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Abstract: Pendimethalin-based herbicides are used worldwide for pre-emergence selective control of
annual grasses and weeds in croplands. The endurance of herbicides residues in the environment
has an impact on the soil biodiversity and fertility, also affecting non-target species, including
terrestrial invertebrates. Carabid beetles are known as natural pest control agents in the soil food
web of agroecosystems, and feed on invertebrates and weed seeds. Here, a mass spectrometry
untargeted profiling of haemolymph is used to investigate Pterostichus melas metabolic response after
to pendimethalin-based herbicide exposure. Mass spectrometric data are examined with statistical
approaches, such as principal component analysis, for possible correlation with biological effects.
Those signals with high correlation are submitted to tandem mass spectrometry to identify the
associated biomarker. The time course exposure showed many interesting findings, including a
significant downregulation of related to immune and defense peptides (M-lycotoxin-Ls4a, Peptide
hormone 1, Paralytic peptide 2, and Serine protease inhibitor 2). Overall, the observed peptide
deregulations concur with the general mechanism of uptake and elimination of toxicants reported
for Arthropods.

Keywords: Carabid beetles; pendimethalin; haemolymph; MALDI mass spectrometry; chemometric
analysis; elimination of toxicants

1. Introduction

Dinitroaniline herbicides, including trifluralin, ethalfluralin, oryzalin, and pendimethalin,
have been used worldwide for pre-emergence selective control of annual grasses and weeds
in croplands. Pendimethalin ([N-(1-ethylpropyl)-2,6-dinitro-3,4-xylidine], PND) acts on the
polymerization of microtubules, interfering with cell division (mitosis) and, thus, inhibiting
the development of roots and shoots in seedlings [1]. However, the endurance of PND
residues in the environment have an impact on the growth the soil bacterial [2] and fun-
gal [3], consequently altering the soil biodiversity and fertility [4]. Its sublethal effects have
been documented in several non-target species including terrestrial invertebrates, such as
springtails, earthworms, pill bugs [5], wasps [6], and beetles [7], performing ecosystem
services as decomposers, parasitoids, and pest predators, respectively. Carabid beetles are
known as natural pest control agents in the soil food web of agroecosystems [8] to feed on
invertebrates (aphids, beetles, lepidopterans, slugs, and dipterans) [9] and weed seeds [10].
However, the routine application of agrochemicals causes the exposure of all beneficial
insects inhabiting agricultural landscapes, including carabids in soil trophic web, through
direct contact with the sprayed products or by eating contaminated food. Currently, labora-
tory, field, and semi-field studies have been carried out to assess the detrimental effects of
pesticides at the organism level [11], and the resulting impact on diversity and abundance
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of carabid species [12]. Some studies have also supplied evidence that the exposure to
herbicides causes mortality or sublethal effects in carabids [13,14]. Metabolomics provide
interesting information for the small molecules, and strongly linked to the phenotype [15].
One of the most established protocols in metabolomics is the metabolic profiling biological
fluids, which are easy to collect and store, and contain a wide range of molecules that can
be strongly affected by physiological disorder including nutrition or disease [16]. Insect
haemolymph plasma is a complex mixture of inorganic ions and cations, amino acids,
proteins (storage and lipid transport proteins), lipids, carbohydrates, and their degrada-
tion products [17]. It is primarily responsible for supplying nutrients and transferring
metabolic wastes to maintain homeostasis. The haemolymph plays a central role in the
host immune defense processes and provides constant carriage of haemocytes involved in
cellular immune responses, i.e., pathogen recognition, phagocytosis, melanization, nodula-
tion, and encapsulation, and humoral effectors including antimicrobial peptides, enzymes
that regulates coagulation and melanization, and reactive oxygen (ROS) and nitrogen
(RNS) species [18]. Therefore, this fluid represents an opportunity to access to metabolic
pool and to collect evidence of metabolic disorders along time-periods [19]. Mass spec-
trometry profiling (MS) is a technique commonly used to characterize complex matrices
and biological fluids [20,21]. Matrix assisted laser desorption/ionization-time of flight
mass spectrometry (MALDI-TOF MS) has become increasingly valuable for insect taxon-
omy [22,23], and also for monitoring significant haemolymph molecular changes during
developmental stages [24] or infections [25]. This technique is used to analyze peptides
and small proteins located in cells and tissues [26,27] or released into the haemolymph,
such as hormones, to regulate diuresis, heartbeat, ecdysis [28], and antimicrobial peptides
involved in immune responses [29]. In addition, it is applied to evaluate alterations in
protein distribution and expression effects under the agrochemical exposure [30–32]. A
high resolution of MS data and accurate structure characterization can lead to study a
complete set of low molecular weight species in a biological sample drawing a specific
fingerprint, time related and ambient associated [33]. This approach has the advantage to
highlight both known and unknown metabolites. Identification of metabolites, however, is
necessary to draw biological conclusions from untargeted MS data. This step is generally
performed by searching the experimental MS/MS data through databases available to the
public for free. MS-untargeted profiling of haemolymph is a useful tool to investigate the
metabolic response to pendimethalin-based herbicide exposure. P melas, a eurytopic and
thermophilus clay soil species inhabiting pastures, open forests, and forest edges in Central
and Southern Europe, was selected as a case study. The carabid beetle Pterostichus melas
italicus Dejean, 1828 (Coleoptera, Carabidae) is a generalist predator of pests including
aphids, lepidopterans, and dipterans [34]. The exposure effect is tested in vivo on P. melas
males and females in the reproductive phase of their life cycle to simulate the field exposure
in their main period of activity. A recommended field rate (4 L per ha, 330 g/L−1 of active
ingredient) is used to evaluate the variability of responses in 21 days, corresponding to the
half-life of PND [1,4]. The MS data (all signals) are examined with statistical approaches
such as principal component analysis (PCA) for possible correlation with the observed
biological effects. Those signals with high correlation are submitted to MS/MS experi-
ments to identify the associated biomarker. Finally, relevant protein–protein interactions
network analysis is performed by the STRING [35] database (Search Tool for the Retrieval
of Interacting Genes/Proteins).

