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Abstract
Objectives: Genetic	engineering	of	human-induced	pluripotent	stem	cell-derived	neu-
ral	stem	cells	(hiPSC-NSC)	may	increase	the	risk	of	genomic	aberrations.	Therefore,	
we	asked	whether	genetic	modification	of	hiPSC-NSCs	exacerbates	chromosomal	ab-
normalities that may occur during passaging and whether they may cause any func-
tional perturbations in NSCs in vitro and in vivo.
Materials and Methods: The	 transgenic	 cassette	was	 inserted	 into	 the	 AAVS1	
locus,	 and	 the	 genetic	 integrity	 of	 zinc-finger	 nuclease	 (ZFN)-modified	 hiPSC-
NSCs	 was	 assessed	 by	 the	 SNP-based	 karyotyping.	 The	 hiPSC-NSC	 prolifera-
tion	was	assessed	in	vitro	by	the	EdU	incorporation	assay	and	in	vivo	by	staining	
of	 brain	 slices	 with	 Ki-67	 antibody	 at	 2	 and	 8	 weeks	 after	 transplantation	 of	
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1  | INTRODUC TION

Human-induced	pluripotent	stem	cell-derived	neural	stem	cells	 (hiP-
SC-NSCs)	have	been	used	 for	developmental	 studies,1 disease mod-
elling,2,3 drug screening,4 toxicity testing5 and in preclinical studies of 
neuroregenerative therapeutic approaches.6 Genetic modification of 
stem cells is frequently utilized for lineage tracking, to modify the ex-
pression of a specific endogenous gene in order to study its biological 
role, or overexpress exogenous factors to monitor and/or enhance the 
engraftment and therapeutic efficacy of transplanted cells in regenera-
tive approaches.7-10	Genome	engineering	technologies	such	as	zinc-fin-
ger	 nucleases	 (ZFN),11	 transcription	 activator-like	 effector	 nucleases 
(TALEN),12 and the clustered regularly interspaced short palindromic 
repeats/Cas9	 (CRISPR/Cas9)	 system13,14	 enable	 DNA	 modifications	
in a highly precise manner and significantly lower the risks of various 
non-target	 effects	 that	 are	 associated	with	 traditional	 genetic	 engi-
neering techniques.15 However, genome editing increases cell handling 
and cultivation time, which could affect their genomic stability and di-
minish their usefulness because the newly acquired genetic changes 
may be detrimental to the cell’s viability, functionality and safety.16-20

Many studies have demonstrated that different types of stem 
cells, including NSCs, acquire characteristic chromosomal aberra-
tions during late and sometimes also in early passages in culture.21-23 
Comprehensive analysis of chromosomal aberrations in 58 adult 
human	NSC	samples	and	39	human	embryonic	stem	cell	(hESC)-de-
rived NSC samples identified a trisomy of chromosomes 7, 10, 19 
and 20q as well as a trisomy and monosomy of chromosome 18.24 
The	overall	frequency	of	aberrations	in	NSCs	was	about	9%.	A	sim-
ilar frequency of samples with chromosomal aberrations was found 
in	a	 separate	analysis	of	hiPSC-derived	NSCs	 (10%,	18	out	of	182	
samples)	and	adult	NSCs	(7%,	7	out	of	100	samples).25 In these sam-
ples, the most common were gains of chromosomes 1, 12 and 17, 
which also occur in undifferentiated human PSC cultures.22,23,26,27

Targeting	 safe	 harbour	 areas	 like	 adeno-associated	 virus	 site	 1	
(AAVS1)	 by	 using	 gene	 editing	methods	 have	 been	 used	 in	 various	
hESC11,28 and hiPSC9,29 lines and their differentiated derivatives, 

such as NSCs.30-32 These studies demonstrated that cells modified 
by genome editing tools exhibited all properties of their parental 
cells and did not show perturbations in cell viability, proliferation or 
specialized cell functions. However, it is not fully clear whether gene 
editing methods increase the frequency of chromosomal aberrations 
in	long-term	cultures,	whether	these	aberrations	cause	any	functional	
perturbations	in	targeted	hiPSC-NSCs	and	whether	these	functional	
changes would still be retained in transplanted cells in vivo.

To address these questions, we used the ZFN technology to in-
tegrate a cassette containing a human EF1-α promoter driving the 
expression	 of	 puromycin	 resistance	 gene	 (Pac)	 and	 enhanced	GFP 
(EPG-cassette)	into	the	AAVS1	locus	in	hiPSC-NSCs.	SNP	array-based	
karyotyping identified a duplication of the entire long arm of chromo-
some	1	 [dup(1)q]	 in	unmodified	and	ZFN-modified	NSCs	after	pro-
longed	passaging.	Compared	to	ZFN-NSCs	with	an	intact	karyotype,	
cells	that	carried	dup(1)q	exhibited	increased	proliferation	rate	in	vitro	
and in vivo after transplantation into the striatum of immunodeficient 
rats. The higher proliferation rate was partly mediated by overexpres-
sion of the proliferation promoting gene AKT3 located in duplicated 
area.	 These	 results	 show	 that	 dup(1)q	 occurs	 in	 high-passage	 hiP-
SC-NSCs	and	demonstrate	for	the	first	time	that	its	occurrence	is	not	
affected	by	ZFN-based	editing	but	that	it	increases	cell	proliferation	
both in vitro as well as in vivo requiring strict quality control of cells 
before using them for applications in research and therapy.

