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ABSTRACT

Incretin/cyclic adenosine monophosphate (cAMP) signaling is critical for potentiation of insulin secretion. Although several cell lines
of pancreatic b-cells are currently available, there are no cell lines suitable for investigation of incretin/cAMP signaling. In the present
study, we have newly established pancreatic b-cell lines (named MIN6-K) from the IT6 mouse, which develops insulinoma. MIN6-K8
cells respond to both glucose and incretins, such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypep-
tide (GIP), as is the case in pancreatic islets, whereas MIN6-K20 cells respond to glucose, but not to incretins. Despite the difference in
incretin-potentiated insulin secretion between these two cell lines, the accumulation of cAMP after stimulation of GLP-1 is compara-
ble in these cells. Interestingly, we also found that incretin responsiveness is drastically induced by the formation of pseudoislets from
MIN6-K20 cells to a level comparable to that of pancreatic islets. Thus, these cell lines are useful for studying incretin/cAMP signaling
in b-cells. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00026.x, 2010)
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INTRODUCTION
Incretins, glucagon-like peptide-1 (GLP-1) and glucose-depen-
dent insulinotropic polypeptide (GIP), are released from ente-
roendocrine cells by ingestion of nutrients, and potentiate
insulin secretion in a glucose-dependent manner by activation of
cyclic adenosine monophosphate (cAMP) signaling through
their specific receptors in the pancreatic b-cell membrane1. GLP-
1 analogs and dipeptidyl peptidase IV (DPP-IV) inhibitors are
currently being used as new hypoglycemic agents to treat
patients with type 2 diabetes mellitus (T2DM)2. In contrast, it
has been reported that GIP is ineffective for the treatment of
T2DM3,4, which shows that GIP receptor-mediated signaling is
inactivated in T2DM5. Although cAMP is now known to poten-
tiate insulin secretion mediated by both protein kinase A (PKA)-
dependent and PKA-independent pathways6–9, differences in the
mechanisms between GLP-1 and GIP signaling in pancreatic
b-cells are still unclear. In addition, the nature of incretin-mediated
signaling in pancreatic b-cells of T2DM has not been character-

ized. This is mainly because there is no appropriate system for
the study of the mechanisms of incretin/cAMP signaling.

Various clonal b-cells are useful models for the study of insu-
lin secretion in pancreatic b-cells. Although several b-cell lines,
such as RINm5F, HIT, bTC, INS1, and MIN6, have been estab-
lished10–14, these cells often show insulin secretory properties
different from those of native pancreatic b-cells, and tend to lose
glucose-stimulated insulin secretion (GSIS) during the course of
passage15,16. We previously reported that MIN6-m9 cells sub-
cloned from original MIN6 cells retain GSIS after repetitive pas-
sage17. However, because of their lack of incretin responsiveness,
MIN6-m9 cells are not suitable for the investigation of incretin/
cAMP signaling.

In the present study, we established two new pancreatic b-cell
lines (designated MIN6-K8 and MIN6-K20) from the IT6
mouse, which develops insulinoma, and characterized their
properties of insulin secretion. We found that these cells show
distinct responses to incretins and that formation of pseudoislets
drastically induces an incretin responsive state from the
unresponsive state.

MATERIALS AND METHODS
Cloning of MIN6-K Cell Lines
An IT6 mouse was used to establish pancreatic b-cell lines14.
Clonal b-cells were obtained by isolating b-cell colonies
sprouted on culture dishes of mixed-cells prepared from the
whole pancreas of an IT6 mouse, as previously described18.
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Formation of Pseudoislets
Pseudoislets were formed as previously described16, with slight
modifications. Briefly, MIN6-K cells were seeded on dishes
coated by 0.1% wt/vol gelatin, and cultured for 7 days in
DMEM containing 25 mmol/L glucose.

Measurements of Insulin Secretion
MIN6-K cells were preincubated for 30 min in HEPES-Krebs
buffer17 with 2.8 mmol/L glucose, and then stimulated for
30 min with various concentrations of glucose in the absence or
presence of the incretins for 30 min. Released insulin was mea-
sured by insulin assay kit (CIS Bio International, Gif sur Yvette,
France).

Measurement of cAMP Content
MIN6-K cells were incubated for 30 min in the presence or
absence of GLP-1 with 16.7 mmol/L glucose. Cellular cAMP
levels were determined by using a commercial kit (CIS Bio
International).