2. Results and Discussion

For metabolic profiling, haemolymph samples from both males and females of P. melas
control and PND-treated were collected at 2, 7, and 21 days after the initial exposure
to PND.
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2.1. MALDI MS Metabolites Identification

The haemolymph from males and females of P. melas was analyzed by MS, in both
control and PND-treated specimens. MS spectra revealed different ion species with different
intensity reflecting the individual variability (sex or response to treatment). The identities
of some of the detected molecules were assigned through proteomics-generated data sets.
A total of twenty-three peptides are identified in a single spectrum (Table 1). Although, the
indicated taxonomy species are relatively distant from Pterostichus melas, 12 peptides turned
out to be neuropeptides belonging to known families including pyrokinin, FMRFamide,
NPF, allatotropin, NP, antidiuretic factor, peptide hormone 1, and peptide tarsal-less AA
(Table S1). NeuroPIpred predictive tool was used to recognize the neuropeptides among
those identified (https://webs.iiitd.edu.in/raghava/neuropipred/).

Table 1. Identified proteins by MALDI MS/MS and Mascot software by Matrix Science (www.
matrixscience.com). The MS/MS data were processed using a mass tolerance of 20 ppm and 0.2 Da for
the precursor and fragment ions, respectively. a According to “UniProtKB” (http://www.uniprot.org/).

IDa Name a Sequence Exact m/z
1. FAR14_SARBU FMRFamide-14 DPHHDFMRF 1201.5213 1201.54
2. NPF1_LEPDE Neuropeptide NPF-1 ARGPQLRLRF 1213.7282 1213.75
3. ALLTR_ACRHI Allatotropin-related peptide GFKNVALSTARGF 1367.7435 1367.77

ALLTR_BANDI Allatotropin-related peptide GFKNVALSTARGF
ALLTR_EUSSE Allatotropin-related peptide GFKNVALSTARGF
ALLTR_NEZVI Allatotropin-related peptide GFKNVALSTARGF
ALLTR_ONCFA Allatotropin-related peptide GFKNVALSTARGF
ALLTR_PENRU Allatotropin-related peptide GFKNVALSTARGF
ALLTR_PERAM Allatotropin-related peptide GFKNVALSTARGF
ALLTR_PYRAP Allatotropin-related peptide GFKNVALSTARGF

4. ADFA_TENMO Antidiuretic factor VVNTPGHAVSYHVY 1542.7705 1542.80
5. TXS6D_CUPSA Short cationic peptide-6d INKYREWKNKKN 1620.8974 1620.92

6. PPK_SCHGR Pyrokinin DGAETPGAAASLWF
GPRV—Amide 1800.9032 1800.94

7. ALL3_RHOPR Allatostatin-3 QVSLKYPEGKMYSFGL 1846.9413 1846.97
8. BOL3_BOMPE Bombolitin-3 IKIMDILAKLGKVLAHV 1862.1665 1862.19
9. BRK_VESMC Vespulakinin-1 TATTRRRGRPPGFSPFR 1960.0741 1960.11
10. LYC1_LYCSI M-lycotoxin-Ls3a GKLQAFLAKMKEIAAQTL 1961.1257 1961.16
11. PH1_PERAM Peptide hormone 1 SDLTWTYQSPGDPTNSKN 2010.9045 2010.94
12. MK2B_PALPR Metalnikowin-2B VDKPDYRPRPWPRNMI 2040.0601 2040.10
13. LYC40_LYCSI M-lycotoxin-Ls4a IASHLAFEKLSKLGSKHTML 2211.2323 2211.28
14. PAP2_SPOEX Paralytic peptide 2 ENFAGGCTPGYQRTADGRCKPTF 2476.1138 2476.16