2  | MATERIAL S AND METHODS

2.1 | ZFN-mediated genome editing

The	methods	used	for	construction	of	the	targeting	vector	pAAVS1-
EPG	and	generation	of	hiPSC-NSCs	are	described	in	the	Supplemental	
material	and	Figure	S1.	For	transfection,	hiPSC-NSCs	at	passage	14	
(p14)	were	treated	overnight	with	10	μmol/L	ROCK	inhibitor	(Y-27632,	
Selleckchem)	 and	 then	 dissociated	 with	 0.05%	 trypsin-EDTA	 (Life	
Technologies).	Dissociated	hiPSC-NSCs	(1	× 106)	were	re-suspended	

ZFN-NSCs	 with	 and	 without	 chromosomal	 aberration	 into	 the	 striatum	 of	 im-
munodeficient rats.
Results: During early passages, no chromosomal abnormalities were detected in 
unmodified	 or	 ZFN-modified	 hiPSC-NSCs.	 However,	 at	 higher	 passages	 both	 cell	
populations	acquired	duplication	of	the	entire	 long	arm	of	chromosome	1,	dup(1)q.	
ZNF-NSCs	 carrying	 dup(1)q	 exhibited	 higher	 proliferation	 rate	 than	 karyotypically	
intact cells, which was partly mediated by increased expression of AKT3 located on 
Chr1q.	Compared	to	karyotypically	normal	ZNF-NSCs,	cells	with	dup(1)q	also	exhib-
ited increased proliferation in vivo 2 weeks, but not 2 months, after transplantation.
Conclusions: These	results	demonstrate	that,	independently	of	ZFN-editing,	hiPSC-
NSCs	have	a	propensity	for	acquiring	dup(1)q	and	this	aberration	results	in	increased	
proliferation	which	might	compromise	downstream	hiPSC-NSC	applications.

Number:	SA	1382/7-1	and	NE	385/21-1;	
Royan Institute
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in	the	R	buffer	from	the	Neon	Transfection	System	(Life	Technologies)	
together with 8 μg	of	the	pAAVS1-EPG	vector	and	250	ng	of	mRNAs	
encoding	 ZFNs	 that	 target	 the	 ZFN	 cleavage	 site	 in	 the	 AAVS1	
locus and were included in the CompoZr®	Targeted	Integration	Kit-
AAVS1	 (Sigma-Aldrich).	Transfection	was	performed	with	 the	Neon	
Transfection	System	by	using	two	20	ms	pulses	at	1400	V.	Transfected	
cells	were	plated	onto	a	poly-l-ornithine/laminin-coated	 (both	 from	
Sigma)	6-well	plate.	Selection	with	2	μg/mL puromycin began at day 
7	after	transfection.	After	10	days,	antibiotic-resistant	cells	were	ex-
panded and aliquots were cryopreserved for further studies. The pro-
cedures used for generation of single cell clones and identification of 
mono-	and	bi-allelic	ZFN-NSC	lines	are	described	in	the	Supplemental	
material, Figure S1, and Tables S1 and S2.

2.2 | Molecular karyotyping

Karyotyping	was	performed	by	SNP	array-based	genotyping	using	
the	Human	OmniExpressExome-8-v1.2	BeadChip	 (Illumina,	 Inc)	 at	
the	 Institute	 for	Human	Genetics	 (Life	&	Brain	Center,	University	
of	Bonn,	Germany).	Processing	was	performed	on	gDNA	following	
the	manufacturer’s	procedures.	Log	R	ratio	and	B-allele	 frequency	
plots	were	generated	in	GenomeStudio	V2011.1	(Illumina,	Inc)	using	
the	provided	manifest	and	cluster	files,	version	1.2-B.	Copy	number	
regions	were	detected	using	the	cnvPartition	version	3.1.6.	A	visual	
inspection was performed for mosaicism states.

2.3 | Cell proliferation assay

Cell	 proliferation	 assay	 was	 done	 by	 Click-iT®	 EdU	 (5-ethynyl-2 -́
deoxyuridine)	Imaging	Kit	(Life	Technologies).	Genetically	non-mod-
ified	wild-type	hiPSC-NSCs	and	gene-edited	ZFN-NSCs	were	plated	
at the density of 0.1 × 106/cm2	on	poly-l-ornithine/laminin-coated	
plates. Next day, cells were incubated with 10 µmol/L	EdU	for	2	hours.	
After	fixation	with	3.7%	paraformaldehyde	and	permabilzation	with	
0.5%	Triton	X-100,	cells	were	detected	with	AlexaFluor-555-azide.	
Stained	cells	were	analysed	under	Axiovert	200M	microscope	(Carl-
Zeiss)	equipped	with	the	image	processing	software	Axiovision	4.5.

2.4 | Protein and gene expression analyses

Immunocytochemical	 analyses,	 cDNA	 synthesis	 and	 qPCR	 am-
plification of selected genes were carried out as described in the 
Supplemental material. PCR primers are listed in Table S3 and anti-
bodies in Tables S4 and S5.

