alcohol consump-
tion, logistic regression analysis showed that the SNPs of
rs10889332, rs615563, rs7552841, rs2760537 and rs4846913 were
associated with HCH (P < 0.05). The SNPs of rs615563, rs7552841,
rs11206517, rs1997947, rs4846913 and rs11122316 were associ-
ated with HTG (P < 0.05; Tables 3 and 4).

Table 1 Anthropometric and metabolic characteristics between the hypercholesterolaemic and non-hypercholesterolaemic individuals

Characteristics Hypercholesterolaemia Non-hypercholesterolaemia t (v2) P-value

Number 733 1136

Male/Female 388/345 594/542 0.074 0.785*

Age (years) 58.34 � 12.88 57.52 � 13.33 1.323 0.186†

Height (cm) 158.54 � 7.36 158.46 � 7.87 0.199 0.843†

Weight (kg) 58.58 � 9.83 57.63 � 9.43 2.064 0.038†

Body mass index (kg/m2) 23.25 � 3.24 22.91 � 3.13 2.246 0.025†

Waist circumference (cm) 79.50 � 9.34 78.53 � 8.92 2.245 0.025†

Systolic blood pressure (mmHg) 136.10 � 16.30 130.23 � 19.46 2.720 0.007†

Diastolic blood pressure (mmHg) 81.90 � 10.67 80.05 � 10.19 3.720 0.000†

Pulse pressure (mmHg) 54.20 � 14.69 50.18 � 15.30 1.942 0.052†

Cigarette smoking, n (%)

Non-smoker 579 (78.99) 905 (79.66)

≤20 Cigarette smoking/day 37 (5.05) 53 (4.67) 0.185 0.912*

>20 Cigarette smoking/day 117 (15.96) 178 (15.67)

Alcohol consumption, n (%)

Non-drinker 578 (78.85) 915 (80.55)

≤25 g/day 51 (6.96) 67 (5.90) 1.081 0.582*

>25 g/day 104 (14.19) 154 (13.55)

Blood glucose level (mmol/l) 7.00 � 1.53 6.48 � 1.35 7.585 0.000†

Total cholesterol (mmol/l) 5.88 � 0.57 4.42 � 0.52 57.057 0.000†

Triglyceride (mmol/l) 1.52 (1.20) 1.27 (1.04) �8.957 0.000‡

HDL cholesterol (mmol/l) 1.41 � 0.35 1.85 � 0.33 �27.423 0.000†

Low-density lipoprotein cholesterol (mmol/l) 3.19 � 0.34 2.74 � 0.40 25.910 0.000†

Apolipoprotein (Apo) A1 (g/l) 1.17 � 0.11 1.40 � 0.22 �28.573 0.000†

ApoB (g/l) 1.18 � 0.25 0.96 � 0.20 20.111 0.000†

ApoA1/ApoB 1.05 � 0.25 1.52 � 0.43 �29.493 0.000†

*Comparison between the hypercholesterolaemic and non-hypercholesterolaemic individuals by chi-squared test.
†Comparison between the hypercholesterolaemic and non-hypercholesterolaemic individuals by t-test.
‡Comparison between the hypercholesterolaemic and non-hypercholesterolaemic individuals by non-parametric test. The values of triglyceride
were presented as median (interquartile range).
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Haplotypes and the risk of hyperlipidaemia

As shown in Table 7, the haplotype of G-C-G-C-T-G-C-C-G [in the
order of DOCK7 rs1168013 (G>C), rs10889332 (C>T); PCSK9
rs615563 (G>A), rs7552841 (C>T), rs11206517 (T>G); and GALNT2
rs1997947 (G>A), rs2760537 (C>T), rs4846913 (C>A) and

rs11122316 (G>A) SNPs] was the most common haplotype and rep-
resented >10% of the samples. The haplotype of C-C-G-C-T-G-C-C-G
was associated with increased risk of HCH (OR: 3.29, 95% CI: 1.81,
6.00, P < 0.001) and HTG (OR: 3.99, 95% CI: 1.81, 8.77, P < 0.001).
The haplotypes of G-C-G-C-T-G-C-C-A and G-C-G-C-T-G-T-C-G were
associated with increased risk of HCH (OR: 1.68, 95% CI: 1.15, 2.46,

Table 2 Anthropometric and metabolic characteristics between the hypertriglyceridaemic and non-hypertriglyceridaemic individuals

Characteristics Hypertriglyceridaemia Non-hypertriglyceridaemia t (v2) P-value

Number 540 1329

Male/Female 292/248 680/649 1.301 0.254*

Age (years) 57.02 � 13.37 57.35 � 13.27 �0.489 0.625†

Height (cm) 158.35 � 7.92 157.61 � 7.64 1.888 0.059†

Weight (kg) 61.23 � 10.78 56.24 � 8.88 9.518 0.000†

Body mass index (kg/m2) 24.34 � 3.38 22.60 � 2.99 10.389 0.000†

Waist circumference (cm) 83.16 � 9.11 77.19 � 8.52 13.076 0.000†

Systolic blood pressure (mmHg) 134.29 � 20.03 131.81 � 43.79 1.261 0.208†

Diastolic blood pressure (mmHg) 82.73 � 10.66 79.98 � 10.22 5.123 0.000†

Pulse pressure (mmHg) 51.56 � 16.33 51.83 � 11.79 �0.150 0.881†

Cigarette smoking, n (%)

Non-smoker 435 (80.56) 1101 (82.84)

≤20 Cigarette smoking/day 25 (4.63) 65 (4.89) 2.220 0.330*

>20 Cigarette smoking/day 80 (14.81) 163 (12.27)

Alcohol consumption, n (%)

Non-drinker 426 (78.89) 1089 (81.94)

≤25 g/day 31 (5.74) 87 (6.55) 5.362 0.068*

>25 g/day 83 (15.37) 153 (11.51)

Blood glucose level (mmol/l) 7.05 � 1.65 6.53 � 1.33 6.519 0.000†

Total cholesterol (mmol/lL) 5.29 � 0.92 4.87 � 0.85 9.516 0.000†

Triglyceride (mmol/l) 2.16 (1.88) 1.21 (1.01) �33.931 0.000‡

HDL cholesterol (mmol/l) 1.60 � 0.50 1.84 � 0.48 �9.787 0.000†

Low-density lipoprotein cholesterol (mmol/l) 2.98 � 0.44 2.77 � 0.41 9.506 0.000†

Apolipoprotein (Apo) A1 (g/l) 1.27 � 0.22 1.33 � 0.21 �4.971 0.000†

ApoB (g/l) 1.15 � 0.24 1.01 � 0.23 11.831 0.000†

ApoA1/ApoB 1.16 � 0.34 1.38 � 0.38 �12.622 0.000†

*Comparison between the hypertriglyceridaemic and non-hypertriglyceridaemic individuals by chi-squared test.
†Comparison between the hypertriglyceridaemic and non-hypertriglyceridaemic individuals by t-test.
‡Comparison between the hypertriglyceridaemic and non-hypertriglyceridaemic individuals by non-parametric test. The values of triglyceride
were presented as median (interquartile range).
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Table 3 The association between the DOCK7, PCSK9 and GALNT2 polymorphisms with hypercholesterolaemia

SNP Genotype

Hypercholesterolaemia

OR (95% CI) P-value
Genotype distribution, n (%)