15. PA11_VESVE Phospholipase A1
verutoxin-1 (Fragment) GLLPKVKLVPEQISFILSTRENR 2637.5455 2637.59

16. TXC6D_CUPSA Cupiennin-6d FINTIKLLIEKYREWKNKQSS 2638.4721 2638.52

17. HN423_CYRHA U3-theraphotoxin-Hhn1r DCAGYMRECKEKLCCSGYV
CSSRWKWCVLPAP 3671.6222 3671.70

18. MSPI2_MELSA Serine protease inhibitor 2 EISCEPGTTFQDKCNTCRCG
KDGKSAAGCTLKACPQ 3750.6476 3750.72

19. TXC1C_CUPSA Cupiennin-1c GFGSLFKFLAKKVAKTV
AKQAAKQGAKYIANKQTE 3770.1484 3770.22

20. TALAA_DROME Peptide tarsal-less AA LDPTGTYRRPRDTQDS
RQKRRQDCLDPTGQY 3722.8169 3722.89

21. BX4_LOXGA Dermonecrotic toxin
LgSicTox-beta-LOXN4

ADSRKPDDRYDMSGNDALG
DVKLATYEDNPWETFK 4019.8357 4019.92

22. CEC_CALVI Cecropin GWLKKIGKKIGRVGQHTRDATIQ
GLAVAQQAANVAATAR 4083.3167 4083.40

23. DIUH1_TENMO Diuretic hormone 1 SPTISITAPIDVLRKTWEQER
ARKQMVKNREFLNSLN 4369.3566 4369.44

https://webs.iiitd.edu.in/raghava/neuropipred/
www.matrixscience.com
www.matrixscience.com
http://www.uniprot.org/
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The search was performed using SVM threshold: 0.0 and Natural model. A score
of 2.7 assigned by the Machine Learning Algorithm allow us to label 12 sequences as
putative neuropeptides. Figure 1 shows MS/MS spectrum of pyrokinin-related peptide
DGAETPGAAASLWFGPRV-Amide (m/z 1800.94). This signal dominates female chemical
profiles in both control and treated samples; conversely, it isn’t detected in control as well
treated male samples. Pyrokinins (m/z 1800) are a family of well-studied neuropeptides
with myotropic, pheromonotropic, and melanotropic roles in several insects [36], involved
in myo-stimulatory activity on visceral muscle [37], including oviduct muscle [38], in
pheromone biosynthesis [39] and induction or inhibition of diapause hormone (DH) [40].
FMRFamide (m/z 1201.54) peptides are pleiotropic and thus participate in many processes
including the stimulation of various muscles [41,42] and the promotion of the stress-induced
sleep [43].
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Figure 1. MALDI MS/MS of the m/z 1800.94.