2.5 | Transplantation of ZFN-NSCs

Animal	 experiments	 were	 approved	 by	 the	 Landesamt	 für	 Natur,	
Umwelt	 und	 Verbraucherschutz	 NRW,	 Recklinghausen,	 Germany	

(Permit	 Number:	 84-02.04.2012.A227)	 and	 conformed	 to	 the	
Directive	 2010/63/EU	 of	 the	 European	 Parliament.	 Adult	 male	
Rowett	Nude	rats	(RNU;	Charles	River)	that	weighed	250-300	g	and	
were	 12-14	weeks	 of	 age	were	 anaesthetized	with	 intraperitoneal	
(i.p.)	 injections	 of	 60	mg/kg	 body	weight	 pentobarbital.	 The	 ZFN-
NSC	clone	44	without	duplication	 (p14	+	14)	and	with	duplication	
(p14	+	 41)	were	 injected	 into	 the	 striatum	 of	 each	 adult	 nude	 rat	
brain	by	a	Hamilton	syringe	 (5	µL,	33	Gauge,	 length:	25	mm,	Pst4-
12;	Hamilton)	 into	two	 injection	points	with	0.5	× 105 cells/µL per 
injection at the following coordinates from the bregma: striatum 
AP	= 0.5, ML =	3.0,	DV	=	−4.5;	intraventricular	AP	=	−0.5,	ML	= 1.2, 
DV	=	−3.5.	Two	weeks	and	2	months	after	NSC	transplantation,	the	
animals were sacrificed and transcardially perfused with 4% para-
formaldehyde. Preparation of brain tissue cryosections and immuno-
histochemistry procedure is described in the Supplemental Material.

2.6 | Statistical analysis

For statistical analysis of differences between experimental groups, 
the	independent	two-tailed	Studen’s	t test was performed by using 
the	 GraphPad	 Prism	 software	 (version	 4.0).	 P values equal to or 
lower than .05 were considered statistically significant.

3  | RESULTS

3.1 | Generation and characterization of hiPSC-
NSCs

Neural stem cells used in this study were derived from hiPSC line 
R-iPSC4	as	previously	reported	by	us.33 Transcriptome, proteome 
and	immunocytochemical	analyses	of	these	hiPSC-NSCs	revealed	
that they expressed typical NSC markers and exhibited robust 
differentiation potential to neurons, astrocytes and oligodendro-
cytes	(see	reference	(33)	and	Figure	1A-F).	Molecular	karyotyping	
of	the	parental	iPSCs	at	passage	36	(p36)	(Figure	S2)	and	of	NSCs	
derived from them at an early time point after their generation 
(p10)	(Figure	1G)	showed	no	structural	chromosomal	aberrations	in	
these	samples.	However,	after	only	six	additional	passages,	hiPSC-
NSCs acquired a duplication of the entire long arm of chromosome 
1	[dup(1)q]	but	no	other	abnormalities	 (Figure	1H,	asterisk).	This	
confirms previous reports showing that prolonged maintenance of 
NSCs	in	culture	leads	to	the	accumulation	of	lineage-specific	gross	
chromosomal aberrations in a certain fraction of cell lines.24,34,35

3.2 | ZFN-mediated gene targeting into the AAVS1 
locus in hiPSC-NSCs

Next,	 we	 sought	 to	 examine	 whether	 ZFN-based	 genome	 edit-
ing	would	affect	 the	propensity	of	hiPSC-NSCs	 to	acquire	 this	or	
other chromosomal anomalies over prolonged passaging. To this 
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end,	 the	 targeting	 vector	 pAAVS1-EPG	 and	mRNAs	 encoding	 for	
a	pair	of	ZFNs	 that	 target	 the	genomic	 integration	 site	of	AAVS1	
locus	were	co-transfected	into	R-iPSC4-NSCs	at	p14.	This	resulted	

in	77%	eGFP-positive	cells	at	day	two	after	transfection	(Figure	S3).	
Selection	with	puromycin	yielded	a	pure	population	of	ZFN-edited	
NSCs that stably expressed eGFP over at least 23 passages in 

(A) (B) (C)

(D)

(G) (H)

(E) (F)
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culture	 (Figure	2A).	To	obtain	homogeneous	NSC	populations	 for	
subsequent	studies,	we	generated	clonal	ZFN-edited	NSC	lines	by	
single	cell	subcloning.	After	18	days	in	culture,	single	NSCs	formed	
eGFP-positive	 colonies	 in	 24	 out	 of	 192	wells	 (12.5%).	Of	 these,	
eight	clonal	ZFN-NSC	 lines	were	established	and	characterized	 in	
more	detail.	The	AAVS1	 locus	was	 successfully	 targeted	 in	 seven	
out	of	eight	ZFN-NSC	lines:	clone	119	showed	no	integration	at	the	
AAVS1	 locus,	 clone	 44	 carried	 the	 bi-allelic	 transgene	 insertion,	
while	clones	124,	128,	138,	164,	183	and	188	carried	mono-allelic	
transgene	 insertions	 (Figure	2B;	detailed	description	of	these	and	
other related results is provided in Supplemental Results and in 
Figures	S4-S6).

3.3 | Characterization of gene modified hiPSC-NSCs

To determine whether genetic modification and subcloning af-
fected	 hiPSC-NSCs,	 we	 assessed	 their	 immunophenotype	 and	
differentiation	potential.	Flow	cytometry	analysis	of	the	bi-allelic	
ZFN-NSC	 clone	 44	 demonstrated	 that	 the	 expression	 level	 of	
polysialylated	neuronal	cell	adhesion	molecule	(PSA-NCAM)	was	
comparable	 to	 that	 in	 parental	 hiPSC-NSCs	 (Figure	 S7A).	 These	
cells also retained the ability to form secondary neurospheres 
(Figure	S7B)	which	could	differentiate	to	microtubule-associated	
protein	 2	 (MAP2)-expressing	 neurons	 (Figure	 S7C).	 Moreover,	
ZFN-NSCs	 maintained	 in	 monolayer	 cultures	 expressed	 NSC	
markers	 Nestin,	 Sox1	 and	 Pax6,	 and	 differentiated	 towards	
MAP2-	 and	 class	 III	 β-tubulin	 (TUJ1)-expressing	 neurons,	 glial	
fibrillary	 acidic	 protein	 (GFAP)-expressing	 astrocytes	 and	 O4-
expressing oligodendrocytes without losing transgenic eGFP 
expression	(Figure	2C	and	Figure	S7D).	In	addition,	electrophysi-
ological analyses showed that neurons derived from parental 
iPSC-NSCs	and	both	polyclonal	and	clonal	ZFN-NSC	lines	exhibit	
comparable	functional	properties	(see	Supplemental	Results	and	
Figure	S8).