Cases (n = 733) Controls (n = 1136) P-value

DOCK7 rs1168013G>C GG 312 (42.56) 538 (47.36) 1.02 (0.88, 1.19) 0.792

CG/CC 421 (57.44) 598 (52.64) 0.027

MAF 492 (33.56) 725 (31.91) 0.293

HWE(P) 0.056 0.122

DOCK7 rs10889332 C>T CC 369 (50.34) 649 (57.13) 0.84 (0.72, 0.98) 0.030

CT/TT 364 (49.66) 487 (42.87) 0.007

MAF 439 (29.95) 571 (25.13) 0.001

HWE(P) 0.103 0.053

PCSK9 rs615563G>A GG 436 (59.48) 764 (67.25) 0.77 (0.66, 0.91) 0.001

AG/AA 297 (40.52) 372 (32.75) 0.001

MAF 345 (23.53) 420 (18.49) 0.000

HWE(P) 0.129 0.071

PCSK9 rs7552841 C>T CC 459 (62.62) 801 (70.51) 0.75 (0.64, 0.89) 0.001

CT/TT 274 (37.38) 335 (29.41) 0.000

MAF 315 (21.49) 370 (16.29) 0.000

HWE(P) 0.117 0.289

PCSK9 rs11206517 T>G TT 608 (82.95) 974 (85.74) 0.91 (0.72, 1.16) 0.442

GT/GG 125 (17.05) 162 (14.26) 0.218

MAF 135 (9.21) 172 (7.57) 0.075

HWE(P) 0.095 0.139

GALNT2 rs1997947G>A GG 453 (61.80) 738 (64.96) 0.90 (0.76, 1.06) 0.215

AG/AA 280 (38.20) 398 (35.04) 0.034

MAF 316 (21.56) 429 (18.89) 0.046

HWE(P) 0.671 0.066

GALNT2 rs2760537 C>T CC 294 (40.11) 516 (45.42) 0.85 (0.75, 0.98) 0.025

CT/TT 439 (59.89) 620 (54.58) 0.031

MAF 550 (37.52) 755 (33.23) 0.007

HWE(P) 0.217 0.201
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P = 0.007 and OR: 1.67, 95% CI: 1.13, 2.47, P = 0.009 respectively).
The haplotypes of C-T-G-C-T-G-C-C-G (OR: 2.02, 95% CI: 1.20, 3.41,
P = 0.007), G-C-A-C-T-G-C-C-G (OR: 1.66, 95% CI: 1.00, 2.75,
P = 0.046) and G-C-G-C-T-G-C-C-A (OR: 3.38, 95% CI: 2.13, 5.36,
P < 0.001) were associated with an increased risk of HTG. The haplo-
types of C-C-G-C-T-G-C-C-A and G-C-G-T-T-G-T-C-G were associated
with a reduced risk of HCH (OR: 0.23, 95% CI: 0.14, 0.37, P < 0.001
and OR: 0.51, 95% CI: 0.30, 0.86, P = 0.010 respectively) and HTG
(OR: 0.36, 95% CI: 0.23, 0.56, P < 0.001 and OR: 0.10, 95% CI:
0.05, 0.17, P < 0.001 respectively). The haplotypes of G-C-G-C-T-G-
T-C-A and G-C-G-T-T-G-T-C-G were associated with a reduced risk of
HTG (OR: 0.40, 95% CI: 0.27, 0.58, P < 0.001 and OR: 0.10, 95% CI:
0.05, 0.17, P < 0.001 respectively).

Gene–Gene interaction for hyperlipidaemia

Table 8 shows the impacts of combination among the DOCK7, PCSK9
and GALNT2 SNPs, which were analysed by GMDR. The two- and
three-locus models showed a significant association with the risk of
HCH and HTG (P < 0.01–0.001). The two-locus model was chosen as
the best one, owing to the fact of having the highest level of testing
accuracy (54.71%) for HCH and good cross-validation consistency
(7/10).The three-locus model was chosen as the best one, owing to
the fact of having the highest level of testing accuracy (59.00% for
HTG) and good cross-validation consistency (9/10).

Discussion

The main findings of this study encompass (i) the associations of
the DOCK7, PCSK9 and GALNT2 SNPs with serum lipid levels in
individuals with HCH and HTG; (ii) the correlation of their haplotypes

with HCH/HTG and (iii) possible gene–gene interaction among
these variants to influence HCH/HTG. This is the first report on
the inter-locus interaction among the DOCK7, PCSK9 and GALNT2
SNPs on serum lipid levels. The observed allele frequencies of the
remaining nine SNPs in the non-HCH/non-HTG populations were
consistent with those of the International Hapmap Chinese Han
Beijing sample (http://hapmap.ncbi.nlm.nih.gov/cgi-perl/gbrowse/ha
pmap27_B36/).

Recently, a couple of previous reports found that the individuals
with transferability and fine mapping of genome-wide-associated loci,
DOCK7 rs2131925-T-allele, was associated with serum TC levels in
African-Americans [44], genetic loci rs10889353-C-allele was correla-
tion with TC and TG levels in the Chinese population [45], and
rs636523-T-allele near DOCK7 was related to plasma TG levels in the
Jackson Heart Study [25]. Likewise, in some population’s large-scale
association studies, the PCSK9 rs17111557-T-allele carriers had
lower HDL-C than the C-allele carriers in Brazilians [46], common
variants of rs12067569 and rs505151 in PCSK9 were significantly
associated with higher LDL-C and for rare variants rs11591147
(R46L, MAF = 0.9%) was associated with lower LDL-C in American-
Indians [38], and the E670G SNP in the PCSK9 was associated with
polygenic HCH in men, but not in women [47]. Moreover, in a large-
scale GWAS, the GALNT2 variants were associated with quantitative
change in serum lipid levels. In particular, GALNT2G allele frequency
of rs4846914 showed correlation with TG levels in the Korean popula-
tions [48] and no correlation with TG levels in healthy Roma and Hun-
garian populations [49], segregation of GALNT2 D314A mutations in
Caucasian families with extremely high HDL-C [50], and heterozygos-
ity for a loss-of-function mutation in GALNT2 improves plasma TG
clearance in man [51]. In the present study, we found that the alleles
of rs10889332-T, rs615563-A, rs7552841-T, rs1997947-A,
rs2760537-T and rs4846913-A were more frequent in HCH/HTG than
in non-HCH/non-HTG populations. The alleles of rs11206517-G and

Table 3. Continued

SNP Genotype

Hypercholesterolaemia

OR (95% CI) P-value
Genotype distribution, n (%)

Cases (n = 733) Controls (n = 1136) P-value

GALNT2 rs4846913 C>A CC 454 (61.94) 764 (67.25) 0.83 (0.70, 0.97) 0.022

AC/AA 279 (38.06) 372 (32.75) 0.047

MAF 319 (21.76) 418 (18.40) 0.012

HWE(P) 0.251 0.136

GALNT2 rs11122316G>A GG 292 (39.84) 438 (38.56) 1.01 (0.88, 1.17) 0.855

AG/AA 441 (60.16) 698 (61.44) 0.331

MAF 544 (37.11) 837 (36.84) 0.868

HWE(P) 0.744 0.053

MAF: minor allele frequency; HWE: Hardy–Weinberg equilibrium; DOCK7: dedicator of cytokinesis 7; PCSK9: pro-protein convertase subtilisin/
kexin type 9; GALNT2: polypeptide N-acetylgalactosaminyltransferase 2.
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Table 4 The association between the DOCK7, PCSK9 and GALNT2 polymorphisms with hypertriglyceridaemia

SNP Genotype

Hypertriglyceridaemia

OR (95% CI) P-valueGenotype distribution, n (%)

Cases (n = 540) Controls (n = 1329) P-value

DOCK7 rs1168013G>C GG 244 (45.19) 605 (45.52) 0.98 (0.83, 1.16) 0.832

CG/CC 296 (54.81) 724 (54.48) 0.416

MAF 361 (33.43) 857 (32.24) 0.484

HWE(P) 0.367 0.517

DOCK7 rs10889332 C>T CC 283 (52.41) 735 (55.30) 1.09 (0.91, 1.29) 0.365

CT/TT 257 (47.59) 594 (44.70) 0.012

MAF 311 (28.80) 675 (25.40) 0.032

HWE(P) 0.053 0.495

PCSK9 rs615563G>A GG 303 (56.11) 897 (67.49) 0.65 (0.55, 0.78) 0.000

AG/AA 237 (43.89) 432 (32.51) 0.000

MAF 279 (25.83) 486 (18.28) 0.000

HWE(P) 0.181 0.079

PCSK9 rs7552841 C>T CC 312 (57.78) 951 (71.56) 0.57 (0.48, 0.68) 0.000

CT/TT 228 (42.22) 378 (28.44) 0.000

MAF 270 (25.00) 409 (15.39) 0.000

HWE(P) 0.058 0.922

PCSK9 rs11206517 T>G TT 426 (78.89) 1155 (86.91) 0.63 (0.49, 0.81) 0.000

GT/GG 114 (21.11) 174 (13.09) 0.000

MAF 126 (11.67) 182 (6.85) 0.000

HWE(P) 0.052 0.447

GALNT2 rs1997947G>A GG 326 (60.37) 924 (69.53) 0.73 (0.61, 0.87) 0.001

AG/AA 214 (39.63) 405 (30.47) 0.000

MAF 248 (22.96) 440 (16.55) 0.000

HWE(P) 0.179 0.778

GALNT2 rs2760537 C>T CC 215 (39.82) 558 (41.99) 0.90 (0.78, 1.05) 0.195

CT/TT 325 (60.18) 771 (58.01) 0.026

MAF 414 (38.33) 928 (34.91) 0.048

HWE(P) 0.079 0.546

250 ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



rs11122316-A were more frequent just in HTG than in non-HTG popu-
lations. The levels of TC (rs10889332 and rs7552841), TG
(rs10889332, rs7552841, rs11206517, rs1997947, rs4846913 and
rs11122316), HDL-C (rs1168013, rs11206517, rs1997947 and
rs4846913), LDL-C (rs7552841 and rs1997947), ApoA1
(rs10889332, rs1997947 and rs4846913), ApoB (rs1168013,
rs10889332 and rs7552841) and the ratio of ApoA1 to ApoB
(rs1168013, rs10889332 and rs7552841) in the hypercholestero-
laemic participants were different between the three genotypes
(P < 0.005–0.001), whereas the levels of TC (rs1997947 and
rs2760537), TG (rs10889332, rs615563, rs7552841, rs1997947,
rs4846913 and rs11122316), ApoB (rs615563, rs7552841 and
rs1997947) and the ratio of ApoA1 to ApoB (rs4846913) in the nor-
mocholesterolaemic individuals were different between the three
genotypes. Likewise, the levels of TG (rs1168013, rs10889332 and
rs7552841), ApoA1 (rs4846913) and the ratio of ApoA1 to ApoB
(rs10889332) in the hypertriglyceridaemic population were different
between the genotypes, whereas the levels of TC (rs1088933,
rs615563 and rs7552841), TG (rs10889332, rs615563, rs1997947,
rs2760537, rs4846913 and rs11122316) and HDL-C (rs1168013,
rs615563, rs11206517, rs1997947 and rs4846913), LDL-C
(rs10889332 and rs7552841), ApoA1 (rs1997947 and rs4846913),
ApoB (rs10889332, rs615563, rs7552841 and rs11206517) and the
ratio of ApoA1 to ApoB (rs615563, rs7552841, rs11206517 and
rs1997947) in the normotriglyceridaemic population were different
between the genotypes. The reason for these discrepancies among
the studies is not fully understood. The differences in the genetic
background, linkage disequilibrium pattern and/or environmental
factors may partly explain these discrepancies.