They regulate oogenesis and oviposition in the hemipteran Rhodnius prolixus [44] and
heart physiology in Diptera [45]. In Tenebrio molitor and Zophobas atratus, they have my-
otropic effects in the regulation of contractile activity of the heart, ejaculatory duct, oviduct
and the hindgut [46]. Allatotropins (m/z 1367.77) and allatostatins such as allatostatin-3
(ALL3_RHOPR, m/z 1846.97), identified in the haemolymph of P. melas, have inhibitory
or stimulatory effects, respectively, on juvenile hormone biosynthesis in the corpora al-
lata [47]. The role of these peptides has also been demonstrated in regulating several
other functions including release of digestive enzymes in the midgut [48], myostimulation
influencing the physiology of hearts in the dorsal vassel, gut, and reproductive system. The
allatostatin effects have been considered on the egg movements in the oviducts and food
transit in tenebrionid beetles [49]. Some neuro-derivate factors in insects are involved in
the maintenance of homeostasis. There are numerous families of diuretic and anti–diuretic
peptides involved in controlling active transport processes of the gut including the creation
of urine in the Malpighian tubules and the uptake of water and salts in the hindgut [50].
Antidiuretic factor “ADFa peptide” (ADFA_TENMO, m/z 1542.80) has not been detected
outside coleoptera; it is probably the fragment of larger proteins that are not normally
liberated and part of regulatory functions [51]. Antimicrobial peptides (AMP) are small
proteins having a broad range of activity against bacteria, fungi and viruses as an essen-
tial factor for innate immune response [52]. Bombolitin (m/z 1862.19), first isolated from
Apoidea (Hymenoptera) venoms, is involved in the mast cell degranulation also showing
as bactericide and fungicide properties [53]. Vespulakinin 1 (m/z 1960.11) described in
Vespula maculifroms is a vasoactive peptide [54]. Phospholipases A2 (PLA2, m/z 2637.59)
have been described in various hymenopteran species and act as neuro- and myotoxins
by hydrolyzing membrane phospholipids of motor nerves and subsequently leading to
cell lysis [55]. Metalnikowin IIB (m/z 2040.10) is a proline-rich antimicrobial peptide [56],
first identified in Palomena prasina [57]. Cecropins (m/z 4083.40) first isolated from the
haemolymph of pupae in giant silk moths, Hyalophora cecropia, were recognized as a part of
immune response in Lepidoptera, Coleoptera, and Diptera [58]. Cecropins are released by
fat bodies and haemocytes in haemolymph and have broad range of antimicrobial activity
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against bacteria and fungi [59]. Cupiennin-1c (m/z 3770.22) is a cytolytic peptide belonging
to a family of antimicrobial peptides isolated from Cupiennius salei, displaying lytic activ-
ity towards bacteria, trypanosomes, plasmodia, human blood cells, and cancer cells [60].
Paralytic peptide (m/z 2476.16), first in lepidopteran species, belongs to the cytokine family.
It delays larval growth, induces local paralysis around the wound reducing the loss of
haemolymph, regulates the immune responses [61], and boosts cell proliferation and mor-
phological variation [62]. Theraphotoxins including U3-theraphotoxin-Hhn1r (m/z 3671.70)
and dermonecrotic toxins such as LgSicTox-beta-LOXN4 (m/z 4019.92) have been identified
first in spiders to show highly selective inhibitor activity on cell ion channels and cellular
lysis, respectively. Serine protease inhibitors (serpins, m/z 3750.72) are functionally distinct,
and structurally conserved proteins present in all higher eukaryotes. They are involved in
a wide array of physiological functions, including development, innate immune response,
reproduction, and host-pathogen interactions [63]. Cell signaling pathways include small
peptides such as peptide tarsal-less AA (m/z 3722.89) that coordinate multiple biological pro-
cesses of cell division, survival, migration and differentiation, giving rise to the embryonic
formation of the organs or regulating the innate immune responses [64]. The peptide tarsal-
less AA has been studied in Drosophyla to be involved in leg morphogenesis [65], while in
the silkworm Bombix mori, it participates in the development of the trachea, silk glands,
and Malpighian tubules and is involved in the response to infections of pathogens [66].

2.2. Bioinformatic Analysis

Neuropeptides are responsible for the regulation of several processes, such as home-
ostasis, development, metabolism, and reproduction, and are produced from larger pre-
cursor proteins called prepropeptides [67,68]. Some of the neuropeptides detected in the
haemolymph sample perform the duty for multiple functions arranging, as transmitters
and co-transmitters with other neuropeptides, several biological process. Protein asso-
ciation network analysis for dynamic/transient interactions of components in signaling
and regulatory pathways may be useful to evaluate the hexapoda’s physiological state.
Notwithstanding, the large phylogenetic distance across these huge and various classes,
neuropeptides display clear similarity among insect taxa [67,68]. In fact, the structure
of the genes encoding both neuropeptides and receptors are highly conserved during
evolutionary history [69].

Bioinformatic data-analysis is performed using ID of prepropeptide for the analogous
reference species Drosophila melanogaster, which is the only other higher insect whose
complete genome sequence is available in the public domain. Today at least 50 genes
encoding precursors of neuropeptides, peptide hormones, and protein hormones are
reported in D. melanogaster. Protein association network analysis for both male and female
samples was performed by STRING database (https://string-db.org/). For female control
samples, the network is composed of 17 nodes (prepropeptides) and 13 edges (interactions);
expected number of edges 1 and PPI enrichment p-value: 3.38 × 10−10. To create this
network, a value of 3 for the MCL clustering coefficient was chosen. Two protein clusters
are observed, the main protein network showed the set composed by 6 nodes (AstA, Dh44,
FMRFa, Hug, Ilp1, sNPF) (Figure 2A) is referred to “Neuropeptide signaling pathway, and
insulin-like superfamily”. Accordingly, two networks are observed for male (Figure 2B),
and the principal network is composed by 5 nodes (AstA, Dh44, FMRFa, Ilp1, sNPF). The
central node in the networks related to both male and female is the neuropeptide sNPF
(Figure 2A,B). This feature can’t be explained attributing a unifying global function to
sNPF, but underlies that this neuropeptide accomplishes several distinct roles, and it has
distributed functions. In fact, Neuropeptide F (sNPF) (m/z 1213) has been suggested to
have multiple functional roles in foraging, feeding, alcohol sensitivity, stress, aggression,
reproduction, learning function, and circadian rhythm [70,71]. The NPF role in male
fertility and female oocyte maturation is agree with the specimens analyzed that were in
the reproductive phase of their life cycle.