3.4 | Molecular karyotyping of ZFN-edited hiPSC-
NSCs

Next, we sought to determine which chromosomal aberrations 
occur	in	hiPSC-NSCs	that	underwent	the	ZFN	modification	proce-
dure.	SNP	genotyping	of	ZFN-NSCs	 that	were	kept	 in	culture	 for	

four	passages	after	transfection	(p14	+	4)	revealed	no	chromosomal	
aberrations	in	these	cells	(Figure	3A	and	Figure	S9).	Chromosomal	
abnormalities	were	also	not	detected	after	clonal	selection	of	ZFN-
NSCs as shown at p14 +	14	for	 the	clone	44	harbouring	bi-allelic	
insertion	 of	 the	 transgene	 cassette	 (Figure	 3B	 and	 Figure	 S10).	
However,	 extended	 passaging	 of	 clonal	 ZFN-NSCs	 reproducibly	
led	to	the	acquisition	of	a	dup(1)q	aberration	as	shown	for	the	bi-
allelic clone 44 at p14 +	20	(Figure	3C	and	Figure	S11)	and	p14	+	36	
(Figure	 3D	 and	 Figure	 S12),	 as	well	 as	 for	 the	mono-allelic	 clone	
138 analysed at p14 +	11	 (Figure	3E	and	Figure	S13).	Cultivation	
of	clonal	ZFN-NSCs	for	even	longer	periods	of	time	(p14	+	44)	led	
to the acquisition of additional chromosomal abnormalities, such 
as duplication of the 10 Mbp large terminal end of the long arm 
of	chromosome	9	 (Figure	3F	and	Figure	S14).	These	 results	 show	
that	dup(1)q	is	a	common	aberration	both	in	non-modified	as	well	
as	ZFN-modified	hiPSC-NSCs.

3.5 | Effect of the dup(1)q on the proliferation 
rate of ZFN-NSCs in vitro

The Chr1q region harbours the genes which are involved in the regulation 
of cell survival, proliferation and differentiation, such as AKT3, PIK3C2B, 
MDM4 and NOTCH2NLA.	 Therefore,	we	 used	 the	 EdU	 incorporation	
assay	 to	 determine	whether	 dup(1)q	 affects	 the	 proliferation	 rate	 of	
hiPSC-NSCs.	This	analysis	showed	that	ZFN-mediated	genetic	modifica-
tion of NSCs does not affect their proliferative activity in comparison to 
parental	hiPSC-NSCs	(Figure	4A,B).	However,	there	was	a	significantly	
higher	percentage	of	EdU-positive	ZFN-NSCs	in	cells	with	dup(1)q	com-
pared	to	those	without	this	aberration	(P <	.0001)	(Figure	4C),	suggest-
ing	that	dup(1)q	increases	the	proliferation	of	hiPSC-NSCs.

Next,	we	used	RT-qPCR	analysis	 to	assess	whether	ZFN-NSCs	
with	 and	without	 dup(1)q	 differ	 in	 expression	 of	 the	 above-men-
tioned genes. These analyses revealed significant upregulation of the 
AKT3	(55-fold),	PIK3C2B	(30-fold),	MDM4	(24-fold)	and	NOTCH2NLA 
(14-fold)	transcripts	in	NSCs	carrying	dup(1)q	compared	to	their	ge-
netically	intact	counterparts	(n	= 3, P <	.0001)	(Figure	4D).	In	con-
trast, expression of DNMT3B, which is located on Chr20 and served 
as a negative control for gene dosage, did not significantly differ be-
tween	these	cell	lines.	These	data	show	that	dup(1)q	in	NSCs	leads	to	
perturbations in expression of genes located on Chr1q and suggest 
that genes, such as AKT3 or PIK3C2B, might be responsible for their 
increased proliferation rate.