Alirocumab, an inhibitor of PCSK9, significantly reduced levels of
LDL-C when added to statin therapy administered at the maximum
tolerated dose [52]. Current guidelines suggest high-intensity statin

treatment for most high-risk patients [53]. However, only 47% of the
study patients were receiving high-dose statins, resulting in a mean
baseline LDL-C level of 122 mg/dl. Treatment with high-dose statins
would have brought a much higher percentage of patients in the pla-
cebo group to the goal of an LDL-C level of less than 70 mg/dl [54].
In addition, appropriate use of high-dose statins would have been
associated with a lower rate of major adverse cardiovascular events
in the placebo group [55, 56]. Thus, a strategy of not exploiting the
maximum potential of statins in high-risk patients may have overesti-
mated the benefit of PCSK9 inhibition. The efficacy and safety of the
PCSK9 inhibitor, alirocumab, in reducing lipids and cardiovascular
events may be influenced by these above SNPs. It is expected that the
association of genetic susceptibility of PCSK9 polymorphisms and
the lipid-lowering efficacy of alirocumab treatment in the levels of
LDL-C will be elucidated in a not too distant future. What is more, the
participants with a history of taking lipid-modulating medications
such as statins, fibrates or PCSK9 inhibitors were excluded in present
study. But, the associations between the above genes and serum lipid
levels and lipid-lowering efficacy of treatment are also needed to fur-
ther explore, especially, when using LDL-C and TG levels to divide
groups.

When assessing the association of the DOCK7, PCSK9 and
GALNT2 SNPs and the risk of hyperlipidaemia, this study showed
that although the variants of DOCK7 rs1168013, PCSK9
rs2760537 and GALNT2 rs11122316 did not reach statistically sig-
nificant association with HCH/HTG risk, they, in moderation with
other SNPs, achieved significant association with the risk of HCH/
HTG. In addition, we noticed that the haplotype of C-C-G-C-T-G-C-
C-G, carrying rs11122316-G-allele, was associated with an
increased risk of HCH and HTG. The haplotypes of C-C-G-C-T-G-
C-C-A and G-C-G-T-T-G-T-C-G were associated with reduced risk
of HCH and HTG. The haplotypes of G-C-G-C-T-G-C-C-A and G-C-

Table 4. Continued

SNP Genotype

Hypertriglyceridaemia

OR (95% CI) P-valueGenotype distribution, n (%)

Cases (n = 540) Controls (n = 1329) P-value

GALNT2 rs4846913 C>A CC 348 (64.44) 964 (72.54) 0.70 (0.58, 0.85) 0.000

AC/AA 192 (35.56) 365 (27.46) 0.002

MAF 218 (20.19) 405 (15.24) 0.000

HWE(P) 0.286 0.052

GALNT2 rs11122316G>A GG 179 (33.15) 551 (41.46) 0.81 (0.70, 0.95) 0.008

AG/AA 361 (66.85) 778 (58.54) 0.003

MAF 443 (41.02) 938 (35.29) 0.001

HWE(P) 0.115 0.508

MAF: minor allele frequency; HWE: Hardy–Weinberg equilibrium; DOCK7: dedicator of cytokinesis 7; PCSK9: pro-protein convertase subtilisin/
kexin type 9; GALNT2: polypeptide N-acetylgalactosaminyltransferase 2.

ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

251

J. Cell. Mol. Med. Vol 20, No 2, 2016



Ta
bl
e
5
A
ss
oc
ia
tio
n
be
tw
ee
n
th
e
ge
no
ty
pe
s
of

D
O
C
K
7,

P
C
S
K
9
an
d
G
A
LN

T2
S
N
P
s
an
d
se
ru
m

lip
id

le
ve
ls
in

th
e
hy
pe
rc
ho
le
st
er
ol
ae
m
ic
an
d
no
n-
hy
pe
rc
ho
le
st
er
ol
ae
m
ic
in
di
vi
du
al
s

G
en

ot
yp
e

n
TC

(m
m
ol
/l
)

TG
(m

m
ol
/l
)

H
D
L-
C
(m

m
ol
/l
)

LD
L-
C
(m

m
ol
/l
)

A
po

A
1
(g
/l
)

A
po

B
(g
/l
)

A
po
A
1/
A
po

B

D
O
C
K
7
rs
11

68
01

3G
>
C

H
yp
er
ch
ol
es
te
ro
la
em

ia

G
G

31
2

5.
81

�
0.
46

1.
49

(1
.1
7)

1.
45

�
0.
30

3.
15

�
0.
44

1.
18

�
0.
10

1.
14

�
0.
27

1.
10

�
0.
28

C
G

35
0

5.
87

�
0.
57

1.
54

(1
.2
2)

1.
39

�
0.
34

3.
17

�
0.
33

1.
17

�
0.
12

1.
21

�
0.
22

1.
02

�
0.
21

C
C

71
5.
90

�
0.
59

1.
62

(1
.2
7)

1.
29

�
0.
50

3.
21

�
0.
31

1.
17

�
0.
11

1.
26

�
0.
25

0.
98

�
0.
18

F
1.
08

2
4.
93
1

10
.1
76

1.
77
1

0.
59
0

16
.2
15

20
.5
45

P
0.
34

0
0.
08
5

0.
00
0

0.
17
1

0.
55
4

0.
00
0

0.
00
0

N
on
-h
yp
er
ch
ol
es
te
ro
la
em

ia

G
G

53
8

4.
40

�
0.
52

1.
25

(0
.9
8)

1.
87

�
0.
32

2.
72

�
0.
40

1.
39

�
0.
23

0.
95

�
0.
20

1.
53

�
0.
45

C
G

47
1

4.
42

�
0.
53

1.
29

(1
.0
4)

1.
86

�
0.
31

2.
73

�
0.
40

1.
40

�
0.
21

0.
97

�
0.
20

1.
52

�
0.
42

C
C

12
7

4.
46

�
0.
45

1.
28

(1
.1
0)

1.
83

�
0.
34

2.
77

�
0.
41

1.
40

�
0.
20

0.
98

�
0.
19

1.
48

�
0.
39

F
0.
00

7
5.
19
9

1.
53
4

2.
77
8

0.
48
0

1.
69
7

0.
49
8

P
0.
99

3
0.
07
4

0.
21
6

0.
06
3

0.
61
9

0.
18
4

0.
60
8

D
O
C
K
7
rs
10

88
93

32
C
>
T

H
yp
er
ch
ol
es
te
ro
la
em

ia

C
C

36
9

5.
83

�
0.
55

1.
46

(1
.1
5)

1.
42

�
0.
34

3.
16

�
0.
37

1.
21

�
0.
12

1.
16

�
0.
21

1.
08

�
0.
28

C
T

28
9

5.
86

�
0.
57

1.
58

(1
.2
3)

1.
41

�
0.
34

3.
19

�
0.
31

1.
17

�
0.
12

1.
16

�
0.
27

1.
04

�
0.
22

TT
75

6.
14

�
0.
57

1.
68

(1
.2
4)

1.
37

�
0.
40

3.
27

�
0.
30

1.
17

�
0.
11

1.
35

�
0.
29

0.
99

�
0.
22

F
12

.6
01

11
.7
53

1.
57
3

4.
33
1

6.
42
1

18
.5
31

7.
43
4

P
0.
00

0
0.
00
3

0.
20
8

0.
01
4

0.
00
1

0.
00
0

0.
00
1

N
on
-h
yp
er
ch
ol
es
te
ro
la
em

ia

C
C

64
9

4.
41

�
0.
55

1.
21

(1
.0
0)

1.
87

�
0.
31

2.
72

�
0.
36

1.
40

�
0.
23

0.
95

�
0.
19

1.
53

�
0.
42

C
T

40
3

4.
42

�
0.
50

1.
40

(1
.1
0)

1.
85

�
0.
32

2.
72

�
0.
40

1.
40

�
0.
20

0.
97

�
0.
21

1.
53

�
0.
45

TT
84

4.
44

�
0.
49

1.
76

(1
.0
4)

1.
71

�
0.
38

2.
78

�
0.
42

1.
34

�
0.
21

1.
00

�
0.
19

1.
39

�
0.
38

F
0.
02

7
38

.4
84

5.
03
1

2.
64
8

1.
04
7

1.
30
4

0.
99
7

252 ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



Ta
bl
e
5.