Quantification of mRNA Expression
mRNA expressions were quantified by real-time RT–PCR using
TaqMan probes (Applied Biosystems, Foster City, CA, USA).

RESULTS
Establishment and Characterization of MIN6-K Cells
We obtained more than 30 clonal pancreatic b-cell lines from
the pancreas of an IT6 mouse. Among these, we selected two
cell lines based on their insulin secretory response to glucose
and GLP-1. We designated one line MIN6-K8 and the other
line MIN6-K20, which were indistinguishable by their morphol-
ogy (Figure 1a). MIN6-K8 cells secreted insulin in response to a
physiological concentration of glucose and the sulfonylurea, gli-
benclamide. Potentiation of GSIS by incretins (both GLP-1 and
GIP) was also evident (Figure 1b), showing that the cells resem-
ble native pancreatic islets in terms of the property of insulin

secretion. In contrast, while MIN6-K20 cells did respond to
glucose and glibenclamide, the cells did not respond to either
GLP-1 or GIP (Figure 1b). Because incretins potentiate insulin
secretion through an increase in the intracellular cAMP concen-
tration, we reasoned that the difference in incretin response
between MIN6-K8 and -K20 cells might result from a difference
in cAMP production. However, this is not the case, because the
cAMP levels after the addition of GLP-1 in the two cell lines
were found to be similar (Figure 1c). Therefore, signaling distal
to cAMP production is likely to be responsible for the different
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Figure 1 | Characterization of MIN6-K8 and MIN6-K20 cells. (a) Morphol-
ogy of K8 and K20 cells. Cells were grown as monolayers on a tissue
culture dish in DMEM containing 25 mmol/L glucose (scale bars,
100 lm). (b) Insulin secretory properties of K8 and K20 cells. Cells were
precultured for 2 days in a 96-well plate and preincubated for 30 min in
HEPES-Krebs buffer containing 0.1% BSA with 2.8 mmol/L glucose. Incu-
bation was preformed in the presence of the indicated concentrations
of glucose or glucose with 10 nmol/L glibenclamide (GLB), 10 nmol/L
glucagon-like peptide-1 (GLP-1), or 10 nmol/L glucose-dependent
insulinotropic polypeptide (GIP). Plasma membrane depolarization was
induced by the addition of 60 mmol/L KCl in the presence of
2.8 mmol/L glucose. (c) Cyclic adenosine monophosphate (cAMP) levels
in K8 and K20 cells were measured in the presence of 10 nmol/L GLP-1
with 16.7 mmol/L glucose. The amounts of insulin secretion and cAMP
content were normalized by the cell DNA content. Data are means ±
SEM (n = 4). Unpaired Student’s t-test was used for the evaluation of
statistical significance. **P < 0.01.
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responses to the incretins between MIN6-K8 and MIN6-K20
cells.

Gene Expression in MIN6-K Cells
We then examined gene expression in MIN6-K8 and -K20 cells
by quantitative RT–PCR. Although GSIS in the two cell lines
was similar (Figure 1b), several genes, including GLUT1 and
glucokinase, were downregulated in the incretin non-responsive
MIN6-K20 cells (Figure 2a). The expressions of the receptors
for GLP-1 and GIP were not different between MIN6-K8 and
-K20 cells. In addition, no significant difference in expressions
of adenylyl cyclases, which catalyze adenosine triphosphate to
cAMP, and phosphodiesterases, which degrade cAMP, was
detected (Figure 2b).

Normalization of Insulin Content, Basal Insulin Secretion and
Incretin Responsiveness by Formation of Pseudoislets
Although experiments using cell lines are usually carried out in
monolayer culture conditions, native pancreatic b-cells form

three-dimensional structures (islets). We therefore examined
insulin secretion in pseudoislets constituted from MIN6-K cells.
Pseudoislets, which morphologically resemble native mouse pan-
creatic islets, were formed on gelatin-coated dishes (Figure 3a,b
and Supporting Information Movie S1). Insulin contents in the
pseudoislets were drastically increased to levels similar to those
of native islets (Figure 3c), whereas the expressions of insulin
genes were not changed or only slightly increased in pseudoislets
(Figure 3d).