F I G U R E  1  Generation	and	karyotype	analysis	of	hiPSC-NSCs.	A,	R-iPSC4-hiPSC	colonies	growing	on	Matrigel.	B,	Embryoid	bodies	(EBs)	
formed	after	digestion	of	hiPSCs	with	collagenase	IV.	C,	Rosette-like	structures	appeared	7-10	d	after	plating	of	EBs	treated	with	TGFβ-
inhibitor	SB421543	and	BMP-inhibitor	dorsomorphin	onto	poly-l-ornithine-	and	laminin-coated	plates.	D,	Neuroectodermal	cells	were	
obtained	by	dissociating	rosette-like	structures	and	plating	on	poly-l-ornithine-	and	laminin-coated	plates.	E,	F,	These	cells	expressed	the	
NSC	marker	Nestin	(E)	and	differentiated	to	neurons	expressing	microtubule-associated	protein	2	(MAP2)	at	day	30	of	differentiation	(F).	
Nuclei	were	stained	with	Hoechst	33342	(blue).	Scale	bars:	100	µm.	G,	H,	Whole-genome	SNP	array-based	karyotyping	of	hiPSC-NSCs.	
B-allele	frequencies	(upper	panels)	and	log2	R	ratios	(lower	panels)	are	plotted	for	each	chromosome	for	all	SNPs	on	the	array	located	in	
this	region.	Each	point	is	an	SNP.	While	cells	at	passage	10	(p10)	did	not	show	any	major	karyotype	abnormalities	(G),	hiPSC-NSCs	at	p16	
exhibited	duplication	of	the	entire	long	arm	of	the	chromosome	1,	dup(1)q	(H)
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F I G U R E  2  Generation	and	characterization	of	genetically	modified	hiPSC-NSCs	using	zinc-finger	nuclease	(ZFN)	technology.	A,	
Stable	expression	of	eGFP	in	ZFN-modified	hiPSC-NSCs	during	13	passages	of	expansion	(from	p14	+ 10 to p14 +	23)	in	the	absence	
of	puromycin	selection.	B,	Identification	of	mono-	and	bi-allelic	ZFN-modified	hiPSC-NSC-clones	by	amplification	of	the	genomic	DNA	
(gDNA)	with	P1	+	P2	primers	located	around	the	integration	site	(see	Figure	S1).	Intact	AAVS1	locus	yielded	a	PCR	product	with	173	bp	
in	size	while	amplicon	from	the	targeted	allele	has	the	expected	size	of	3165	bp.	C,	Immunostaining	of	bi-allelic	ZFN-NSC	clone	44	
with	antibodies	against	NSC	marker	Nestin.	Differentiation	of	ZFN-NSCs	to	neurons,	astrocytes	and	oligodendrocytes	was	evaluated	
by	immunocytochemistry	using	antibodies	for	microtubule-associated	protein	2	(MAP2),	glial	acidic	fibrillary	protein	(GFAP)	and	O4,	
respectively.	The	expression	of	transgenic	eGFP	was	retained	in	all	cell	lineages.	Nuclei	were	counterstained	with	Hoechst	33342	(blue).	
Scale bars: 100 µm
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3.6 | AKT3 pathway mediates higher proliferation 
rate of hiPSC-NSCs with dup(1)q

To	determine	whether	AKT3	or	PIK3C2B	signalling	pathways	mediate	
the	higher	proliferation	rate	of	ZFN-NSCs	with	dup(1)q,	we	compared	

the	EdU	incorporation	in	ZFN-NSCs	with	and	without	dup(1)q	in	the	
absence and presence of small molecule inhibitors of these protein ki-
nases. This analysis was performed with two independent cell batches, 
each in triplicate, and reproducibly showed that each inhibitor sig-
nificantly	decreased	EdU	 incorporation	both	 in	ZFN-NSCs	with	 and	

F I G U R E  3  SNP	array-based	karyotyping	of	different	preparations	of	ZFN-modified	hiPSC-NSCs.	B-allele	frequencies	(upper	panels)	and	
log2	R	ratios	(lower	panels)	are	plotted	for	chromosome	1	(A-E)	and	chromosome	9	(F).	The	corresponding	complete	karyotypes	are	provided	
in	Figures	S9-S14.	A,	Analysis	of	the	heterogeneous	population	of	ZFN-NSCs	at	p4	after	genome	modification	(p14	+	4)	did	not	reveal	any	
major	chromosomal	abnormalities	(see	also	Figure	S9).	B,	Early	after	clonal	selection	at	p14	+	14,	the	bi-allelic	ZFN-NSC	clone	44	did	not	show	
any	detectable	aberrations	in	Chr1	or	any	other	chromosomes	(Figure	S10).	C-E,	Extended	passaging	of	clonally	selected	ZFN-NSCs	led	to	
the	acquisition	of	a	dup(1)q	abnormality	(asterisks)	as	shown	for	two	different	batches	of	clone	44	(batch	A	at	p14	+ 20 shown in panel C and 
Figure S11; batch B at p14 +	36	shown	in	panel	D	and	Figure	S12),	and	for	the	mono-allelic	clone	138	at	p14	+	11	(panel	E	and	Figure	S13).	F,	
ZFN-NSC	expansion	for	an	even	longer	period	led	to	the	acquisition	of	additional	chromosomal	abnormalities	as	exemplified	by	the	duplication	
of the 10 Mbp telomeric end in the long arm of chromosome 9 observed in clone 44 at p14 +	44	(arrow	see	also	Figure	S14)
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without	dup(1)q	(Figure	4E,F).	However,	the	AKT3	inhibitor	MK2206	
reduced	the	proliferation	of	NSCs	carrying	dup(1)q	to	a	significantly	
greater extent than the proliferation of karyotypically normal cells 
(Figure	 4G).	 In	 contrast,	 the	 inhibitory	 effect	 of	 PIK3C2B	 inhibitor	
NU7441 did not differ significantly between NSCs with and without 
dup(1)q	(Figure	4G),	indicating	that	AKT3	but	not	the	PIK3C2B	signal-
ling pathway at least partly mediates the higher proliferation rate of 
NSCs	with	dup(1)q	as	a	consequence	of	the	increased	gene	dosage.