C
on

tin
ue
d

G
en

ot
yp
e

n
TC

(m
m
ol
/l
)

TG
(m

m
ol
/l
)

H
D
L-
C
(m

m
ol
/l
)

LD
L-
C
(m

m
ol
/l
)

A
po
A
1
(g
/l
)

A
po
B
(g
/l
)

A
po
A
1/
A
po

B

P
0.
97

4
0.
00

0
0.
00

7
0.
07
1

0.
35
1

0.
27
2

0.
36
9

P
C
S
K
9
rs
61
55

63
G
>
A

H
yp
er
ch
ol
es
te
ro
la
em

ia

G
G

43
6

5.
84

�
0.
56

1.
48

(1
.1
4)

1.
46

�
0.
40

3.
18

�
0.
35

1.
20

�
0.
11

1.
16

�
0.
24

1.
09

�
0.
23

A
G

24
9

5.
91

�
0.
57

1.
52

(1
.2
1)

1.
41

�
0.
35

3.
19

�
0.
32

1.
18

�
0.
11

1.
19

�
0.
29

1.
06

�
0.
25

A
A

48
6.
01

�
0.
65

1.
53

(1
.2
0)

1.
40

�
0.
33

3.
25

�
0.
33

1.
17

�
0.
11

1.
21

�
0.
26

1.
04

�
0.
25

F
2.
81

5
0.
93

4
0.
07

2
1.
42
2

0.
93
9

2.
90
1

0.
53
5

P
0.
06

1
0.
62

7
0.
93

0
0.
24
2

0.
39
2

0.
05
6

0.
58
6

N
on
-h
yp
er
ch
ol
es
te
ro
la
em

ia

G
G

76
4

4.
40

�
0.
51

1.
23

(1
.0
0)

1.
89

�
0.
29

2.
66

�
0.
31

1.
42

�
0.
19

0.
95

�
0.
19

1.
54

�
0.
43

A
G

32
4

4.
45

�
0.
53

1.
44

(0
.9
8)

1.
85

�
0.
34

2.
73

�
0.
40

1.
41

�
0.
22

0.
99

�
0.
21

1.
48

�
0.
40

A
A

48
4.
45

�
0.
56

1.
47

(1
.1
4)

1.
84

�
0.
31

2.
77

�
0.
42

1.
37

�
0.
22

1.
01

�
0.
26

1.
47

�
0.
43

F
1.
22

4
38

.7
47

0.
82

9
2.
33
7

3.
18
9

5.
66
3

4.
75
6

P
0.
29

4
0.
00

0
0.
43

7
0.
09
7

0.
04
2

0.
00
4

0.
00
9

P
C
S
K
9
rs
75
52

84
1
C
>
T

H
yp
er
ch
ol
es
te
ro
la
em

ia

C
C

45
9

5.
81

�
0.
52

1.
49

(1
.1
6)

1.
41

�
0.
36

3.
15

�
0.
34

1.
20

�
0.
11

1.
14

�
0.
23

1.
07

�
0.
25

C
T

23
3

5.
91

�
0.
57

1.
52

(1
.2
5)

1.
41

�
0.
33

3.
22

�
0.
29

1.
18

�
0.
12

1.
23

�
0.
25

1.
03

�
0.
26

TT
41

6.
36

�
0.
84

1.
84

(1
.4
8)

1.
39

�
0.
48

3.
42

�
0.
43

1.
17

�
0.
11

1.
36

�
0.
33

0.
94

�
0.
19

F
15

.6
68

15
.9
68

0.
05

9
11

.9
27

1.
39
1

20
.0
35

6.
92
3

P
0.
00

0
0.
00

0
0.
94

3
0.
00
0

0.
24
9

0.
00
0

0.
00
1

N
on
-h
yp
er
ch
ol
es
te
ro
la
em

ia

C
C

80
1

4.
41

�
0.
53

1.
25

(1
.0
0)

1.
86

�
0.
33

2.
73

�
0.
41

1.
40

�
0.
22

0.
94

�
0.
19

1.
55

�
0.
44

C
T

30
0

4.
44

�
0.
50

1.
32

(1
.1
1)

1.
82

�
0.
33

2.
76

�
0.
40

1.
39

�
0.
24

0.
99

�
0.
20

1.
46

�
0.
40

TT
35

4.
51

�
0.
44

1.
79

(1
.2
1)

1.
76

�
0.
28

2.
76

�
0.
36

1.
39

�
0.
17

1.
08

�
0.
24

1.
34

�
0.
39

ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

253

J. Cell. Mol. Med. Vol 20, No 2, 2016



Ta
bl
e
5.

C
on

tin
ue
d

G
en

ot
yp
e

n
TC

(m
m
ol
/l
)

TG
(m

m
ol
/l
)

H
D
L-
C
(m

m
ol
/l
)

LD
L-
C
(m

m
ol
/l
)

A
po
A
1
(g
/l
)

A
po
B
(g
/l
)

A
po
A
1/
A
po

B

F
0.
79

2
36

.8
82

1.
76

2
0.
68
8

0.
08
2

10
.1
72

4.
91
5

P
0.
45

3
0.
00

0
0.
17

2
0.
50
3

0.
92
2

0.
00
0

0.
00
7

P
C
S
K
9
rs
11
20

65
17

T>
G

H
yp
er
ch
ol
es
te
ro
la
em

ia

TT
60

8
5.
86

�
0.
57

1.
49

(1
.1
7)

1.
42

�
0.
34

3.
19

�
0.
34

1.
19

�
0.
10

1.
17

�
0.
24

1.
15

�
0.
41

G
T

11
5

5.
96

�
0.
58

1.
65

(1
.2
6)

1.
40

�
0.
30

3.
19

�
0.
32

1.
18

�
0.
12

1.
21

�
0.
27

1.
06

�
0.
25

G
G

10
6.
00

�
0.
60

3.
46

(2
.0
8)

0.
87

�
0.
60

3.
32

�
0.
15

1.
17

�
0.
12

1.
26

�
0.
27

1.
02

�
0.
22

F
1.
64

9
17

.2
20

12
.2
69

0.
89
6

0.
56
2

5.
43
0

1.
95
5

P
0.
19

3
0.
00

0
0.
00

0
0.
40
9

0.
57
0

0.
00
5

0.
14
2

N
on
-h
yp
er
ch
ol
es
te
ro
la
em

ia

TT
97

4
4.
41

�
0.
52

1.
26

(1
.0
2)

1.
85

�
0.
33

2.
70

�
0.
23

1.
40

�
0.
22

0.
95

�
0.
19

1.
54

�
0.
43

G
T

15
2

4.
42

�
0.
55

1.
32

(1
.0
9)

1.
85

�
0.
30

2.
74

�
0.
41

1.
38

�
0.
21

1.
01

�
0.
22

1.
42

�
0.
45

G
G

10
4.
48

�
0.
50

1.
39

(1
.2
6)

1.
62

�
0.
44

2.
77

�
0.
40

1.
29

�
0.
22

1.
08

�
0.
19

1.
19

�
0.
19

F
0.
34

8
8.
12

4
2.
42

0
0.
34
7

2.
00
2

3.
86
4

4.
82
4

P
0.
70

6
0.
01

7
0.
08

9
0.
70
7

0.
13
6

0.
02
1

0.
00
8

G
A
LN

T2
rs
19
97

94
7G

>
A

H
yp
er
ch
ol
es
te
ro
la
em

ia

G
G

45
3

5.
79

�
0.
45

1.
45

(1
.1
5)

1.
44

�
0.
33

3.
00

�
0.
33

1.
19

�
0.
11

1.
18

�
0.
18

1.
07

�
0.
26

A
G

24
4

5.
87

�
0.
53

1.
65

(1
.2
7)

1.
39

�
0.
35

3.
20

�
0.
31

1.
17

�
0.
11

1.
18

�
0.
25

1.
04

�
0.
23

A
A

36
5.
91

�
0.
65

1.
88

(1
.5
1)

1.
16

�
0.
42

3.
20

�
0.
33

1.
09

�
0.
10

1.
19

�
0.
25

0.
94

�
0.
18

F
0.
93

5
35

.0
99

8.
22

3
6.
49
1

11
.5
73

0.
48
2

2.
61
2

P
0.
39

3
0.
00

0
0.
00

0
0.
00
2

0.
00
0

0.
61
8

0.
07
4

N
on
-h
yp
er
ch
ol
es
te
ro
la
em

ia

G
G

73
8

4.
38

�
0.
52

1.
23

(0
.9
9)

1.
85

�
0.
33

2.
74

�
0.
42

1.
41

�
0.
20

0.
94

�
0.
18

1.
55

�
0.
40

A
G

36
7

4.
48

�
0.
52

1.
37

(1
.1
3)

1.
85

�
0.
31

2.
74

�
0.
38

1.
38

�
0.
22

0.
99

�
0.
22

1.
47

�
0.
47

254 ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



Ta
bl
e
5.