https://string-db.org/
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2.3. Chemical Component Profile of Control and PND-Treated Groups

The chemical component profile of haemolymph specimens (Figure 3) is affected by
the individual variability (sex, hormonal variation, and response to treatment). The visual
comparative analysis of the spectra, over time after PND exposition, shows changes of
the overall profile with consistent modifications in specific regions. Male profiles appear
more complex and the feature seems to be related to the time and the treatment. The
change overtime of control male profiles is probably related to the insect growth. Oth-
erwise, female profiles (control and treated samples) all seem similar, less complex and
dominated by the signal of pyrokinin (m/z 1800). This peptide is absent in male profiles
(Figure 3). The detection of pyrokinin in haemolymph of the females may likely related to
its myotropic action on the ovipositor contraction during egg laying, as observed in cricket
Gryllus bimaculatus [72].

To analyze the relationship between spectra and PND treatment, a pre-processing step
is adopted. Nine replicates are aligned and average, in order to obtain a unique representa-
tive profile for each specimen used in subsequent chemometric analysis. The data matrix,
obtained using the signals of the m/z values selected on the basis of a threshold greater than
400 in terms of signal-to-noise in at least four of the analyzed samples (43 variables), was
subjected to principal component analysis (PCA). PCA is a chemometric tool widely used
in data exploratory analysis in order to have an overview of data.

PCA transforms the original variables, using an orthogonal linear transformation,
to a new set of uncorrelated variables known as principal components (PCs). Represen-
tation of the principal component scores and loadings in a bidimensional plot can be
used as powerful visualization tool, pointing out patterns hidden in the data set and
finding possible correlations between variables. The scores of the samples and the load-
ings of the variables on the two first principal components are plotted (Figure 4). The
information retained is 39.39% of the total variance. The plot of scores obtained by PCA
highlights that the female control samples are very similar to each other, while the male
control ones are placed in points far from each other, especially for the control sample
of the treatment at 7 days (Figure 4A). In any case, all the male control samples are dif-
ferent from female control samples mostly along the first principal components. The
difference between these samples can be attributed to the variables placed on the far

https://string-db.org/
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left and the far right of the loading plot, corresponding to compounds present at higher
concentration in male and female samples, respectively (Figure 4B). In particular, the fe-
male samples have higher concentrations of peptide tarsal-less AA (m/z 3722.89, Table 1)
and pyrokinin (m/z 1800.94). On the other hand, higher concentrations of phospholipase
A1 verutoxin-1 (Fragment) (m/z 2637.59), vespulakinin-1 (m/z 1960.11), serine protease
inhibitor 2 (m/z 3750.72), bombolitin-3 (m/z 1862.19), M-lycotoxin-Ls4a (m/z 2211.28), der-
monecrotic toxin LgSicTox-beta-LOXN4 (m/z 4019.92), and peptide hormone 1 (m/z 2010.94)
were found in the male samples (Table 1, Figure 4A,B).
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The comparison between the females from the control group and treated samples
underlines that there is no significant difference between samples belonging to the group
exposed at 7 days and 21 days, whereas a shifting can be observed along PC1 going
from control sample to treated one at 2 days from the initial exposure, which indicates
an increase of the signal for the m/z values on the left of the plot of loadings. There-
fore, the exposure at 2 days involves the concentration increase of phospholipase A1
verutoxin-1 (Fragment) (m/z 2637.59), vespulakinin-1 (m/z 1960.11), serine protease in-
hibitor 2 (m/z 3750.72), bombolitin-3 (m/z 1862.19), M-lycotoxin-Ls4a (m/z 2211.28), der-
monecrotic toxin LgSicTox-beta-LOXN4 (m/z 4019.92), and Peptide hormone 1 (m/z 2010.94),
as well as of the unknown compounds placed on the left of the plot. The greatest difference
is observed in males at 7 days of exposure compared to the control ones. In particular,
the two samples have very different values for both first and second principal component
demonstrating that the treatment involves a decrease of the signal for the variables on the
left of the plot of loadings (high negative loading values on PC1) and, at the same time, an
increase for the variables at the bottom of the loading plot (high negative loading values on
PC2, M-lycotoxin-Ls4a of m/z 2211.28, and Cecropin of m/z 4083.40, among the identified
compounds). The samples after 21 days from the initial exposure showed a shifting similar
but in opposite direction to that observed for the female samples at 2 days of exposure.
Finally, a different behavior is detected for the samples belonging to the treatment at 2 days,
for which a clear separation occurs exclusively on the second principal component. In
this case, the position of the treated sample at higher score values on PC2 means that the
treatment determines a decrease of the signal for the m/z values being at the bottom of
the loading plot, among which there are the aforementioned peptides M-lycotoxin-Ls4a
(m/z 2211.28), and Cecropin (m/z 4083.40).