3.7 | Dup(1)q increases the proliferation rate of 
ZFN-NSCs in vivo

To	determine	whether	the	proliferation-enhancing	effect	of	dup(1)
q	 is	 also	 retained	 in	 vivo,	 equal	 numbers	 of	GFP-expressing	ZFN-
NSCs	(clone	44)	with	or	without	this	chromosomal	aberration	were	
transplanted	into	the	striatum	of	immunodeficient	rat	brains	(n	= 3 
in	each	group).	Their	engraftment	and	mitotic	fractions	in	the	graft	
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area were analysed 2 weeks and 2 months after transplantation. 
The	2-week	analysis	of	brain	slices	revealed	that	transplanted	ZFN-
NSCs	in	both	groups	formed	well-delineated	grafts	which	expressed	
GFP	as	well	as	the	human-specific	marker	TRA-1-85	(Figure	5A,E).	
Immunohistochemistry revealed that most injected cells in both 
groups	expressed	this	NSC	marker	Nestin	 (Figure	5B,F),	 indicating	
that at this early time point after transplantation they had not dif-
ferentiated	into	neural	cell	lineages.	Assessment	of	the	proliferative	
activity within the graft area by using an antibody against the pro-
liferation	marker	Ki-67	showed	that	38	±	8%	of	NSCs	with	dup(1)q	
were	Ki-67	positive,	while	only	11	± 15% of NSCs without duplica-
tion	expressed	this	marker	(P <	.05,	Figure	5C,D,G-I).

At	 2	 months	 after	 transplantation,	 some	 immature	 Nestin-
positive	 ZFN-NSCs	 still	 persisted	 in	 the	 brain	 (Figure	 S15A,E)	
but	most	ZFN-NSCs	appeared	to	have	differentiated	 into	MAP2-
expressing neurons that overlapped with the human nuclear an-
tigen	 (HNA)	 signal	 in	 both	 experimental	 groups	 (Figure	 S15B,F).	
Confocal microscopy of the section of rat brain transplanted with 
ZFN-NSCs	carrying	dup(1)q	revealed	that	MAP2-	and	HNA-positive	
cells projected their neurites into the striatum, which confirmed 
maturation	of	ZFN-NSC-derived	neurons	and	integration	into	the	
brain	 tissue	 (Figure	 S16A,B).	 Ki-67	 staining	 revealed	 that	 only	
0.52 ± 0.52% of NSCs without the duplication and 3.31 ± 2.28% 
of	 cells	with	 dup(1)q	were	mitotically	 active	 (Figure	 S15C,D,G-I),	
but	this	difference	was	not	statistically	significant	(P >	.05).	These	
data	 demonstrate	 that	 the	 pro-proliferative	 effect	 of	 dup(1)q	 in	
hiPSC-NSCs	also	persists	in	vivo	and	that	it	is	most	pronounced	in	
the first few weeks after transplantation before NSCs differentiate 
to neural cells.

4  | DISCUSSION

NSCs	derived	 from	human	ESCs	and	 iPSCs	are	 important	vehicles	
for genetic and molecular therapies in the central nervous system. 
Genetic modifications of these cells allow for monitoring their differ-
entiation progress,36 improve our understanding of neural develop-
ment and disease,37 and may increase their potential for regenerative 

therapies.38 To overcome the disadvantages of genetic modification 
methods based on random integration, we used ZFN technology for 
targeted	genome	modification	in	hiPSC-NSCs.	Most	genome	editing	
studies in the past several years have employed the CRISPR/Cas9 
technology because this technology is much more simple, affordable 
and	efficient	than	ZFN-	and	TALEN-based	systems	for	targeting	any	
desired single or multiple genomic loci.14 However, for introduction 
of a defined expression cassette into a single genomic safe harbour 
locus	predesigned	ZFN-	or	TALEN-reagents	can	be	equally	useful.	
By	using	the	ZFN-nuclease	commercial	kit,	we	showed	that	integra-
tion	of	the	expression	cassette	into	the	AAVS1	locus	in	hiPSC-NSCs	
is	 highly	 efficient,	 enables	 stable	 long-term	 transgene	 expression	
and does not adversely affect the NSC characteristics both before 
as well as after single cell cloning. This is in agreement with previ-
ous	studies	in	ZFN-modified	human	foetal	NSCs,31	TALEN-modified	
hiPSC-NSCs30	 and	 CRISPR/Cas9-targeted	 human7,32 and mouse 
brain-derived	NSCs.32,39 However, the chromosomal integrity and 
functional consequences that chromosomal aberrations might in-
duce in gene targeted NSCs in vitro and in vivo have not been ad-
dressed in these previous studies. Here, we show that prolonged 
culture	of	hiPSC-NSCs	leads	to	the	acquisition	of	dup(1)q	indepen-
dently of whether they were genetically modified by ZFNs or not, 
and that this aberration increases NSC proliferation in vitro as well 
as in vivo in the first weeks after transplantation most likely by acti-
vation	of	the	AKT3	signalling	pathway.