C
on

tin
ue
d

G
en

ot
yp
e

n
TC

(m
m
ol
/l
)

TG
(m

m
ol
/l
)

H
D
L-
C
(m

m
ol
/l
)

LD
L-
C
(m

m
ol
/l
)

A
po
A
1
(g
/l
)

A
po
B
(g
/l
)

A
po
A
1/
A
po

B

A
A

31
4.
68

�
0.
38

2.
04

(1
.5
9)

1.
73

�
0.
26

2.
81

�
0.
29

1.
35

�
0.
45

1.
09

�
0.
18

1.
28

�
0.
55

F
6.
85

9
66

.8
40

0.
98

4
0.
71
4

0.
84
1

8.
16
7

3.
98
6

P
0.
00

1
0.
00

0
0.
37

4
0.
49
0

0.
43
2

0.
00
0

0.
01
9

G
A
LN

T2
rs
27
60

53
7
C
>
T

H
yp
er
ch
ol
es
te
ro
la
em

ia

C
C

29
4

5.
83

�
0.
61

1.
49

(1
.2
0)

1.
42

�
0.
36

3.
17

�
0.
44

1.
18

�
0.
11

1.
16

�
0.
25

1.
08

�
0.
26

C
T

32
8

5.
90

�
0.
55

1.
53

(1
.1
7)

1.
41

�
0.
32

3.
19

�
0.
31

1.
17

�
0.
12

1.
19

�
0.
23

1.
04

�
0.
23

TT
11

1
5.
92

�
0.
52

1.
60

(1
.2
3)

1.
36

�
0.
38

3.
20

�
0.
32

1.
17

�
0.
12

1.
23

�
0.
28

1.
02

�
0.
25

F
2.
48

8
3.
90

8
2.
06

9
0.
13
6

0.
32
6

2.
61
5

2.
86
9

P
0.
08

4
0.
14

2
0.
12

7
0.
87
3

0.
72
2

0.
07
4

0.
05
7

N
on
-h
yp
er
ch
ol
es
te
ro
la
em

ia

C
C

51
6

4.
37

�
0.
54

1.
25

(1
.0
0)

1.
86

�
0.
32

2.
71

�
0.
38

1.
41

�
0.
22

0.
94

�
0.
20

1.
53

�
0.
46

C
T

48
5

4.
38

�
0.
54

1.
26

(1
.0
4)

1.
84

�
0.
33

2.
73

�
0.
42

1.
40

�
0.
23

0.
96

�
0.
20

1.
52

�
0.
41

TT
13

5
4.
47

�
0.
48

1.
40

(1
.1
9)

1.
84

�
0.
35

2.
76

�
0.
40

1.
37

�
0.
18

0.
97

�
0.
20

1.
51

�
0.
45

F
6.
23

3
15

.4
32

1.
24

9
2.
15
3

1.
24
8

3.
36
7

0.
74
1

P
0.
00

2
0.
00

0
0.
28

7
0.
11
7

0.
28
7

0.
03
5

0.
47
7

G
A
LN

T2
rs
48
46

91
3
C
>
A

H
yp
er
ch
ol
es
te
ro
la
em

ia

C
C

45
4

5.
87

�
0.
60

1.
41

(1
.1
4)

1.
46

�
0.
30

3.
15

�
0.
26

1.
19

�
0.
11

1.
18

�
0.
26

1.
07

�
0.
25

A
C

23
9

5.
87

�
0.
52

1.
68

(1
.3
1)

1.
34

�
0.
42

3.
19

�
0.
33

1.
15

�
0.
11

1.
18

�
0.
24

1.
02

�
0.
25

A
A

40
6.
00

�
0.
50

1.
76

(1
.5
1)

1.
33

�
0.
40

3.
20

�
0.
30

1.
13

�
0.
12

1.
21

�
0.
26

0.
99

�
0.
24

F
1.
09

8
54

.2
73

8.
73

4
0.
22
2

7.
80
7

0.
11
4

2.
66
9

P
0.
33

4
0.
00

0
0.
00

0
0.
80
1

0.
00
0

0.
89
2

0.
07
0

N
on
-h
yp
er
ch
ol
es
te
ro
la
em

ia

C
C

76
4

4.
40

�
0.
52

1.
22

(0
.9
8)

1.
86

�
0.
32

2.
73

�
0.
41

1.
42

�
0.
21

0.
95

�
0.
20

1.
56

�
0.
43

ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

255

J. Cell. Mol. Med. Vol 20, No 2, 2016



Ta
bl
e
5.

C
on

tin
ue
d

G
en

ot
yp
e

n
TC

(m
m
ol
/l
)

TG
(m

m
ol
/l
)

H
D
L-
C
(m

m
ol
/l
)

LD
L-
C
(m

m
ol
/l
)

A
po
A
1
(g
/l
)

A
po
B
(g
/l
)

A
po
A
1/
A
po

B

A
C

32
6

4.
44

�
0.
56

1.
39

(1
.1
3)

1.
83

�
0.
34

2.
76

�
0.
39

1.
36

�
0.
21

0.
98

�
0.
20

1.
45

�
0.
42

A
A

46
4.
47

�
0.
51

1.
92

(1
.5
2)

1.
75

�
0.
30

2.
78

�
0.
37

1.
36

�
0.
42

1.
02

�
0.
14

1.
34

�
0.
45

F
2.
68

5
97

.4
61

2.
17

0
1.
20
3

3.
85
9

4.
42
8

8.
03
2

P
0.
06

9
0.
00

0
0.
11

5
0.
30
1

0.
02
1

0.
01
2

0.
00
0

G
A
LN

T2
rs
11
12

23
16
G
>
A

H
yp
er
ch
ol
es
te
ro
la
em

ia

G
G

29
2

5.
80

�
0.
58

1.
40

(1
.1
0)

1.
44

�
0.
31

3.
17

�
0.
35

1.
19

�
0.
10

1.
15

�
0.
23

1.
09

�
0.
27

A
G

33
8

5.
85

�
0.
53

1.
50

(1
.2
4)

1.
42

�
0.
35

3.
18

�
0.
31

1.
18

�
0.
12

1.
18

�
0.
24

1.
06

�
0.
26

A
A

10
3

5.
93

�
0.
60

1.
58

(1
.2
9)

1.
39

�
0.
36

3.
21

�
0.
33

1.
16

�
0.
11

1.
19

�
0.
26

1.
04

�
0.
23

F
2.
24

0
26

.3
85

0.
74

5
1.
27
1

2.
46
2

0.
70
1

1.
50
5

P
0.
10

7
0.
00

0
0.
47

5
0.
28
1

0.
08
6

0.
49
6

0.
22
3

N
on
-h
yp
er
ch
ol
es
te
ro
la
em

ia

G
G

43
8

4.
42

�
0.
50

1.
24

(0
.9
7)

1.
88

�
0.
31

2.
73

�
0.
41

1.
40

�
0.
20

0.
95

�
0.
19

1.
54

�
0.
43

A
G

55
9

4.
41

�
0.
54

1.
27

(1
.0
4)

1.
85

�
0.
32

2.
73

�
0.
39

1.
40

�
0.
27

0.
96

�
0.
20

1.
51

�
0.
43

A
A

13
9

4.
44

�
0.
50

1.
40

(1
.1
7)

1.
83

�
0.
34

2.
83

�
0.
42

1.
39

�
0.
22

0.
98

�
0.
21

1.
50

�
0.
43

F
0.
40

7
19

.2
24

1.
63

6
3.
28
9

0.
07
8

1.
16
8

0.
76
0

P
0.
66

6
0.
00

0
0.
19

5
0.
03
8

0.
92
5

0.
31
1

0.
46
8

Th
e
va
lu
es

of
TG

w
er
e
pr
es
en
te
d
as

m
ed
ia
n
(i
nt
er
qu

ar
til
e
ra
ng
e)
.
Th

e
di
ff
er
en
ce

am
on

g
th
e
ge
no

ty
pe
s
w
as

de
te
rm

in
ed

by
th
e
K
ru
sk
al
–W

al
lis

te
st

or
th
e
W
ilc
ox
on
-M

an
n–
W
hi
tn
ey

te
st
.

TC
:
to
ta
l
ch
ol
es
te
ro
l;
TG

:
tr
ig
ly
ce
ri
de
;
H
D
L-
C
:
hi
gh

-d
en
si
ty

lip
op

ro
te
in

ch
ol
es
te
ro
l;
LD

L-
C
:
lo
w
-d
en
si
ty

lip
op

ro
te
in

ch
ol
es
te
ro
l;
A
po

A
1:

ap
ol
ip
op

ro
te
in

A
1;

A
po

B
:
ap
ol
ip
op

ro
te
in

B
;
A
po
A
1/
A

po
B
:
th
e
ra
tio

of
a
po

lip
op

ro
te

in
A
1
to

ap
ol
ip
op

ro
te

in
B
.