In order to better evaluate the effect of treatment on the fingerprint profiles obtained
by mass spectrometry analysis, another data matrix was constructed using the ratio of
the signals of the PND-treated specimens to the signals of the control specimens for each
selected m/z value. The application of PCA to this matrix allows to obtain a score plot
(Figure 5) in which the variation of the MS profile respect to PND-treatment is clearly shown.
Treatment certainly involves different consequences for males and females. In fact, for
females the most important variation is substantially along the first principal component,
while for males the variations concern only PC2. Therefore, the variables responsible for
the modifications of profiles due to treatment are different for males and females. However,
a trend common to males and females can be observed. In fact, for both types of samples
the greatest variation is noticed passing from the first to the second treatment, while
the third treatment are between the first two. This indicates that the involved variables
first are subjected to a great variation and then return to assume intermediate values. In
particular, for females, a significant decrease of signal ratio passing from the first to the
second treatment is observed for the variables placed on the far right of the loading plot
shown in Figure 5 (1217.18; 1800.94; 1822.60; 1862.19; 1871.69; 1960.11; 2040.10; 2288.06;
2476.16; 2637.59; 3588.24; 3685.98; 4019.92). On the other hand, for males the variables
that show a substantial decrease are the following: 3650.00, 4026.30, 4078.35, and 4233.57.
A total of 13 and 4 differentially regulated metabolites were found in female and male,
respectively. There are interesting dysregulation patterns in neuropeptides with significant
changes observed resulting from PND exposure. However, for males, the treatment at
21 days involves also the increase of signal values for the variables at the bottom of the
loadings plot (high negative loading values on PC2), that is 3649.04, 3611.07, 4133.56, and
2822.56. PCA elaboration highlighted differences in the responses of P. melas according
to gender.
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2.4. Probing Peptide Changes after PND Treatment

Figure 6 A,B depicts the significant expression changes of the identified peptides
in haemolymph from females and males of P. melas as a ratio to the control after each
exposure duration. These ratios are expressed as a log2 ratio for easier viewing (positive
results show upregulation, negative show downregulation). There are interesting and
significant peptide changes resulting from PND treatment. There are also interesting gen-
eral trends observed between the two groups. Some peptides show a constant pattern
of up-downregulation over 21 days, others show a hyperarousal pattern. In these cases,
the peptide is increased (Metalnikowin-2B, VDKPDYRPRPWPRNMI, and M-lycotoxin-
Ls4a, IASHLAFEKLSKLGSKHTML, Figure 6A) at one time point and returns to baseline.
A significant downregulation of Paralytic peptide 2 (ENFAGGCTPGYQRTADGRCKPTF,
Figure 6B) is observed in male sample after 2 days of exposure suggesting that PND is
able to suppress the PP-dependent induction analogously to a pharmacologic p38 MAPK
inhibitor [61]. In female samples the downregulation of Paralytic peptide 2 is observed
only after 21 days of treatment. In particular, in females of P. melas is observed the upregu-
lation of PP2 in first two days, followed by an important decrease leading to significative
downregulation after 21 days of treatment. The temporal shift in upregulation between
the groups indicate that distinct pathways are involved in their regulation. The observed
trend can be explained considering that PP2 participates to the physiological processes,
such as embryonic morphogenesis and larval growth rates. In particular, the observed
upregulation of pyrokin and PP2 neuropeptides after 2 days of exposure suggests the
activation of signaling pathways to increase muscle contractions in the ovipositor activity
and embryonic morphogenesis (Figure 6, panel A).
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depicted on the y-axis as a log2 ratio to clearly see up/downregulation of peptides relative to the
x-axis. Panel (A,B) show up/downregulation of peptides for female and male groups, respectively.
The error bars denote the standard error of the mean (n = 3).

The downregulation of PSK (Peptide hormone 1, SDLTWTYQSPGDPTNSKN) in males,
that become significant only after 21 days, is probably correlated to captivity condition
and food copiousness. In fact, the gut peptide PSK acts antagonistically to the hunger
signal provided by the adipokinetic hormone (AKH) inhibiting the pTRPγ channel, which
is activated under conditions of food shortage [73].