The	 mechanism	 responsible	 for	 occurrence	 of	 dup(1)q	 in	 hiP-
SC-NSCs	 is	not	known.	 In	 the	 literature,	 several	mechanisms	have	
been implicated in the acquisition of genomic instability and aneu-
ploidy in hPSCs. For example, Lamm and coworkers have shown that 
decreased expression of the transcription factor SRF, which controls 
the activity of actin cytoskeletal genes, induces replicative stress 
and chromosomal condensation defects that underlie the ongoing 
chromosomal instability seen in aneuploid hPSCs.40 They suggested 
that similar mechanism may also operate during initiation of chromo-
somal instability in diploid hPSCs. In addition, Zhang and coworkers 
reported	that	 loss-of-function	mutations	 in	pro-apoptotic	genes	or	
upregulation	 of	 anti-apoptotic	 genes	 that	 may	 occur	 in	 hPSC	 de-
sensitize them to mitotic stress and enable aneuploid cell survival.41 

F I G U R E  4  Assessment	of	the	proliferation	rate	and	expression	of	genes	located	on	chromosome	1q	in	hiPSC-NSCs.	A,	Fluorescence	
microscopy	of	EdU-labelled	hiPSC-NSCs	(upper	panels)	and	ZFN-NSCs	(clone	44,	lower	panels).	Cells	were	incubated	with	EdU	for	2	h	
and	then	stained	with	EdU	antibodies	to	visualize	positive	nuclei	(red).	Only	transgenic	ZFN-NSCs	expressed	GFP	(green).	Nuclei	were	
counterstained	with	Hoechst	33342	(blue).	Scale	bars:	100	µm.	B,	Quantification	of	the	percentage	of	EdU-positive	NSCs	in	the	experiment	
shown	in	panel	A	based	on	the	scoring	of	3087	and	2369	nuclei	in	non-modified	hiPSC-NSCs	and	ZFN-NSCs	(clone	44),	respectively	(data	
obtained	from	two	independent	experiments,	each	performed	in	triplicate).	C,	The	proliferation	rate	of	ZFN-NSCs	(clone	44)	with	(p14	+	44)	
and	without	dup(1)q	(p14	+	13)	as	determined	by	the	EdU	incorporation	assay.	The	percentage	of	EdU-positive	cells	was	determined	in	two	
independent	experiments	each	performed	in	triplicate.	D,	RT-qPCR	analysis	of	PIK3C2B, AKT3, MDM4 and NOTCH2NLA gene expressions 
localized on Chr 1q in comparison to DNMT3B	localized	on	Chr	20	in	ZFN-NSC	clone	44	without	(p14	+	11)	and	with	dup(1)q	(p14	+	41).	E,F,	
ZFN-NSCs	(clone	44)	without	(E)	and	with	dup(1)q	(F)	were	cultured	for	24	h	in	the	absence	(CTRL)	and	presence	of	AKT3	inhibitor	(AKT3i)	
MK2206	or	PIK3C2B	inhibitor	(PIK3i)	NU7441	(both	at	1	μmol/L).	The	proliferation	rate	was	assessed	by	the	EdU	incorporation	assay	
as	described	for	panel	A.	G,	Comparison	of	the	extent	of	inhibition	of	EdU	incorporation	into	ZFN-NSCs	with	and	without	dup(1)q	after	
treatment	with	AKT3i	and	PIK3i	(calculated	from	data	shown	in	panels	E	and	F).	Treatment	with	AKT3i,	but	not	PIK3i,	exerted	a	significantly	
stronger	inhibition	on	the	proliferation	rate	of	ZFN-NSCs	with	dup(1)q	than	on	genetically	intact	ZFN-NSCs.	n.s.:	Non-significant,	**P < .01 
and	***P < .001
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Other	studies	identified	POLD3	and	ZSCAN10	as	factors	involved	in	
maintenance of genomic stability in PSCs. POLD3 is a gene encoding 
for	the	accessory	subunit	of	DNA	polymerase	delta	3,	and	 its	 loss	
results	in	replicative	stress,	DNA	repair	impairment,	micronucleation	
and	 aneuploidy	 in	 ESCs.42	 The	 embryonic	 stem	 cell-specific	 tran-
scription	 factor	ZSCAN10	has	been	shown	to	protect	hPSCs	 from	
accumulation of chromosomal structural abnormalities, and defects 
in	 apoptosis	 and	 in	 the	DNA	damage	 response.43 The mechanism 
which	is	specifically	responsible	for	the	acquisition	of	dup(1)q	in	hiP-
SC-NSCs	will	be	explored	in	future	studies.

Gains of chromosome 1 have been detected by other groups 
both in NSCs25,44	 as	 well	 as	 in	 human	 ESCs	 and	 iPSCs.22,23,27,45 
Among	 them	were	whole	 chromosome	1	duplications	 (trisomy)	 or	
unbalanced translocations and interstitial duplications of different 
segments in its long arm. For example, Weissbein and coworkers ob-
served	duplication	of	the	whole	chromosome	1q	in	human	PSC-NSCs	
but they did not assess its functional consequences.25 In contrast, 
Varela	and	coworkers	detected	amplification	of	a	segment	of	1q	and	
its translocation onto the telomeric ends of chromosomes 5p, 8q 
and	13q	in	long-term	cultured	hESC-NSCs.44 They also showed that 
neuronal differentiation of two aberrant NSC lines was decreased in 
vitro but this was not systematically observed in all lines that were 
tested.	In	addition,	ESC-NSCs	carrying	the	unbalanced	1q	transloca-
tion failed to integrate into the striatum of the rat brain at 7 weeks 
after	transplantation.	Although	the	study	by	Varela	et	al	suggested	
that the duplication of a 1q segment or its translocation onto differ-
ent recipient chromosomes could hamper the NSC differentiation 
in vitro and survival in vivo, this effect was not observed in our hiP-
SC-NSCs	with	dup(1)q.	The	most	likely	reason	for	this	is	in	the	differ-
ent nature of duplication identified in our studies.