256 ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



Ta
bl
e
6
A
ss
oc
ia
tio
n
be
tw
ee
n
th
e
ge
no
ty
pe
s
of

D
O
C
K
7,

P
C
S
K
9
an
d
G
A
LN

T2
S
N
P
s
an
d
se
ru
m

lip
id

le
ve
ls
in

th
e
hy
pe
rt
ri
gl
yc
er
id
ae
m
ic
an
d
no
n-
hy
pe
rt
ri
gl
yc
er
id
ae
m
ic
in
di
vi
du
al
s

G
en

ot
yp
e

n
TC

(m
m
ol
/l
)

TG
(m

m
ol
/l
)

H
D
L-
C
(m

m
ol
/l
)

LD
L-
C
(m

m
ol
/l
)

A
po

A
1
(g
/l
)

A
po
B
(g
/l
)

A
po
A
1/
A
po

B

D
O
C
K
7
rs
11

68
01

3G
>
C

H
yp
er
tr
ig
ly
ce
ri
da
em

ia

G
G

24
4

5.
13

�
0.
84

2.
05

(1
.8
5)

1.
65

�
0.
56

2.
85

�
0.
47

1.
29

�
0.
23

1.
13

�
0.
25

1.
20

�
0.
38

C
G

23
1

5.
30

�
0.
95

2.
19

(1
.8
7)

1.
58

�
0.
46

2.
99

�
0.
42

1.
27

�
0.
21

1.
16

�
0.
23

1.
13

�
0.
31

C
C

65
5.
33

�
0.
91

2.
36

(2
.0
1)

1.
53

�
0.
50

3.
00

�
0.
44

1.
25

�
0.
20

1.
17

�
0.
24

1.
12

�
0.
22

F
0.
97
6

12
.5
51

3.
15

3
2.
83
7

3.
95

4
1.
00

9
5.
22
9

P
0.
37
8

0.
00

2
0.
04

4
0.
05
9

0.
02

0
0.
36

5
0.
00
5

N
on
-h
yp
er
tr
ig
ly
ce
ri
da
em

ia

G
G

60
5

4.
83

�
0.
85

1.
19

(0
.9
8)

1.
89

�
0.
47

2.
76

�
0.
41

1.
33

�
0.
23

1.
00

�
0.
23

1.
39

�
0.
38

C
G

59
1

4.
86

�
0.
75

1.
20

(1
.0
2)

1.
82

�
0.
43

2.
77

�
0.
41

1.
32

�
0.
20

1.
00

�
0.
23

1.
38

�
0.
39

C
C

13
3

4.
91

�
0.
88

1.
23

(1
.0
8)

1.
80

�
0.
49

2.
79

�
0.
42

1.
32

�
0.
19

1.
04

�
0.
25

1.
33

�
0.
35

F
1.
59
5

4.
32

0
5.
87

6
1.
40
7

0.
97

2
0.
96

0
0.
86
5

P
0.
20
3

0.
11

5
0.
00

3
0.
24
5

0.
37

9
0.
38

3
0.
42
1

D
O
C
K
7
rs
10

88
93

32
C
>
T

H
yp
er
tr
ig
ly
ce
ri
da
em

ia

C
C

28
3

5.
13

�
0.
92

2.
06

(1
.8
4)

1.
64

�
0.
49

2.
92

�
0.
48

1.
28

�
0.
22

1.
13

�
0.
26

1.
20

�
0.
39

C
T

20
3

5.
18

�
0.
93

2.
07

(1
.8
8)

1.
59

�
0.
53

2.
94

�
0.
47

1.
27

�
0.
21

1.
15

�
0.
21

1.
14

�
0.
30

TT
54

5.
40

�
0.
90

2.
93

(2
.4
5)

1.
45

�
0.
35

3.
03

�
0.
40

1.
26

�
0.
23

1.
21

�
0.
28

1.
08

�
0.
29

F
4.
00
2

44
.9
19

2.
65

3
3.
29
1

1.
44

3
3.
74

4
6.
34
2

P
0.
01
9

0.
00

0
0.
07

3
0.
03
8

0.
23

7
0.
02

4
0.
00
2

N
on
-h
yp
er
tr
ig
ly
ce
ri
da
em

ia

C
C

73
5

4.
76

�
0.
79

1.
16

(0
.9
7)

1.
86

�
0.
45

2.
73

�
0.
40

1.
36

�
0.
20

0.
98

�
0.
21

1.
39

�
0.
36

C
T

51
3

4.
95

�
0.
87

1.
18

(0
.9
9)

1.
83

�
0.
47

2.
81

�
0.
43

1.
34

�
0.
23

1.
02

�
0.
25

1.
38

�
0.
41

TT
81

5.
31

�
1.
03

1.
26

(1
.0
4)

1.
83

�
0.
66

2.
91

�
0.
42

1.
31

�
0.
20

1.
11

�
0.
32

1.
30

�
0.
33

F
17

.8
52

20
.4
03

0.
43

9
9.
01
0

3.
06

3
11

.2
91

1.
30
9

ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

257

J. Cell. Mol. Med. Vol 20, No 2, 2016



Ta
bl
e
6.

C
on

tin
ue
d

G
en

ot
yp
e

n
TC

(m
m
ol
/l
)

TG
(m

m
ol
/l
)

H
D
L-
C
(m

m
ol
/l
)

LD
L-
C
(m

m
ol
/l
)

A
po

A
1
(g
/l
)

A
po
B
(g
/l
)

A
po
A
1/
A
po

B

P
0.
00
0

0.
00

0
0.
64

5
0.
00
0

0.
04

7
0.
00

0
0.
27
0

P
C
S
K
9
rs
61
55

63
G
>
A

H
yp
er
tr
ig
ly
ce
ri
da
em

ia

G
G

30
3

5.
25

�
0.
89

2.
09

(1
.8
4)

1.
63

�
0.
39

2.
97

�
0.
46

1.
33

�
0.
21

1.
13

�
0.
23

1.
17

�
0.
38

A
G

19
5

5.
29

�
0.
93

2.
19

(1
.9
1)

1.
60

�
0.
45

2.
98

�
0.
41

1.
28

�
0.
24

1.
15

�
0.
24

1.
16

�
0.
32

A
A

42
5.
50

�
0.
95

2.
34

(1
.9
3)

1.
60

�
0.
54

3.
06

�
0.
39

1.
26

�
0.
20

1.
25

�
0.
27

1.
11

�
0.
26

F
1.
73
4

1.
19

3
0.
16

4
0.
95
4

3.
02

6
2.
70

6
0.
16
1

P
0.
17
8

0.
55

1
0.
84

9
0.
38
6

0.
04

9
0.
06

8
0.
85
1

N
on
-h
yp
er
tr
ig
ly
ce
ri
da
em

ia

G
G

89
7

4.
80

�
0.
82

1.
12

(0
.9
7)

2.
08

�
0.
59

2.
75

�
0.
40

1.
35

�
0.
23

0.
98

�
0.
25

1.
43

�
0.
33

A
G

37
8

5.
00

�
0.
90

1.
18

(1
.0
0)

1.
84

�
0.
46

2.
81

�
0.
44

1.
33

�
0.
22

0.
99

�
0.
22

1.
41

�
0.
39

A
A

54
5.
02

�
0.
97

1.
27

(1
.0
6)

1.
83

�
0.
47

2.
88

�
0.
46

1.
31

�
0.
20

1.
05

�
0.
26

1.
32

�
0.
36

F
6.
24
8

24
.9
16

5.
77

7
3.
10
4

0.
81

8
7.
98

6
6.
65
6

P
0.
00
2

0.
00

0
0.
00

3
0.
04
5

0.
44

1
0.
00

0
0.
00
1

P
C
S
K
9
rs
75
52

84
1
C
>
T

H
yp
er
tr
ig
ly
ce
ri
da
em

ia

C
C

31
2

5.
24

�
0.
92

2.
05

(1
.8
3)

1.
69

�
0.
52

2.
96

�
0.
42

1.
32

�
0.
25

1.
13

�
0.
22

1.
17

�
0.
33

C
T

18
6

5.
28

�
0.
87

2.
27

(1
.9
8)

1.
62

�
0.
49

2.
98

�
0.
44

1.
27

�
0.
21

1.
15

�
0.
24

1.
15

�
0.
35

TT
42

5.
59

�
1.
24

2.
47

(1
.9
2)

1.
56

�
0.
51

3.
14

�
0.
54

1.
25

�
0.
21

1.
26

�
0.
33

1.
11

�
0.
34

F
1.
10
5

25
.3
28

1.
72

4
2.
06
6

1.
50

7
4.
49

2
0.
74
4

P
0.
33
2

0.
00

0
0.
17

9
0.
12
8

0.
22

3
0.
01

2
0.
47
6

N
on
-h
yp
er
tr
ig
ly
ce
ri
da
em

ia

C
C

95
1

4.
80

�
0.
82

1.
19

(0
.9
9)

1.
96

�
0.
60

2.
75

�
0.
41

1.
37

�
0.
21

0.
98

�
0.
22

1.
41

�
0.
38

C
T

34
7

5.
00

�
0.
88

1.
21

(1
.0
6)

1.
86

�
0.
48

2.
82

�
0.
41

1.
34

�
0.
24

1.
06

�
0.
26

1.
33

�
0.
37

TT
31

5.
40

�
1.
08

1.
24

(1
.0
3)

1.
83

�
0.
47

3.
00

�
0.
52

1.
32

�
0.
21

1.
18

�
0.
30

1.
22

�
0.
27

258 ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



Ta
bl
e
6.