In response to PDN exposure, significant changes occur in males, resulting in down-
regulation of serpin (EISCEPGTTFQDKCNTCRCGKDGKSAAGCTLKACPQ, m/z 3750.72)
at the time points 2 and 7 days, turning to baseline after 21 days. In females, serpin is in
baseline at the time points 2 and 7 days, but significantly upregulated after 21 days. Serpins
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carry out various physiological functions in insects, including development, digestion, host-
pathogen interactions, and innate immune response. Serpin plays a key role in immune
pathways, its involvement in the regulation of the Toll pathway and prophenoloxidase
activation is well documented [74]. Its downregulation was observed in Plutella xylostella
after fungal and viral infection, and treatment with mycotoxin [74].

The effect of PND exposure is less important in females than in males, suggesting than
females are less sensitive. The observed differences in dysregulation of peptides between
males and females highlight that they probably activate different mechanisms of defense
for uptake or elimination of toxicants. These data agree with the general mechanism of
uptake and elimination of toxicants reported for Arthropods [75]. The females lower their
physiological exposure, minimizing any toxic effects of PND in the tissues, by depositing
toxicants into their eggs. In males, which do not have this physiological advantage, a
significant downregulation of related to immune and defense peptides (M-lycotoxin-Ls4a,
Peptide hormone 1, Paralytic peptide 2, and Serine protease inhibitor 2) is observed.

3. Materials and Methods
3.1. Sample Collection and Treatment

Adults of P. melas were collected in an organic olive grove (39◦59′27.56′ ′ N, 16◦15′32.64′ ′ E,
1202 m a.s.l. San Marco Argentano, Calabria, Southern Italy) in October 2019 by using
in vivo pitfall traps (plastic jars 9 cm in diameter) containing fruit as an attractant. In the
laboratory, beetles were identified by using a dichotomous key, separated by sex and kept
in 5 L plastic boxes that were filled to a depth of 6 cm with soil from the capture site. Males
and females were separately housed and maintained to be acclimatized for 1 month at 60%
relative humidity (rh), under a natural photoperiod, and at room temperature. They were
fed mealworms and fruit (organic apples) ad libitum.

A commercial formulation of pendimethalin (PND; Activus EC, product n◦ HRB00858-39;
active ingredient 330 g/L−1) was tested in males and females exposed for 21 days at a
recommended field rate (4 L per ha, for cereal and vegetable crops), considering that the
half-life of pendimethalin ranges from 24.4 to 34.4 days in acidic sandy soil [1,4]. The
experimental design included 6× 2 plastic boxes (180.5 cm2) filled with the clean sandy soil
(pH 5 approximately) from the capture site. Exposure was carried out by spraying the PND
solution (7.2 µL of Activus in 14 mL of distilled water) with a pipette on the soil surface of
6 boxes for the treated groups (3 boxes for male and 3 boxes for female, each box containing
10 insects) to simulate the field exposure by contact with the contaminated soil. The control
groups, comprising 6 boxes of (3 boxes for male and 3 boxes for female, each box contain
10 insects), were sprayed with distilled water. Males and females, kept separately, were
introduced 15 min after the PND solution (or water) was sprayed. Thereafter, 4 boxes
(2 control and 2 treated) were used after to 2, 7, and 21 days, respectively. A single
application of PND-based herbicide was carried out at 0 day, for treated groups.

3.2. Haemolymph Collection

Males and females from both control (n = 9) and treated (n = 9) groups were randomly
chosen at 2, 7 and 21 days after the initial exposure and anaesthetized in a cold chamber
at 0 ◦C for 3 min. Haemolymph was collected by puncturing cold anaesthetized beetles
ventrally at the pro-mesothorax articulation with a 29-gauge needle. A pool of 15 µL
of haemolymph was collected from three specimens, promptly diluted 1:10 into cold
ammonium bicarbonate saline solution (NH4HCO3, 50 mM; Sigma-Aldrich, Darmstadt,
Germania) and centrifuged at 1700 rpm for 10 min at 4 ◦C. Cell-free haemolymph obtained
as supernatant was collected and stored at −20 ◦C before chemical analyses.

3.3. Sample Preparation

An aliquot of each sample (10 µL) was added with 90 µL of solution CHCl3/CH3OH
diluted 1:3 (v/v), yielding a lipophilic supernatant fraction and a pellet. The supernatant
fractions were analyzed by mass spectrometry. A total of 10 µL of lipophilic supernatant
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fractions were completely air-dried at room temperature and solubilized in 10 µL of α-
cyano-4-hydroxycinnamic acid as MALDI matrix (α-CHCA, 5 mg/mL; H2O/CH3CN, 50:50,
v:v; 0.3% TFA). Each sample was spotted onto a 384-well insert Opt-TOF TM stainless steel
plate (AB SCIEX, Darmstadt, Germany) and a rapid drying protocol [76,77] was adopted to
reduce the inhomogeneous co-crystallization of the analyte with the matrix.