It is worth noting that the human chromosome 1q corresponds 
to mouse chromosomes 1 and 3. Interestingly, gain of the entire 
chromosome	1	was	observed	in	long-term	cultured	NSCs	derived	
from	mouse	ESCs	or	adult	and	foetal	mouse	brain.46,47 In the study 
with	 mouse	 foetal	 brain-derived	 NSCs,	 cells	 carrying	 trisomy	 1	
exhibited increased proliferation and decreased neural differen-
tiation capacity in vitro.47	 Aberrations	 in	 1q	 are	 also	 one	 of	 the	
most common abnormalities reported among human neoplasms, 
including haematologic malignancies48-50 and paediatric brain 
tumours,51-53 suggesting that they might be associated with ad-
vantages in cell proliferation and survival. Indeed, the prolifera-
tion	rate	of	hiPSC-NSCs	carrying	dup(1)q	in	our	study	was	higher	
than that of karyotypically normal NSCs both in vitro and in vivo. 
The	identification	of	specific	driver	gene(s)	on	chromosome	1q	re-
sponsible for this effect in NSCs or cancer cells is difficult because 

more than one gene could be involved in conveying the growth ad-
vantage to aneuploid cells. However, number of genes located on 
chromosome 1q, such as AKT3, PIK3C2B, MDM4 and NOTCH2NL, 
are known to be associated with the control of cell proliferation, 
survival, migration, stress response, oncogenic transformation, 
neuronal differentiation and intracellular protein trafficking.54-57 
Interestingly, these genes were found to be overexpressed in 
ZFN-NSCs	with	dup(1)q	and	inhibitor	studies	suggested	that	AKT3 
pathway may be at least partially responsible for their increased 
proliferation rate.

Contrary	to	the	observation	by	Varela	and	coworkers	that	hESC-
NSCs carrying chromosomal 1q duplication exhibit altered in vitro 
differentiation and in vivo engraftment,44	the	dup(1)q	aberration	in	
our	study	did	not	affect	the	integration	of	ZFN-NSCs	into	the	rat	stri-
atum and 2 weeks after transplantation they still showed enhanced 
proliferation	 compared	 to	 NSCs	 without	 duplication.	 At	 this	 time	
point, most transplanted cells expressed Nestin and did not exhibit 
any detectable neuronal cell differentiation, which explains the high 
proliferation	 rate	observed	at	 this	 time	point.	After	2	months,	 the	
cells	with	duplication	also	exhibited	more	 than	a	 three-fold	higher	
fraction of dividing cells than control cells. However, the overall 
number	 of	 Ki-67-positive	 cells	 was	 very	 low	 and	 not	 significantly	
different	 between	 control	 and	 mutant	 cell	 populations.	 Although	
we	could	still	detect	Nestin-positive	ZFN-NSCs	in	the	graft	area	at	
this time point, many transplanted NSCs differentiated into neu-
rons which appeared to make synaptic connections to neighbouring 
areas, indicating their functional integration into the host tissue. We 
observed no tumour formation after 2 months of transplantation, 
but we cannot exclude the tumorigenicity of cells carrying duplica-
tion after a longer period. This should be explored in future studies 
because this adverse effect occurred 4 years after transplantation of 
foetal NSCs in a patient with ataxia telangiectasia.58

In conclusion, we show that an isolated duplication of chro-
mosome	1q	occurs	in	unmodified	and	ZFN-modified	hiPSC-NSCs	
after prolonged passaging, that this aberration increases NSC 
proliferation rate in vitro, and that these changes still persist in 
transplanted cells in vivo. Our preliminary data suggest that the 
higher proliferation rate of aberrant NSCs is partly mediated by 
overexpression of the proliferation promoting gene AKT3 located 
in duplicated area, but additional studies are required to elucidate 
the exact mechanism responsible for this phenomenon. It should 
be noted that in some prior studies no chromosomal abnormalities 
were	observed	in	the	long-term	cultured	hPSC-NSCs.59,60 This in-
dicates that acquisition of such abnormalities in cultured cells is 
not an inevitable event and that conditions might be selected that 

F I G U R E  5   In	vivo	engraftment	and	proliferation	rate	of	ZFN-NSCs	with	and	without	dup(1)q.	A,	E,	Representative	images	of	brain	slices	
stained	with	antibodies	against	transgenic	eGFP	and	human	cell	marker	TRA-1-85	2	weeks	after	transplantation	of	ZFN-NSCs	(clone	44)	
without	dup(1)q	(A)	and	with	dup(1)q	(E)	into	the	striatum	of	RNU	rats.	B,	F,	Expression	of	Nestin	(red)	in	engrafted	ZFN-NSCs	indicates	
that, independently of karyotype status, most transplanted cells had not differentiated to neural cells. C, G, Mitotic NSCs in the graft area 
were	detected	by	staining	for	the	proliferation	marker	Ki-67	and	counterstaining	with	haematoxylin	and	eosin	(D,H).	I,	The	percentage	of	
Ki-67-positive	ZFN-NSCs	was	significantly	higher	in	engrafted	dup(1)q	cells	than	in	grafts	containing	karyotypically	normal	NSCs.	The	total	
number	of	nuclei	counted	in	animals	transplanted	with	NSCs	with	and	without	dup(1)q	was	2991	and	452,	respectively.	Hoechst	33342	was	
used	to	label	the	nuclei	(blue).	*P < .05. Scale bars: 100 µm
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prevent their occurrence as it was demonstrated in several previ-
ous studies.43,61-65 Nevertheless, the genomic integrity of all cell 
products used for regenerative approaches should be carefully 
assessed and monitored to ensure that they are safe and thera-
peutically effective.
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