C
on

tin
ue
d

G
en

ot
yp
e

n
TC

(m
m
ol
/l
)

TG
(m

m
ol
/l
)

H
D
L-
C
(m

m
ol
/l
)

LD
L-
C
(m

m
ol
/l
)

A
po

A
1
(g
/l
)

A
po
B
(g
/l
)

A
po
A
1/
A
po

B

F
13

.4
13

6.
68

9
2.
11

9
9.
59
1

4.
55

9
26

.1
39

7.
88
5

P
0.
00
0

0.
03

5
0.
12

1
0.
00
0

0.
01

1
0.
00

0
0.
00
0

P
C
S
K
9
rs
11
20

65
17

T>
G

H
yp
er
tr
ig
ly
ce
ri
da
em

ia

TT
42

6
5.
23

�
0.
99

2.
06

(1
.8
4)

1.
62

�
0.
52

2.
97

�
0.
43

1.
28

�
0.
25

1.
14

�
0.
22

1.
22

�
0.
53

G
T

10
2

5.
30

�
0.
90

2.
17

(1
.8
8)

1.
57

�
0.
38

2.
97

�
0.
48

1.
27

�
0.
21

1.
14

�
0.
22

1.
16

�
0.
32

G
G

12
5.
52

�
1.
05

2.
95

(2
.2
8)

1.
36

�
0.
33

3.
07

�
0.
52

1.
25

�
0.
26

1.
19

�
0.
29

1.
14

�
0.
38

F
0.
25
0

7.
80

2
1.
67

3
0.
14
1

0.
49

0
1.
41

8
0.
27
9

P
0.
77
9

0.
02

0
0.
18

9
0.
86
9

0.
61

3
0.
24

3
0.
75
7

N
on
-h
yp
er
tr
ig
ly
ce
ri
da
em

ia

TT
11

55
4.
76

�
0.
73

1.
20

(1
.0
0)

1.
85

�
0.
47

2.
77

�
0.
42

1.
34

�
0.
17

1.
00

�
0.
23

1.
40

�
0.
38

G
T

16
6

4.
84

�
0.
85

1.
20

(1
.0
1)

1.
80

�
0.
44

2.
81

�
0.
35

1.
33

�
0.
22

1.
07

�
0.
24

1.
29

�
0.
37

G
G

8
5.
05

�
0.
86

1.
26

(1
.2
5)

1.
74

�
0.
44

2.
84

�
0.
31

1.
32

�
0.
20

1.
15

�
0.
27

1.
20

�
0.
19

F
3.
93
3

2.
94

8
7.
58

3
0.
79
7

0.
64

3
8.
05

7
7.
54
7

P
0.
02
0

0.
22

9
0.
00

1
0.
45
1

0.
52

6
0.
00

0
0.
00
1

G
A
LN

T2
rs
19
97

94
7G

>
A

H
yp
er
tr
ig
ly
ce
ri
da
em

ia

G
G

32
6

4.
99

�
0.
71

2.
12

(1
.8
5)

1.
65

�
0.
52

2.
76

�
0.
54

1.
28

�
0.
20

1.
14

�
0.
23

1.
17

�
0.
34

A
G

18
0

5.
25

�
0.
86

2.
13

(1
.9
0)

1.
60

�
0.
49

2.
99

�
0.
40

1.
28

�
0.
24

1.
14

�
0.
20

1.
15

�
0.
35

A
A

34
5.
42

�
1.
02

2.
51

(2
.0
6)

1.
35

�
0.
37

2.
99

�
0.
47

1.
15

�
0.
16

1.
17

�
0.
26

1.
04

�
0.
23

F
2.
04
3

6.
36

2
2.
86

8
3.
98
0

4.
10

2
0.
25

9
1.
42
3

P
0.
13
1

0.
04

2
0.
05

8
0.
01
9

0.
01

7
0.
77

2
0.
24
2

N
on
-h
yp
er
tr
ig
ly
ce
ri
da
em

ia

G
G

92
4

4.
85

�
0.
87

1.
18

(0
.9
9)

1.
88

�
0.
41

2.
76

�
0.
43

1.
33

�
0.
22

1.
00

�
0.
24

1.
40

�
0.
37

A
G

37
0

4.
90

�
0.
81

1.
24

(1
.0
3)

1.
84

�
0.
50

2.
78

�
0.
34

1.
32

�
0.
20

1.
01

�
0.
23

1.
37

�
0.
40

ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

259

J. Cell. Mol. Med. Vol 20, No 2, 2016



Ta
bl
e
6.

C
on

tin
ue
d

G
en

ot
yp
e

n
TC

(m
m
ol
/l
)

TG
(m

m
ol
/l
)

H
D
L-
C
(m

m
ol
/l
)

LD
L-
C
(m

m
ol
/l
)

A
po

A
1
(g
/l
)

A
po
B
(g
/l
)

A
po
A
1/
A
po

B

A
A

35
5.
02

�
0.
74

1.
40

(1
.1
9)

1.
57

�
0.
28

2.
80

�
0.
39

1.
17

�
0.
13

1.
04

�
0.
16

1.
16

�
0.
29

F
0.
71
0

30
.2
58

5.
76

6
0.
39
8

11
.0
22

0.
18

0
5.
84
6

P
0.
49
2

0.
00

0
0.
00

3
0.
67
2

0.
00

0
0.
83

5
0.
00
3

G
A
LN

T2
rs
27
60

53
7
C
>
T

H
yp
er
tr
ig
ly
ce
ri
da
em

ia

C
C

21
5

5.
23

�
0.
95

2.
09

(1
.8
4)

1.
65

�
0.
60

2.
87

�
0.
49

1.
28

�
0.
23

1.
14

�
0.
27

1.
18

�
0.
39

C
T

23
6

5.
29

�
0.
88

2.
17

(1
.9
0)

1.
57

�
0.
40

2.
99

�
0.
40

1.
27

�
0.
20

1.
14

�
0.
24

1.
17

�
0.
35

TT
89

5.
32

�
0.
94

2.
50

(1
.9
4)

1.
55

�
0.
40

3.
01

�
0.
45

1.
27

�
0.
20

1.
16

�
0.
23

1.
13

�
0.
30

F
0.
20
6

8.
58

3
1.
72

2
4.
03
7

0.
56

5
0.
45

7
0.
51
8

P
0.
81
4

0.
01

4
0.
18

0
0.
01
8

0.
56

9
0.
63

4
0.
59
6

N
on
-h
yp
er
tr
ig
ly
ce
ri
da
em

ia

C
C

55
8

4.
78

�
0.
83

1.
17

(0
.9
7)

1.
88

�
0.
57

2.
74

�
0.
41

1.
33

�
0.
21

0.
99

�
0.
22

1.
39

�
0.
35

C
T

61
4

4.
92

�
0.
84

1.
21

(1
.0
2)

1.
87

�
0.
44

2.
79

�
0.
39

1.
33

�
0.
20

1.
01

�
0.
24

1.
38

�
0.
40

TT
15

7
4.
98

�
0.
93

1.
25

(1
.0
9)

1.
81

�
0.
48

2.
83

�
0.
49

1.
32

�
0.
22

1.
03

�
0.
28

1.
38

�
0.
43

F
5.
12
9

17
.4
73

2.
07

8
2.
79
3

0.
33

0
1.
49

9
0.
25
5

P
0.
00
6

0.
00

0
0.
12

6
0.
06
2

0.
71

9
0.
22

4
0.
77
5

G
A
LN

T2
rs
48
46

91
3
C
>
A

H
yp
er
tr
ig
ly
ce
ri
da
em

ia

C
C

34
8

5.
05

�
1.
06

2.
12

(1
.8
7)

1.
63

�
0.
51

2.
76

�
0.
70

1.
30

�
0.
23

1.
13

�
0.
24

1.
19

�
0.
37

A
C

16
6

5.
28

�
0.
93

2.
16

(1
.8
8)

1.
56

�
0.
48

2.
98

�
0.
43

1.
23

�
0.
18

1.
15

�
0.
25

1.
10

�
0.
26

A
A

26
5.
34

�
0.
87

2.
62

(2
.0
9)

1.
47

�
0.
32

3.
02

�
0.
40

1.
19

�
0.
21

1.
16

�
0.
21

1.
10

�
0.
30

F
1.
17
5

7.
31

4
2.
30

3
3.
29
0

6.
81

4
0.
18

0
4.
66
9

P
0.
31
0

0.
02

6
0.
10

1
0.
03
8

0.
00

1
0.
83

5
0.
01
0

N
on
-h
yp
er
tr
ig
ly
ce
ri
da
em

ia

C
C

96
4

4.
80

�
0.
78

1.
17

(0
.9
9)

1.
87

�
0.
49

2.
74

�
0.
40

1.
34

�
0.
22

1.
00

�
0.
23

1.
40

�
0.
38

260 ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



Ta
bl
e
6.