3.4. MALDI MS Analysis

Mass spectrometry analyses (MS) were performed by 5800 MALDI TOF-TOF Analyzer
(AB SCIEX, Darmstadt, Germany) equipped with an Nd: YLF Laser with λ = 345 nm wave-
length of <500 ps pulse length and to 1000 Hz repetition rate. MS analysis was performed in
positive reflectron mode, mass accuracy of 10 ppm and a mass range 900–5000 Da were set
to record the untargeted fingerprint profile of low molecular weight species. The peptide
mass standards kit (Calibration Mixture 1, AB SCIEX) was used to calibrate the MALDI
TOF/TOF mass spectrometer. Spectra with signal-to-noise below 200 were automatically
discarded by the instrument and at least 4500 laser shots were typically accumulated with
a 400 Hz laser pulse. Each haemolymph sample was spotted three times and three spectra
were acquired for each spot in order to obtain a set of nine data point (9 row data). Each
spectrum results from the accumulation of 4500 laser shots and the laser was set to continu-
ous random movement to obtain a uniform crystal ablation. The corresponding set of nine
data points (9 spectra) was merged and averaged to obtain a unique representative profile
for each specimen. All spectra were processed using Data Explorer version 4.11 (AB Sciex)
and all nine data points were merged and averaged to obtain a data matrix useful for statis-
tical analysis. A comparative quantification analysis was performed. Collision-induced
dissociation (CID)-MS/MS analysis were performed to characterize the selected ion species.
MS/MS spectra were performed at a collision energy of 1 kV, and ambient air was used as
the collision gas (10−6 Torr) acquiring up to 6000 laser shots e averaging a pulse rate of
1000 Hz.

3.5. Database Proteomics and Targeting Predictions

The MS/MS data were processed to produce pick lists for searching in the Swis-
sProt database using the MASCOT search software (© Matrix Science 2021, http://www.
matrixscience.com). The mass tolerance of the parent and fragments for MS/MS data search
was set at 20 ppm and 0.20 Da, respectively. During database search the following query
were considered “Metazoa (Animals)” taxonomy and choosing “noCleave”. A peaklist
of 50 ions of 10% higher intensity than the noise level was generically used for database
searching. Methionine oxidation was included in the variable modifications. Although
several MS/MS spectra showed intense and well-resolved ion signals, all spectra were
manually checked to validate MASCOT results. Neuropeptide homologs are determined by
Domain Enhanced Lookup Time Accelerated Basic Local Alignment Search Tool (DELTA-
BLAST), limiting the searches to homologs in Drosophila melanogaster. Network analysis
was performed by STRING (Search Tool for the Retrieval of Interacting Genes) software
(v. 11) (http://stringdb.org/). NeuroPIpred was used to evaluate potential neuropeptides
in P. melas (https://webs.iiitd.edu.in/raghava/neuropipred/).

3.6. Statistical Analyses

The MS based untargeted strategy gives an impartial approach on every peak recorded
and assures a comprehensive collection of data, without selection criteria. To evaluate
possible differences among males and females from both control and PND-treated groups,
principal component analysis (PCA) was performed by Statistica 8.0 software package
(StatSoft 2007 Edition, Tulsa, OK, USA). The use of PCA allows investigating complex
samples and novel metabolic pathways [78]. The analysis included exact mass and IMS
clustering. To ensure the quality of the results after data processing, only the signals present
in all three biological replicates were considered for differential abundance analysis.

http://www.matrixscience.com
http://www.matrixscience.com
http://stringdb.org/
https://webs.iiitd.edu.in/raghava/neuropipred/
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Peptides with significant Student’s t-test (p-value < 0.05, two-tailed) results were
considered differentially expressed. Peptides were considered upregulated if the Log2 was
greater than 0.5 and downregulated if the Log2 was lower than −0.5.

4. Conclusions

Exposure of P. melas to PND based herbicide altered the metabolic profile of haemolymph.
This result indicates that PND interferes with the epigenetic mechanisms of P. melas, and
may sabotage the immune system and slow down its development. PCA elaboration
highlighted important differences between males and females’ responses after exposure
to PND indicating evidence for a sex-specific detoxification response. The metabolomic
response highlights the effects of herbicides on non-target animal species, suggesting that
their ecological role might be compromised.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27144645/s1, Table S1: Predicted neuropeptides by Neu-
roPIpred predictive tool (https://webs.iiitd.edu.in/raghava/neuropipred/).
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