We then investigated insulin secretion in pseudoislets in com-
parison with that in monolayer-cultured cells (Figure 4). Insulin
secretion from pseudoislets was significantly lower than that
from monolayer-cultured cells at a low concentration of glucose.
Interestingly, potentiation of GSIS by both GLP-1 and GIP was
significantly enhanced in MIN6-K8 cells by the formation
of pseudoislets. Most strikingly, even incretin non-responsive
MIN6-K20 cells, as well as MIN6-m9 cells, clearly responded
to both GLP-1 and GIP when pseudoislets were formed.
These data show that these cell lines acquired insulin secretory
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Figure 2 | Comparison of gene expressions among MIN6-K8, MIN6-K20 and MIN6-m9 cells. (a) Expressions of the genes involved in glucose-
stimulated insulin secretion. (b) Expressions of the genes encoding incretin receptors, adenylyl cyclases and phosphodiesterases. The expressions are
shown as relative to the level of hypoxanthine-guanine phosphoribosyltransferase (HPRT) expression. Data are means ± SEM (n = 3). Unpaired
Student’s t-test was used for the evaluation of statistical significance between MIN6-K8 and MIN6-K20 cells. *P < 0.05, **P < 0.01, †, undetectable.
AC, adenylyl cyclase; GIP-R, glucose-dependent insulinotropic polypeptide receptor; GK, glucokinase; GLP-1-R, glucagon-like peptide-1 receptor;
HK, hexokinase; PDE, phosphodiesterase.
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properties similar to those of native pancreatic islets by the for-
mation of pseudoislets.

DISCUSSION
It is well known that incretins, such as GIP and GLP-1, acti-
vate adenylyl cyclase to increase cAMP in pancreatic b-cells2.
Elevation of cAMP levels activates both PKA-dependent and
PKA-independent pathways, the latter involving Epac2/Rap1
signaling6–9. While PKA modulates insulin secretion through
phosphorylation of various proteins associated with the

secretory process of insulin8,19, Epac2/Rap1 signaling is
also important for the potentiation of GSIS by cAMP,
probably by increasing the size of a readily releasable pool
near the plasma membrane9,18,20. However, the link between
these pathways and insulin secretion is largely unknown.
Although native pancreaticb-cells are an ideal source for
investigation of these mechanisms, the limited numbers of
pancreatic b-cells that can be isolated from the native pan-
creas hampers the study of incretin/cAMP signaling at the
cell level.
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Figure 3 | Formation of pseudoislets. (a) The course of formation of pseudoislets. Sequential images acquired every 6 h for 7 days are shown
(scale bar, 200 lm). (b) Morphology of pseudoislets and mouse pancreatic islets (scale bars, 200 lm). (c) Comparison of insulin contents between
pseudoislets and monolayer-cultured cells. Data are means ± SEM (n = 4–8). The amount of insulin content was normalized by the cell DNA
content. (d) mRNA expression levels of insulin1 and insulin2 in pseudoislets and monolayer-cultured cells. Expressions of these genes are shown as
relative to the level of hypoxanthine-guanine phosphoribosyltransferase (HPRT) expression. Data are means ± SEM (n = 3). Unpaired Student’s t-test
was used for the evaluation of statistical significance. *P < 0.05, **P < 0.01.
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In the present study, we show that our newly established
mouse pancreatic b-cell lines are useful for such study. GLP-1
increased the intracellular cAMP concentration similarly in both
incretin responsive MIN6-K8 and incretin non-responsive
MIN6-K20 cells, showing that signals distal to cAMP produc-
tion differ between the two cell lines. Comparative analysis of
MIN6-K8 and -K20 cells should therefore advance understand-
ing the link between cAMP and insulin secretion.

In the present study, we show for the first time that the
formation of pseudoislets induces incretin responsiveness in
pancreatic b-cell lines. Cell–cell adhesion is known to have
important roles in cell function and differentiation21,22. Cell–cell
interactions mediated by gap junctions and/or EphA-ephrin-
A23–25 might participate, at least in part, in the improved insulin
secretion in pseudoislets. Pseudoislets constituted from these
newly established MIN6-K lines are a useful system for elucida-
tion of incretin/cAMP signaling in b-cells.
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SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of this article:

Movie S1 | Time-lapse images of pseudoislet formation of MIN6-K20 cells were acquired every 1 h for 7 days by using a BIOREVO
BZ-9000 fluorescence microscope (Keyence, Osaka, Japan). Timestamp (h : min : sec) and calibration bar (200 lm) are overlaid on
the images.
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