C
on

tin
ue
d

G
en

ot
yp
e

n
TC

(m
m
ol
/l
)

TG
(m

m
ol
/l
)

H
D
L-
C
(m

m
ol
/l
)

LD
L-
C
(m

m
ol
/l
)

A
po

A
1
(g
/l
)

A
po
B
(g
/l
)

A
po
A
1/
A
po

B

A
C

32
5

4.
87

�
0.
87

1.
24

(1
.0
6)

1.
76

�
0.
44

2.
78

�
0.
42

1.
29

�
0.
19

1.
01

�
0.
24

1.
36

�
0.
37

A
A

40
5.
27

�
0.
83

1.
51

(1
.3
7)

1.
76

�
0.
45

2.
90

�
0.
38

1.
22

�
0.
21

1.
06

�
0.
20

1.
18

�
0.
30

F
4.
81
0

66
.5
40

6.
62

6
2.
48
1

10
.0
45

0.
60

6
3.
70
4

P
0.
00
8

0.
00

0
0.
00

1
0.
08
4

0.
00

0
0.
54

6
0.
02
5

G
A
LN

T2
rs
11
12

23
16
G
>
A

H
yp
er
tr
ig
ly
ce
ri
da
em

ia

G
G

17
9

5.
27

�
0.
88

2.
05

(1
.8
3)

1.
63

�
0.
43

2.
96

�
0.
46

1.
27

�
0.
24

1.
14

�
0.
24

1.
17

�
0.
37

A
G

27
9

5.
29

�
0.
99

2.
15

(1
.8
7)

1.
60

�
0.
54

2.
99

�
0.
42

1.
27

�
0.
21

1.
15

�
0.
24

1.
16

�
0.
32

A
A

82
5.
37

�
0.
89

2.
30

(1
.9
2)

1.
59

�
0.
46

3.
03

�
0.
38

1.
27

�
0.
21

1.
17

�
0.
22

1.
13

�
0.
32

F
0.
35
2

10
.4
13

0.
01

1
1.
01
6

0.
11

0
0.
43

8
0.
43
2

P
0.
70
3

0.
00

5
0.
99

0
0.
36
3

0.
89

6
0.
64

5
0.
65
0

N
on
-h
yp
er
tr
ig
ly
ce
ri
da
em

ia

G
G

55
1

4.
81

�
0.
85

1.
15

(0
.9
7)

1.
88

�
0.
52

2.
75

�
0.
40

1.
34

�
0.
20

0.
99

�
0.
22

1.
41

�
0.
35

A
G

61
8

4.
84

�
0.
80

1.
23

(1
.0
2)

1.
86

�
0.
48

2.
79

�
0.
43

1.
34

�
0.
20

1.
00

�
0.
22

1.
39

�
0.
38

A
A

16
0

4.
94

�
0.
87

1.
26

(1
.1
5)

1.
82

�
0.
46

2.
80

�
0.
39

1.
31

�
0.
23

1.
02

�
0.
25

1.
37

�
0.
38

F
2.
86
8

24
.7
54

1.
70

2
1.
60
6

2.
80

3
0.
89

3
0.
46
3

P
0.
05
7

0.
00

0
0.
18

3
0.
20
1

0.
06

1
0.
41

0
0.
62
9

Th
e
va
lu
es

of
TG

w
er
e
pr
es
en
te
d
as

m
ed
ia
n
(i
nt
er
qu

ar
til
e
ra
ng
e)
.
Th

e
di
ff
er
en
ce

am
on

g
th
e
ge
no

ty
pe
s
w
as

de
te
rm

in
ed

by
th
e
K
ru
sk
al
–W

al
lis

te
st

or
th
e
W
ilc
ox
on
-M

an
n–
W
hi
tn
ey

te
st
.

TC
:
to
ta
l
ch
ol
es
te
ro
l;
TG

:
tr
ig
ly
ce
ri
de
;
H
D
L-
C
:
hi
gh

-d
en
si
ty

lip
op

ro
te
in

ch
ol
es
te
ro
l;
LD

L-
C
:
lo
w
-d
en
si
ty

lip
op

ro
te
in

ch
ol
es
te
ro
l;
A
po
A
1:

ap
ol
ip
op

ro
te
in

A
1;

A
po

B
:
ap
ol
ip
op

ro
te
in

B
;
A
po

A
1/
A

po
B
:
th
e
ra
tio

of
a
po

lip
op

ro
te

in
A
1
to

ap
ol
ip
op

ro
te

in
B
.

ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

261

J. Cell. Mol. Med. Vol 20, No 2, 2016



G-C-T-G-T-C-G were associated with an increased risk of HCH.
The haplotypes of C-T-G-C-T-G-C-C-G, G-C-A-C-T-G-C-C-G and G-
C-G-C-T-G-C-C-A were associated with an increased risk of HTG.
The haplotypes of G-C-G-C-T-G-T-C-A and G-C-G-T-T-G-T-C-G
were associated with a reduced risk of HTG.

On GMDR analysis, an inter-locus interaction among the DOCK7,
PCSK9 and GALNT2 SNPs on serum lipid levels was found in this
study. The interactions of rs10889332–rs1997947 were associated
with the risk of HCH, and rs615563–rs7552841, and/or rs615563–
rs7552841–rs4847913 were associated with the risk of HTG. In mul-
ti-locus (GMDR) analyses, a significant association with HCH and
HTG was found in two- to three-locus models. These findings indicate
that a potential gene–gene interaction might exist among the DOCK7,
PCSK9 and GALNT2 SNPs. Unfortunately, no previous study has
investigated the inter-locus interaction between these SNPs, and
therefore we cannot make comparisons with our results. Although, a
statistically significant SNP–SNP interaction was noted in this study,
the biological mechanism underlying these genes and their interac-
tions is still yet to be defined.

Study limitations

There are several potential limitations in our study. First, the number
of participants available for MAF of some SNPs was not high enough
to calculate a strong power as compared with many previous GWAS
and replication studies. Hence, further studies with larger sample size
are needed to confirm our results. Second, we were unable to allevi-
ate the effect of diet during the statistical analysis. Third, although we
have detected the interactions of the DOCK7, PCSK9 and GALNT2
SNPs on hyperlipidaemia in this study, many unmeasured environ-
mental and genetic factors still need to be considered. Besides, the
interactions of gene–environment and environment–environment on
serum lipid levels remain to be determined. For the clear understand-
ing of biological mechanism underlying hyperlipidaemia, an enor-
mous amount of common variants with small effects and rare
variants with large effects still remain to be determined. What is
more, the relevance of this finding has to be defined in further high
calibre of studies including incorporating the genetic information of
the DOCK7, PCSK9 and GALNT2 SNPs and their haplotypes and
in vitro functional studies to confirm the impact of a variant on a
molecular level.

Conclusions

Our study confirmed that the genetic variants are replicable in the
Southern Chinese hyperlipidaemic and normolipidaemic populations.
The haplotype of C-C-G-C-T-G-C-C-G was associated with an
increased risk of HCH and HTG. The haplotypes of C-C-G-C-T-G-C-C-
A and G-C-G-T-T-G-T-C-G were associated with a reduced risk of
HCH and HTG. The haplotypes of G-C-G-C-T-G-C-C-A and G-C-G-C-T-
G-T-C-G were associated with an increased risk of HCH. The haplo-
types of C-T-G-C-T-G-C-C-G, G-C-A-C-T-G-C-C-G and G-C-G-C-T-G-
C-C-A were associated with an increased risk of HTG. The haplotypesTa
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of G-C-G-C-T-G-T-C-A and G-C-G-T-T-G-T-C-G were associated with
a reduced risk of HTG. In addition, possible inter-locus interactions
among the DOCK7, PCSK9 and GALNT2 SNPs are also noted. How-
ever, further functional studies of these genes are still required to
clarify which SNPs are functional and how these genes actually affect
the serum lipid levels.

Taken all of facts into consideration, it is possible that the signifi-
cant SNPs identified in the DOCK7, PCSK9 and GALNT2 region might
be in high linkage disequilibrium with some of the functional SNPs in
other genes, which is known to affect the lipid metabolism. Thus, an
in-depth study of the biological actions of these genes is crucial to
clarify which SNPs are functional and how these genes actually affect
the serum lipid levels. It is expected that the physiological function of
DOCK7, PCSK9 and GALNT2 will be elucidated in a not too distant
future.
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